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Abstract   

Each generation of high energy physics experiments is grander in scale than the previous – 

more powerful, more complex and more demanding in terms of data handling and analysis.   

The spectacular performance of the Tevatron and the beginning of operations of the Large 

Hadron Collider have placed us at the threshold of a new era in particle physics.   The 

discovery of the Higgs boson or another agent of electroweak symmetry breaking and 

evidence of new physics may be just around the corner.  The greatest challenge in these 

pursuits is to extract the extremely rare signals, if any, from huge backgrounds that arise 

from known physics processes.  The use of advanced analysis techniques is crucial in 

achieving this goal.  In this review, I discuss the concepts of optimal analysis, some 

important advanced analysis methods and a few examples.  The judicious use of these 

advanced methods should enable new discoveries and produce results with better precision, 

robustness and clarity. 
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1 INTRODUCTION    
The ambitious goal of understanding nature at the most fundamental level has led to the 

development of particle accelerators and detectors at successively grander scales.  The 

revolutionary discoveries at the beginning of the twentieth century opened up the quantum 

world.  By the middle of the century, the Standard Model (SM) of particle physics (1-6) was 

being built and by the turn of the century, the last quark (7, 8) and the last lepton (9) of the 

Standard Model had been found.  Despite this spectacular success, a vital part of the Standard 

Model, the “Higgs mechanism” (10-13), still awaits experimental evidence.  Moreover, there are 

indications that the SM particles and forces might be telling us only a part of the story.  Since the 

SM accounts for only 4% of what makes up the universe, the rest must be explained in terms of 

matter and phenomena we have yet to uncover.  The evidence for dark matter in the universe, the 

evidence for an accelerating universe, the discovery of neutrino oscillations, and the persistent 

discrepancies in some of the precision measurements in SM processes are some of the strong 

indicators of the existence of new physics beyond the SM.  It appears that new physics is 

inevitable at the TeV energy scale (Terascale).  We might be at the threshold of another 

extraordinary century in physics.    

Since the discovery of the top quark in 1995 (7, 8, 14), the searches for the Higgs boson and for 

new physics have taken center-stage.  The luminosity upgrades of the Fermilab Tevatron (15) in 

the past decade have produced unprecedented amounts of proton-antiproton collision data at the 

center of mass energy ( s ) of 1.96 TeV.  These data, in conjunction with the use of advanced 

analysis methods, have enabled observations of the electroweak production of single top quarks 

(16,17) and sensitive searches for the Higgs boson and for physics beyond the SM.   The Large 

Hadron Collider (LHC) (18), with a design energy of s = 14 TeV, will open new energy 

frontiers that might help answer some of the most pressing particle physics questions of today.    

The investments in the accelerator facilities and experiments – intellectual and monetary – and 

the total time span of the undertakings are so great that they cannot be easily replicated.  

Therefore, it is of the utmost importance to make the best use of the output of this investment – 

the data we collect.    While the advances in computing technology have made it possible to 

handle vast amounts of data, it is crucial that the most sophisticated techniques be brought to 
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bear on the analysis of these data at all stages of the experiment.  Over the past century, 

instrumentation has advanced from photographic detectors to those integrated with ultra-fast 

electronics that produce massive amounts of digital information every second.   Likewise, data 

analysis has progressed from visual identification of particle production and decays to searches 

for bumps in invariant mass spectra of exclusive final state particles to event counting in 

inclusive data streams.  The rates of interactions and the number of detector channels to be read 

out have grown by orders of magnitude over the course of the past few decades.  We can no 

longer afford to write out data to storage media based on simple interaction criteria.   However, 

the events that we seek to study are extremely rare, so data analysis in contemporary high energy 

physics (HEP) experiments begins when a high energy interaction or event occurs. The electronic 

data from the detectors must be transformed into useful physics information in real-time.  The 

trigger system is expected to select interesting events for recording and discard uninteresting 

(background) events.  Information from different detector systems is used to extract event 

features such as the number of tracks, high transverse momentum objects1

More detailed analysis of the recorded data is performed offline.  The common offline data 

analysis tasks are: charged particle tracking, energy and momentum measurements, particle 

identification, signal/background discrimination, fitting, measurement of parameters, and 

derivation of various correction and rate functions.  The most challenging of the tasks is 

identifying events that are both rare and obscured by the wide variety of processes that can 

mimic the signal.  This is a veritable case of “finding needles in a haystack”   for which the 

conventional approach of selecting events by using cuts on individual kinematic variables can be 

far from optimal.   

, and object identities.  

The extracted features are then used to decide whether the event should be recorded.  At the LHC 

experiments, for example, the event rate will be reduced from 40 MHz to ~200 Hz for recording. 

The online processing of data is performed by a combination of hardware and software 

components.   

The power of computers coupled with important developments in machine learning algorithms, 

particularly the back-propagation algorithm for training neural networks (NN), brought a 

revolution in multivariate data analysis in the late 1980s.  There was much skepticism about 
                                                      
1 By objects, I mean electrons, muons, jets arising from quark or gluon fragmentation, etc. 
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these methods in the early 1990s when they were brought into HEP analyses (19-23).  However, 

following several successful applications (24-29), particle physicists have largely accepted the 

use of NNs and other multivariate methods. It is now evident that without these powerful 

techniques, many of the important physics results that we have today would not have been 

achievable using the available datasets.  In this review, my goal is to provide an introduction to 

the concepts that underlie these advanced analysis methods and describe a few popular methods.  

I also discuss some analysis examples and prospects for future applications.   

2 OPTIMAL ANALYSIS CONCEPTS 
“Keep it simple, as simple as possible, not any simpler”     Albert Einstein    

The goal in data analysis is to extract the best possible results.  Here I discuss the types of 

analysis tasks we perform, explain why the sophistication of multivariate methods is necessary to 

obtain optimal results, and introduce the concepts and the general framework that underlie the 

popular methods.  

The broad categories of analysis tasks are: (a) classification (b) parameter estimation and (c) 

function fitting.  Classification is the process of assigning objects or events to one of the possible 

discrete classes.  Parameter estimation is the extraction of one or more parameters by fitting a 

model to data.  By function fitting I mean the derivation of continuous functions of variables.  

Mathematically, in all these cases, the underlying task is that of functional approximation.   

Classification of objects or events is, by far, the most important analysis task in HEP.  Common 

examples are the identification of electrons, photons, τ-leptons, b-quark jets, and so on, and the 

discrimination of signal events from those arising from background processes.    Optimal 

discrimination between classes is crucial to obtain signal-enhanced samples for precision physics 

measurements.  Measurements of track parameters, vertices, physical parameters such as 

production cross sections, branching ratios, masses and other properties are examples of 

parameter estimation (or regression).  Some examples of function fitting are the derivation of 

correction functions, tag rate functions and fake rate functions.  
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These categories of tasks are also referred to as pattern recognition problems.2

2.1 Multivariate Treatment of Data 

   

 

Data characterizing an object or an event generally involve multiple quantities referred to as 

feature variables.  These may be, for example, the four-vectors of particles, energy deposited in 

calorimeter cells, deduced kinematic quantities, and global event characteristics.  The variables, 

generally, are also correlated.  To extract results with maximum precision it is necessary to treat 

these variables in a fully multivariate way.   

The feature variables that describe an object or an event can be represented by a vector 

),...,,( 21 dxxx=x  in a d-dimensional feature space.  The objects or events of a particular type or 

class can be expected to occupy specific contiguous regions in the feature space.  When 

correlations exist between variables, the effective dimensionality of the problem is smaller than d.  

Pre-processing of data is the first step in an analysis.  This is also referred to as feature extraction 

or variable selection.  Having selected a set of variables, one may apply a transformation to the 

variables to yield a representation of the data that exhibits certain desirable properties. The pre-

processing could be a simple scaling of the variables or a sophisticated transformation such as 

decorrelation of variables or combining them to construct physics-motivated variables.  In some 

applications, this pre-processing may be the only necessary multivariate treatment of the data.  In 

others, it serves as the starting point for a more refined analysis.  Given x, the goal is to construct 

a function )(xfy = with properties that are useful for subsequent decision-making and 

inference. That is, we seek to extract a map Ndf ℜ→ℜ: , preferably with dN << . ( mℜ : real 

vector space of dimension m.)  In practice, we try to approximate the desired function 

with ),(~ wxfy = , where w  are some adjustable parameters.  I discuss the general approach for 

obtaining the functional approximation in the following sections.  

The power of multivariate analysis is illustrated by a simple two-dimensional example.  Figure 

1(a), (b) show the distributions of two observables x1 and x2 that arise from two bivariate 

                                                      
2 Pattern recognition also encompasses knowledge discovery by data exploration which deals 
with data-driven extraction of features, and deriving empirical rules via data-mining. 
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Gaussian distributions (Figure 1(c)).  The one-dimensional projections (Figure 1(d,e) ), namely 

the marginal densities ∫= 2)2,1()1( dxxxGxf   and ∫= 1)2,1()2( dxxxGxf  overlap considerably 

and there are no obvious cuts on x1 and x2 that would separate the two classes.  However, when 

we examine the data in two dimensions, we see that the two classes are largely separable.  

Therefore, a cut applied to the linear function (30), 21~ bxaxy += , called a linear discriminant, 

shown in Figure 1(f)), can provide optimal discrimination of the two classes.  The linear 

function separating the two classes shown in Figure 1(c) is a simple example of a decision 

boundary.  Optimal discrimination, most simply, is a procedure that minimizes the probability of 

misclassification. 

 

2.2 Machine Learning 
The availability of vast amounts of data and challenging scientific and industrial problems 

characterized by multiple variables paved the way to the development of automated algorithms 

for learning from data. The primary goal of learning is to 

be able to respond correctly to future data.  In conventional 

statistical techniques, one starts with a mathematical model 

and finds parameters of the model either analytically or 

numerically using some optimization criteria. This model 

then provides predictions for future data.  In machine 

learning, an approximating function is inferred 

automatically from the given data without requiring a priori 

information about the function. 

In machine learning, the most powerful approach to obtain 

the approximation ),( wxf ,  of the unknown function )(xf , is supervised learning, in which a 

training data set, comprising feature vectors (inputs)3

{ }x,y

 and the corresponding targets (or desired 

outputs), is used.   The training data set , where y are the targets (from the true function 

)(xf ), encodes information about the input-output relationship to be learned.  In HEP, the 

                                                      
3 I use feature vectors and inputs, interchangeably. 

Machine Learning: 

Machine Learning is the paradigm 
for automated learning from data 
using computer algorithms.  It has 
origins in the pursuit of Artificial 
Intelligence, particularly, in Frank 
Rosenblatt’s creation of the 
Perceptron around 1960 (31).   
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Figure 1

 

(a,b) Distributions of two hypothetical observables x1 and x2 arising from a mixture of two 

classes with bivariate Gaussian densities;   (c) bivariate densities of the two classes (d,e) 1D 

marginalized densities and (f) a linear discriminant function f(x1,x2) that reveals two distinct 

distributions.  An optimal cut placed on the discriminant results in the linear decision boundary 

shown in (c). 

training data set generally comes from Monte Carlo simulations.  The function )(xf is discrete 

for classification ({0,1} or {-1,1} for binary classification) and is continuous for regression. 

(Therefore, the distinction between discrimination and regression is not fundamental.) The goal 

of learning (or training) is to find the parameters w of our model, that is, a functional 

approximation for the desired input-output map.   

In all approaches to functional approximation (or function fitting), the information loss incurred 

in the process has to be minimized.   The information loss is quantified by a loss function 

)),(,( wxfyL .  In practice, the minimization is more robust if one minimizes the loss function 

averaged over the training data set.  A learning algorithm, therefore, directly or indirectly, 

minimizes the average loss, called the risk, quantified by a risk function )(wR  that measures the 
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cost of mistakes made in the predictions, and finds the best parameters w .  The empirical risk (an 

approximation to true risk) is defined as the average loss over all (N) predictions,    

{ } 1.                                                        . ),(,1)(
1

∑
=

=
N

i
i fyL

N
R wxw i  

A commonly used risk function is the mean square error, 

2.                                            .)),((1)()(
1

2∑
=

−==
N

i
i fy

N
ER wxww i  

If the optimization has to take into account any constraint )(wQ , it can be added to the risk 

function to give the cost function to be minimized,   

3.                                                            ),()()( www QRC λ+=  

where λ is an adjustable parameter that determines the strength of the constraint imposed.  The 

cost function in the case of a mean square error is the well known constrained χ2 fit.  The 

function ),( wxf obtained by the procedure converges, in the limit of a large training data set, to 

the function )(xf that minimizes the true risk function.   

The risk minimization can be performed using many algorithms.  Each attempts to find the 

global minimum of the cost function in the parameter space.   In practice, however, it is usually 

only possible to find a local minimum. The generic method is that of gradient descent.  Other 

popular methods include Levenberg-Marquardt (32), simulated annealing (33) and genetic 

algorithms (GAs) (34).  The constraint in the cost function is typically used to control model 

complexity (i.e., over-fitting), and is known as regularization. The performance of the classifier 

or estimator is generally evaluated using a test data set independent of the training set. 

A method that can approximate a continuous nonlinear function to arbitrary accuracy is called a 

universal approximator.  Neural networks are examples of universal approximators. 

Two other important approaches to learning are unsupervised and reinforcement learning.  In the 

former approach, no targets are provided and the algorithm finds associations among the input Α 

Α 

       

 

Α 
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vectors.  In the latter, correct outputs are rewarded and incorrect ones are penalized.   These 

methods are not further discussed in this review. 

2.3 The Bayesian Framework 
“Today’s posterior distribution is tomorrow’s prior.” – David Lindley 

The Bayesian approach to statistical analysis is that of inductive inference. It allows the use of 

prior knowledge and new data to update probabilities.  Therefore, it is a natural paradigm for 

learning from data.  It is an intuitive and rigorous framework for handling classification and 

parameter estimation problems.  At the heart of Bayesian inference (35) is Bayes theorem,   

4.                                                         , 
)(

)()|()|(
Ap

BpBApABp =  

where the conditional probabilities )|( ABp  and )|( BAp  are referred to as the posterior 

probability and likelihood, respectively, )(Bp is the prior 

probability of B, and the denominator is simply the total 

probability of A, ∫= dBBpBApAp )()|()( .  If B is discrete, 

then the integral is replaced by a sum.   

 

Let us consider a binary classification problem in which an event 

must be classified either as due to a signal process s , or as due 

to a background process b .  This is achieved by placing a cut on 

the ratio of the probabilities for the two classes, 

5.                                                    , 
)()|(
)()|( 

)|(
)|()(

bpbp
spsp

bp
spr

x
x

x
xx ==

 

where )|( sp x and )|( bp x are the likelihoods of the data for 

signal and background classes, respectively, and )(sp  and 

)(bp are the prior probabilities.  The discriminant r is known as 

the Bayes discriminant, where r(x)=constant defines a decision 

Conditional Probabilities: 

 

 

 

 

)(
)()|(

)(
)()|(

Ap
BApABp

Bp
BApBAp





=

=
 

Bayes theorem follows immediately 
from these expressions. 

p(A|B): Probability of A, given B 

p(B|A): Probability of B, given A 

Α Β 
Α∩Β 
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boundary in the feature space.  Bayes rule is to assign a feature vector to the signal class if 

)|()|( xx bpsp > .   This rule minimizes the probability of misclassification.  Any classifier that 

minimizes the misclassification rate is said to have reached the Bayes limit. The problem of 

discrimination, then, mathematically reduces to that of calculating the Bayes discriminant )(xr or 

any one-to-one function thereof. 

 

The posterior probability for the desired class s, becomes 

6.                 . 
1)()|()()|(

)()|( )|(
r

r
bpbpspsp

spspsp
+

=
+

=
xx

xx  

 

There are parametric and non-parametric methods to estimate )|( sp x and )|( bp x which I 

discuss in the next section.  If one minimizes the mean square 

error function (Equation 2) where the targets are {0,1}, 

then )( wx,f , if flexible enough, will directly approximate  the 

posterior probability, )|( xsp .  NNs, being universal 

approximators, are one such class of functions.  

 

Because )(sp and )(bp  are not always known, one can calculate 

the discriminant function  

7.                                                            , 
)()(

)( )(
xx

xx
bs

sD
+

=  

where )|()( sps xx = and )|()( bpb xx = .   The posterior 

probability for the signal class is related to this discriminant 

function  by 

8.                                                  , 
]/))(1()([

)( )|(
kDD

Dsp
xx

xx
−+

=

 

where )(/)( bpspk = .  The discriminant )(xD is often referred to (misleadingly) as the 

likelihood discriminant in HEP. The discriminating power of )(xD , which is a one-to-one 

function of )|( xsp , is the same as that of )|( xsp . 

Neyman-Pearson Lemma: 

When the hypotheses are fully 
specified, the Bayes Rule of assigning 
a feature vector to the most probable 
class is identical to the Neyman-
Pearson criterion (36) of comparing 
the likelihood ratio of the two 

hypotheses  to a threshold value kα 

and accepting hypothesis H0 if   

αk
HxL
HxL

>
)|(
)|(

1

0  

where α defines the desired  
significance level. 
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When many classes ),...,2,1( NkCk =  are present, the Bayes posterior probability can be written 

as, 

9.                                                  . 
)()|(

)()( )|(
∑

=
kk

kk
k CpCp

CpCpCp
x
|xx  

 

The Bayes rule for classification is to assign the object to the class with highest posterior 

probability.  This is also the criterion in hypothesis testing.   

 

In problems of parameter estimation, the posterior probability for a model parameter θ is, 

10.                                                        , 
)(

)()( )|(
x

|xx
p

ppp θθθ =  

where )(θp  is the prior probability of θ.  Thus in the Bayesian approach, one has a probability 

distribution of possible values for the parameter θ , whereas in conventional machine learning 

methods one calculates a maximum likelihood estimate for θ .   However, the two approaches are 

closely related.  The minimization of the error or cost function in the machine learning approach 

is equivalent to maximizing the Bayesian posterior probability.    

3 POPULAR METHODS         

In this section, I discuss, with minimal mathematics, several methods that are particularly 

relevant for and popular in HEP – from the simplest to the most sophisticated multivariate 

methods.  The interested reader may consult many excellent books for details about these 

methods and algorithms (37-41).    

3.1 Grid Searches 
The conventional approach to separating signal from background is to apply a set of cuts such as 

..., 2211 zxzx >>  where ( dzzz ..., 21 ) forms a cut-point in the d-dimensional feature space. (This 

is sometimes referred to as “cut-based” method in HEP.) These “rectangular” cuts are usually 

arrived at by a process of trial and error informed by common sense and physics insight. 

Unfortunately, there is no guarantee that this procedure will lead to optimal cuts (as illustrated by 
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the example in Section 2). One can obtain the best set of rectangular cuts by performing a 

systematic search over a grid in feature space. A search performed over a regular grid, however, 

is inefficient.  Much time can be spent scanning regions of feature space that have few signal or 

background points. Moreover, the number of grid points grows as M d, which increases rapidly 

with bin count M and dimensionality d – a problem known as the “curse of dimensionality”. A 

better way is to use a random grid search (RGS) (42), in which a distribution of points that form 

a random grid is used as the set of cut-points. The cut-points could be obtained, for example, 

from signal events generated by a Monte Carlo simulation.  This is illustrated in Figure 2 with 

an example in a two-dimensional feature space. The results can be plotted as the efficiency for 

retaining signal versus the efficiency for background for each cut, as shown in Figure 2(b). The 

optimal cuts are those that maximize signal efficiency for desired background efficiency.4

 

  The 

methods, discussed later, provide optimal cuts that would be at least as good, and in fact, most 

often superior to the best cuts from grid searches. Comparison of the RGS results with those 

from a neural network in Figure 2(b) show that the neural network cuts are better in general and 

significantly better when large background rejection is desired. 

The random grid search can be used for (a) a rapid search for the best rectangular cuts, (b) to 

compare the efficacy of variables or (c) to serve as a benchmark for more sophisticated 

multivariate analyses.     

3.2 Linear Methods 
In grid searches, the decision boundaries are lines or planes parallel to the axes of the feature 

space.  As illustrated in Figure 1, optimal separation of classes may require decision boundaries 

rotated relative to the axes of the original feature space.  

In a linear model, the mapping can be written as,  

11.                                 ,....)(~
22110       xwxwxwwy i ii wxx ∑ ==+++=  

where w  is the vector of weights.  (I use weights and parameters interchangeably.) 

                                                      
4 The plot is akin to the ROC (Receiver Operating Characteristic) curve, which was invented in 
the 1950s to study radio signals in the presence of noise and is used in signal detection theory. 
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Figure 2 

 

Random grid search (RGS) algorithm for finding best cuts in feature space and comparison with 

neural network results.  (a) Simulated signal and background 2D distributions and example cuts 

(lines parallel to axes) using the signal sample. (b) Efficiency of RGS cuts to select signal events 

plotted against efficiency for background events (arbitrarily scaled).  Each red point corresponds 

to an RGS cut. Note that most of the RGS cuts are sub-optimal and those at the upper edge of the 

distribution of red points provide the best set of “rectangular” cuts in the sense of maximizing 

signal efficiency for a given background.  The results of a neural network (black points) trained 

on the same data are clearly superior to RGS cuts.  Particularly, in the region of interest of low 

background efficiency, the gain in signal efficiency from neural networks is significant.      

 

Fisher (30) pioneered the earliest successful applications of linear discriminants.   Fisher’s 

approach to discrimination between classes was to find a linear combination of input variables 

that maximizes the ratio of the distance between the class means to the sum of the class variances 

along the direction of w .  If we consider two sets of feature vectors xs and xb from the signal and 

background classes, with means and variances 
sµ and sσ , and 

bµ and bσ , respectively, the Fisher 

criterion is to maximize 

(a) (b) 
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. 12                                                              , )()( 22

2

bs

bsF
σσ +

−
=

µµw  

which for the parameters w , yields 

13.                                                                , )bs µµ −(= -1Σw  

where Σ  is the common covariance matrix for the classes.  The Fisher discriminant can also be 

derived from Bayes discriminant starting with a Gaussian density for each class,  

14.                                    .)()(
2
1exp

)2(
1)( 2/12/

    f T
d 



 −−−= µµ xΣx

Σ
x 1-

π
 

Taking the logarithm of the Bayes discriminant (Equation 5), we obtain, 

15.      . 
)(
)(loglog

2
1)()(

2
1)()(

2
1

)|(
)|(log

bp
sp

bp
sp

s
T

sb
T

b ++−−−−−=
1-

b

-1
s1-

s
1-

b Σ
Σ

xΣxxΣx
x
x µµµµ  

This is the general form of the Gaussian classifier.  After omitting non-essential terms that are 

independent of x, the Gaussian classifier can be written as  

16.                                                  ,)(
2
1)( 22

sbDF χχ −== x   

where )()(2 µµ −−= x Σx -1Tχ .  If the covariance matrices for the two classes are equal, that is, 

if ΣΣΣ bs ==  ,  then one obtains Fisher’s linear discriminant.  If not, Equation 16 is a quadratic 

function of the feature variables.  However, if we consider the augmented feature space with 

variables , and ,,,, 21
2
2

2
121 xxxxxx  then the quadratic discriminant function in the original space 

becomes a linear discriminant in the augmented five-dimensional space.    

The Gaussian Classifier is sometimes referred to as the H-matrix method, where -1Σ=H . This 

method is employed in electron identification in DØ (see Ref. 43) where feature variables 

characterizing longitudinal and transverse shower shapes in the calorimeter are used to construct 

a Gaussian classifier. 
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So far, I have discussed Gaussian densities as the relevant models.  In the case of non-Gaussian 

densities, one can still use linear methods provided that the data are mapped into a space of 

sufficiently high dimensions as is done in support vector machines (39). 

3.3 Naïve Bayes or Likelihood Discriminant 
When the feature variables are statistically independent, the multivariate densities can be written 

as products of one dimensional densities without loss of information.   In this case, the 

discriminant in Equation 7 becomes 

17.                                                     , 
)()(

)()(
iiiiii

iii

xbxs
xsD
ΠΠ

Π
+

=x  

where )( ii xs  and )( ii xb are the densities of the ith variable from the signal and background 

classes, respectively. The univariate densities can be readily estimated by simple 

parameterizations  (or by non-parametric methods discussed below).   It may be computationally 

easier to parameterize the likelihood ratio )(/)( iiiii xbxsL =  of the individual variables and 

calculate the discriminant as )1/()( LLxD +=  where  ∑= iLL exp  (24).  

3.4 Kernel-based Methods 
In principle, multivariate densities can be estimated simply by histogramming the multivariate 

data x in M bins in each of the d feature variables. The fraction of data points that fall within 

each bin yields a direct estimate of the density at the value of the feature vector x at, say, the 

center of the bin. The bin width (and therefore the number of bins M) must be chosen such that 

the structure in the density is not washed out (due to too few bins) and such that the density 

estimation is not too spiky (due to too many bins).  Unfortunately, this method suffers from the 

curse of dimensionality as in the case of the standard grid search.  We would need a huge 

number of data points in order to fill the bins with a sufficient number of points.  

 

More efficient methods for density estimation are based on sampling neighborhoods of data 

points. Let us take the simple example of a hypercube of side h as the kernel5 H function  in a d-

                                                      
5 A kernel is a symmetric function that integrates to unity. 
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dimensional space.  Such a hypercube can be placed at each point xn, counting the number of 

points that fall within it and dividing that number by the volume of the hypercube and the total 

number of points: 
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where N is the total number of points, and  H(u)=1 if x is in the hypercube, otherwise H(u)=0.  

 

The method is the same as histogramming, but with overlapping bins (hypercubes) placed around 

each data point. Smoother and more robust density estimates can be obtained by using smooth 

functional forms for the kernel function.  A common choice is a multivariate Gaussian, 
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where the width of the Gaussian acts as a smoothing parameter (the bandwidth) that is chosen 

appropriately for the  problem. If the kernel functions satisfy 

20.                                                         ,1)(;0)( ∫ =≥ duuHuH  

then the estimator satisfies 0)(~ ≥xp    and ∫ = 1)(~ xx dp .  

 

Bandwidth selection is a critical aspect of this algorithm. In the standard kernel methods, the 

parameter h is the same for all points and consequently the density estimation can be over-

smoothed in some regions and spiky in some others. This problem is addressed by use of 

adaptive kernels or the K-nearest neighbor approach.  

 

Adaptive Kernels: In the adaptive kernel method, the kernel width depends on the local density 

of data points.  We can define the local kernel width hh ii λ= where h is the global width and iλ  

is a scaling factor determined by the local density.  A simple ansatz is that iλ  is inversely 

proportional to the square root of the density of sample points in the locality.  Even in this 

method, setting the global width is an issue, especially for multiple dimensions.  
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K-Nearest Neighbor Method: In this method, a kernel, say a hypersphere, is placed at each 

point x and instead of fixing the volume V of the hypersphere and counting the number of points 

that fall within it, we vary the volume (i.e., the radius of the hypersphere) until a fixed number of 

points lie within it. Then, the density is calculated as, 

 

21.                                                                 .)(~
NV
Kp =x  

 

The class densities thus estimated can be used to calculate the discriminant from Equation 7. 

  

The probability density estimation (PDE) method using kernels can be used in both 

discrimination and regression problems.  The method is employed by DØ in an analysis that 

extracts the top quark mass in dilepton final states (44).  

3.5 Neural Networks 
Feed-forward neural networks, also known as multilayer perceptrons (MLP), are the most 

popular and widely used of the multivariate methods. A schematic of a neural network (NN) is 

shown in Figure 3(a).  An MLP consists of an interconnected group of neurons or nodes 

arranged in layers; each node processes information received by it with an activation (or 

transformation) function, then passes on the result to the next layer of nodes.  The first layer, 

called the input layer, receives the feature variables, followed by one or more hidden layers of 

nodes and the last layer outputs the final response of the network.  Each of the interconnections 

is characterized by a weight, and each of the processing nodes may have a bias or a threshold.  

The weights and thresholds are the network parameters, often collectively referred to as weights, 

whose values are learned during the training phase.  The activation function is generally a non-

linear function that allows for flexible modeling.  NNs with one hidden layer are sufficient to 

model the posterior probability to arbitrary accuracy. Although neural networks are typically 

described, as above, in terms of neurons and activation, it is useful to think of them as simply a 

specific class of non-linear functions.   
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In the schematic shown in Figure 3(a) which has one hidden layer of nodes and, a data set with d 

feature variables { }dxxx ,..., 21≡x , the output of the network is 

22.                                                   ,) |()()()( xwx,x ∑ =+==
j jj sphwfO θg  

 

 where jh is the output from the hidden nodes: 

23.                                                                . )( ∑+=
i iijjj xwh θg  

The non-linear activation function g is commonly taken as a sigmoid 

24.                                                                        . 
1
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If aa ~)(g , the outputs jh at the hidden layer would be linear combinations of the inputs and the 

network with a single layer of weights would be a linear model.  The sigmoid function is linear 

close to 0~a , nonlinear for higher values of a, and saturates for large values; it maps the input 

interval ),( ∞−∞  onto (0,1).  Therefore, a network with a sigmoidal activation function contains a 

linear model as a special case.   The function g at the output is usually chosen to be a sigmoid for 

classification and a linear function for regression. The network parameters are determined by 

minimizing an empirical risk function, usually the mean square error between the actual output 

Op and the desired (target) output yp , 

25.                                                  ,)(1
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over all the data in the training sample, where p denotes a feature vector6

)|( xsp

.  As mentioned in 

section 2.3, a network trained for signal/background discrimination with yp=1 for the signal class 

and  yp=0 for the background can directly approximate the Bayesian posterior probability, 

.   

 

Two examples of using NNs for binary classification where discriminating boundaries are 

nonlinear are shown in Figures 3 & 4.  For results shown in Figure 3, the same data sets as in 

the example of Figure 2 are used to train an NN with 2 inputs, 8 hidden nodes, one output node 

(2-8-1) to map the feature space onto a one-dimensional discriminant.  Any cut on the NN 

                                                      
6 Note that Equation 25 is essentially same as Equation 2. 
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discriminant, shown in Figure 3(b), therefore, corresponds to a nonlinear contour cut (decision 

boundary) in the feature space as shown in Figure 3(c).  The signal probability in feature space 

as calculated by the NN is shown in Figure 3 (d).  Figure 4 shows results with an NN (2-10-1) 

for a slightly more complicated problem.  The simulated data for the two classes, the NN 

decision boundaries along with the Bayes decision boundaries calculated from the known class 

densities are shown in Figure 4(a).  Figure 4(b) shows the signal probability in feature space 

given by the NN.  For feature space with dimensions larger than two, the discriminant for binary 

classification will still be one-dimensional and a cut placed on the discriminant will correspond 

to a hypersurface in the feature space.   

 

There are several heuristics that are helpful in the construction of NNs.  Since the hidden nodes 

are critical in the modeling of the function, the number needed depends on the density of the 

underlying data. Too few nodes lead to under-fitting and too many lead to over-fitting. To avoid 

over-fitting, one can employ structure stabilization (optimizing the size of the network) and 

regularization. In the former, one starts either with large networks and then prunes connections 

or starts with small networks and adds nodes as necessary. In regularization, one penalizes 

complexity by adding a penalty term to the risk function.  It is considered useful to scale the 

inputs appropriately.  The standard advice is to scale the magnitude of the input quantities such 

that they have a mean around zero and a standard deviation of one.   Generally, it suffices to 

make sure that the inputs are not much greater than one.  The starting values of weights are 

chosen randomly.  When using standard scaled inputs as suggested above, the starting weights 

can be chosen randomly in the range of -0.7 to 0.7.  A network is trained by cycling through the 

training data hundreds or thousands of times.  The performance of the network is periodically 

tested on a separate set of data. The training is stopped when the error on the test data begins to 

increase. 
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Figure 3

 

 (a) A schematic representation of a three-layer feed-forward neural network; (b) distributions of 

NN output (discriminant) trained on data shown in (c) (same data as in Figure 2); (c) equi-

probability contours (decision boundaries) corresponding to cuts of 0.02, 0.1, 0.4, 0.8 and 0.95 

on the NN output shown in (b) superposed on signal and background data distributions. The data 

points to the right of each contour have NN output values above the displayed cut. (d) Signal 

probability surface as given by the NN output, D(x1,x2)~p( s|x1,x2),  in the feature space. 

(a) (b) 

(c) (d) 
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Figure 4 

 

 (a) Decision boundaries calculated by an NN trained on the simulated data for two classes 

(shown superposed) compared with Bayes decision boundaries calculated as per Equation 7 

using known class densities. Data points within each NN contour have NN output values above 

the corresponding cut value shown.   (b) Signal probability given by NN output as a function of 

the feature variables x1 and x2.  

 

    

3.6 Bayesian Neural Networks 
In the conventional methods for training NNs, one attempts to find a single “best” network, that 

is, a single “best” set of network parameters (weights).  Bayesian training provides a posterior 

density for the network weights: )|( datatrainingp w .  The idea behind Bayesian neural networks 

(BNN) is to assign a probability density to each point w in the parameter space of the NN. Then, 

one performs a weighted average over all points, that is, over all possible networks.  Given the 
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training data  T= {y,x}, the probability density assigned to point w (i.e., to a network) is given by 

Bayes’ theorem 

 

26.                                                 . 
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Then, for a given input vector, the posterior distribution of weights gives rise to a distribution 

over the outputs of the networks which are then averaged, 

 

27.                                    . )|(),()(~ ∫= wwwxx dTpfy  

 

Implementation of Bayesian learning is far from trivial given that the dimensionality of the 

parameter space is typically very large.  Currently, the only practical way to perform the 

high-dimensional integral in Equation 27 is to sample the density )|( Tp w  in some appropriate 

way, and to approximate the integral using the average 
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where K is the number of points w sampled. Typically the sampling is done using a Markov 

chain Monte Carlo method (45).  

 

There are several advantages to BNNs over conventional NNs (45, 46).  Each point w 

corresponds to a different NN function in the class of possible networks and the average is over 

networks.  Therefore, one expects to produce an estimate of the signal class probability )|( xsp  

that is less likely to be affected by over-training. Moreover, in the Bayesian approach, there is 

less need to severely limit the number of hidden nodes because a low probability density will be 

assigned to points w that correspond to unnecessarily large networks, in effect pruning them 

away. The network can be as large as is computationally feasible so that the class of functions 

defined by the network parameter space includes a subset with good approximations to the true 

mapping.  
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One of the issues in the training of a BNN is to check that the Markov chain has converged.  

There are many heuristics available for this.  But, in practice, one runs many chains or a single 

long chain and checks that the results are stable.   Also, every Bayesian inference requires the 

specification of a prior. The choice, in this case, is not obvious. However, a reasonable class to 

choose from is the class of Gaussian priors centered at zero that favors smaller rather than larger 

weights. Smaller weights yield smoother fits to data.   

 

3.7 Decision Trees 
Decision trees (DT) (47, 48) employ sequential cuts as in the standard grid search to perform the 

classification (or regression) task, but with a critical difference.  At each step in the sequence, the 

best cut is searched for and used to split the data and this process is continued recursively on the 

resulting partitions until a given terminal criterion is satisfied.  The DT algorithm starts at the so-

called root node (see Figure 5) with the entire training data set containing signal and background 

events.   At each iteration of the algorithm, and for each node, one finds the best cut for each 

variable and then the best cut overall. The data are split using the best cut thereby forming two 

branch nodes.  One stops splitting when no further reduction in impurity is possible (or when the 

number of events is judged too small to proceed further).  The measure that is commonly used to 

quantify impurity is the so called the Gini index, which is given by,  

29.                                                  , )1()(
bs

sbPPbsGini
+

=−+=  

where )/( bssP += is the signal purity (≡ D(x) in our definition), and s and b are the signal and 

background counts at any step in the process.  The splitting at a branch node is terminated if the 

impurity after the split is not reduced.  The node then becomes a terminal node (also known as a 

leaf) and an output response – for instance, )/()( bssD +=x  is assigned to the leaf.  

Note that geometrically the DT procedure amounts to recursively partitioning the feature space 

into hypercubic regions or bins with edges aligned with the axes of the feature space.  So 

essentially, a DT creates M disjoint regions or a d-dimensional histogram with M bins of varying 

bin-size and a response value is assigned to each of these bins.  A DT, therefore, gives a piece-
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wise constant approximation to the function being modeled, say, the discriminant )(xD .  As the 

training data set becomes arbitrarily large, and the bin sizes approach zero, the predictions of a 

DT approaches that of the target function, provided the number of bins also grow arbitrarily large 

(but at a rate slower than the size of the data set).   

The DT algorithm is applicable to discrimination of n-classes, even though what I have described 

is the binary decision tree method used in 2-class signal/background discrimination.  An 

illustration of a binary decision tree for a problem characterized by two variables and the 

resulting partition of the feature space are shown in the schematics in Figure 5.  Results of using 

the boosted decision tree algorithm for the previous 2D example are also shown.   

Decision trees are very popular because of the transparency of the procedure and interpretation.  

They also have some other advantages: (a) tolerance to missing variables in the training data and 

test data; (b) insensitivity to irrelevant variables since the best variable on which to cut is chosen 

at each split and therefore ineffective ones do not get used; (c) invariance to monotone 

transformation of variables which makes  preprocessing of data unnecessary.  However, decision 

trees also have serious limitations: (a) instability with respect to the training  sample (a slightly 

different training sample can produce a dramatically different tree); (b) sub-optimal performance 

due to the piece-wise constant nature of the model, which means that  the predictions are 

constant within each bin (region represented by a leaf) and discontinuous at its boundaries; (c) 

poor global generalization because the recursive splitting results in the use of fewer and fewer 

training data per bin and only a small fraction of the feature variables may be used to model the 

predictions for individual bins.    

Most of these limitations, fortunately, have been overcome with the use of ensemble learning 

techniques such as boosting, bagging and random forests, which I discuss below.
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Figure 5

 

(a) A schematic of a binary decision tree with two feature variables x1 and x2.  (b) Illustration of 

the corresponding partitions of the 2D feature space (see text for details). (c) Signal probability 

calculated as the ratio of signal counts divided by signal +background counts in bins of two-

dimensional histograms for data set shown in the previous figure.  (d) Signal probability 

approximated using five decision trees (using AdaBoost) using the same data.

(a) (b) 

(c) (d) 
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Ensemble Learning: 
We have discussed several methods to perform functional approximation.  The goal is to 

minimize an appropriate cost function and create approximations that provide best predictive 

performance and incorporate the correct tradeoff between bias and variance.  Bias in a predictor7

Here I briefly outline a few of these ensemble techniques (49, 50). 

 

comes from differences between the learned function and the true function, while variance is a 

measure of the sensitivity of the learned function to inputs.  Averaging over multiple predictors 

has been shown to provide the best compromise between bias and variance, while providing 

generalization error that can be much smaller than that of an individual predictor. The 

fundamental insight is that it is possible to build highly effective classifiers from predictors of 

modest quality.  

Boosting: The idea behind boosting is to make a sequence of classifiers that work progressively 

harder on increasingly “difficult” events.  Instead of seeking one high performance classifier, one 

creates an ensemble of classifiers, albeit weak, that collectively have a “boosted” performance.  

For an ensemble of M classifiers, one can write, for the predictions of the final classifier, 

30.                                                    , ),(1)(~
mwxx ∑ == M

m mymy α  

where mw  are the parameters of the mth classifier.  The weighting coefficients mα are defined 

and determined differently in each algorithm. In AdaBoost,  the first successful high 

performance boosting algorithm, the underlying functions are decision trees.  )(~ xy , in that case, 

is a boosted decision tree (BDT).  The coefficients are taken as  






 −
=

m

m

ε
ε

α
1

lnm  where mε is the 

(event-weighted) misclassification error for the mth decision tree.  The BDTs, unlike single DTs, 

have been found to be very robust.  A striking feature of AdaBoost is that the misclassification 

rate on the training set approaches zero exponentially as the number of trees increases but the 

error rate on an independent test sample remains essentially constant.  This resistance of the 

AdaBoost to over-fitting is not yet fully understood. 
                                                      
7 A predictor is a discriminant, a classifier or an estimator. 



28 | P a g e                                                       P . C .  B h a t  
 

Bagging:  Bagging (Bootstrap Aggregating) is a simple average of the outputs of M predictors, 

usually classifiers, where each is trained on a different bootstrap sample (i.e., a randomly 

selected subset) drawn from a training sample of N events. In Equation 30, M/1=mα in case of 

bagging. 

Random Forests:  In principle, this algorithm, like the other two described above, can be 

applied to any predictor whose construction can incorporate randomization.  In practice, 

however, random forests use decision trees.  Many classifiers are trained, each with a randomly 

chosen subset of feature variables at each split providing a random forest of decision trees.  The 

output for each event is the average output of all trees in the random forest.  Further 

randomization can be introduced through the use of bootstrap samples as in the case of bagging.  

3.8 Other Methods 
I briefly discuss two other (unrelated) techniques that are used in HEP analyses – the genetic 
algorithms which are used for optimization of parameter searches, and the matrix element 
method, a semi-analytical approximation of probability densities.  

Genetic Algorithms:  
While neural networks are inspired by the workings of the human brain, genetic algorithms (GA) 

are inspired by ideas from evolutionary biology and genetics.  Genetic algorithms evolve a 

population of candidate solutions for a problem using principles that mimic those of genetic 

variation and natural selection, such as crossover, inheritance, mutation, and survival of the 

fittest.  These algorithms can be used to determine the parameters of a model in functional 

approximation.   

The steps involved in a GA are as follows – (1) randomly generate an initial population of 

candidate solutions (or parameters w) , (2) compute and save the fitness for each individual 

solution in the current population, (3) generate n off-springs of the members of the population by 

crossover (i.e., swap some of the parameter values between candidate vectors) with some 

probability and mutate the off-springs with some probability, (4) replace the old population with 

the new one, which gives the new generation.  The procedure is repeated until a set of 

sufficiently fit candidates have emerged. 
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Genetic algorithms can be applied to any optimization problem. One such application is in 

Neuroevolution (51), which allows both the NN structure and the NN parameters (weights and 

thresholds) to be evolved.   

Matrix Element Method: 
The Matrix Element (ME) method is not a machine-learning method but rather a semi-analytical 

calculation of the probability densities )|( sxp , )|( bxp  from which a discriminant can be 

computed using Equation 7 in the usual way.  It is motivated by the desire to use the theoretical 

knowledge about physics processes and measured observables (four-vectors) directly to construct 

multivariate discriminants and estimators. All of the physics information about a high energy 

event is contained in the matrix element describing the collision process.   The probability to 

observe data x (typically the four-vectors of objects in the final state) from a given physics 

process can be written as 
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d iσ  is the differential cross-section. The differential cross-section is a convolution of the 

cross-section (proportional to the square of the matrix element) for the partonic process, the 

parton distribution functions (PDFs) and the response function of the detector – integrated over  

phase space and summed over all possible configurations that contribute to the final state. The 

detector response function, say )( yx,ξ , gives the probability for partonic variables y to give rise 

the observation x after event reconstruction.   

In case of parameter estimation, the event probability is built using 
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where the summation is over all processes (signal and backgrounds) that may give rise to the 

observed event.  One then uses either a Bayesian or maximum likelihood fit to extract the 

parameters of interest θ.    
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The ME method was first used in the measurement of the top quark mass in the lepton+jets final 

state by the DØ collaboration (52).  Since then it has been used in a number of other analyses.  

The method is computationally demanding because of the need to perform a multi-dimensional 

integration for each feature vector.   

3.9 Tools 
Many easy-to-use packages that implement the methods discussed above are now widely 

available.  Some of them are specific NN implementations such as Jetnet (53) and MLPFit 

(http://schwind.home.cern.ch/schwind/MLPfit.html), Stuttgart Neural Network Simulator 

(http://www.ra.cs.uni-tuebingen.de/SNNS/) for NNs, and FBM (45) and NEUROBAYES (54) 

for BNNs . NNs with genetic evolution of weights are implemented in the NEAT (55) package.  

RULEFIT (56) implements rule-based learning methods such as decision trees. There are general 

multivariate analysis packages such as TMVA (57) in ROOT (http://root.cern.ch) and 

StatPatternRecognition  (58) that have many methods implemented.  The TMVA software, for 

example, enables the user to try out different methods simultaneously and compare their 

efficacies directly.   

4 ANALYSIS EXAMPLES     
Because of their demonstrated power, advanced analysis methods are becoming common tools in 

several aspects of HEP analysis – most notably, in the identification of particles (e.g., electrons, 

photons, τ and b- jets) and in signal and background discrimination.   

In this section, I briefly describe a few important physics analyses that illustrate both the 

potential of the methods and the challenges.  I begin with the first precision measurement of the 

top quark mass at DØ.  Then, I briefly discuss the recent observation of single top quark 

production which was an important milestone not only because it provides further validation of 

the SM and because the single top production rate is particularly sensitive to new physics beyond 

the SM, but also because of its sophisticated use of the multivariate methods.  This observation 

of single top production also provides an analysis test-bed for what has become the Holy Grail of 

particle physics, namely, the search for the Higgs boson.  Finally, I make some comments on the 

http://schwind.home.cern.ch/schwind/MLPfit.html�
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Higgs boson searches and briefly discuss an interesting application alluded to earlier, namely, the 

fitting of the parton distribution functions using neural networks and genetic algorithms.  

4.1 An Early Successful Example: The Top Quark Mass 
The top quark mass measurement was the first important result in hadron collider physics to 

benefit from multivariate methods.  The DØ experiment did not have a silicon vertex detector 

during the first run (Run I) of the Tevatron.  Instead, b-tagging relied on the presence of soft 

muons from the decay of b-quarks, the efficiency for which was only 20% in the 

bqlvbqbbWWtt →→ −+  process. At CDF, which had the ability to tag b-jets with its silicon 

vertex detector, the efficiency was approximately 53%.  Nonetheless, in spite of this technical 

disadvantage, DØ measured the top quark mass with a precision approaching that of CDF by 

using multivariate techniques for separating signal from background. 

 

Two multivariate methods – a variant of the likelihood discriminant technique (naïve Bayes) and 

a feed forward NN method, were used to compute a discriminant )|( xtoppD ≡  for each event.  

A fit of the data, based on a Bayesian method (59), to discrete sets of signal and background 

models in the ]),|([ fitmtopp x  plane was used to extract the top quark mass ( fitm  is the mass 

from a kinematic fit to the tt  hypothesis). The distributions of variables and the discriminants 

are shown in Figure 6.  By combining the results of the fits from the two methods, DØ measured 
2GeV/c )(5.5)(6.53.173 syststatmt ±±= (24), which was a factor of two better than the result 

obtained using conventional methods and the same data set.  This example underscores that even 

very early in the life of an experiment, huge gains can be obtained through a judicious, yet 

advanced treatment of a few simple variables. 

 

Most of the measurements of the top quark mass at CDF and DØ since this first successful 

application of a multivariate approach have used some kind of multivariate method – NNs, 

matrix element or the likelihood method.  Currently, the measured world average top quark mass 

is 2GeV/c1.13.173 ±=tm  (60). 
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Figure 6   

 

 (Left) Distributions of discriminant variables x1, x2 , x3 , x4 (see Ref. 24 for definitions) used in 

the first direct precision measurement of the top quark mass at DØ and (right) the distributions of 

the final multivariate discriminants.  The filled histograms are for signal and unfilled ones are for 

background. All histogram areas are normalized to unity. 

 

4.2 Single Top Quark Production at the Tevatron 
The top quark was discovered in 1995 through the pair production process ttpp →  via the 

strong interaction. The SM predicts electroweak production of a single top quark along with a    

b-quark or a b-quark and a light quark with a cross section of σt ~ 3 pb ( ttσ ~ 6.8 pb, assuming mt 

= 175 GeV/c2). Although the top quark discovery was made with data sets corresponding to an 

integrated luminosity of ~ 50 pb-1, the single top quark observation required   50 - 60 times more 

luminosity (2.3 fb-1 at DØ, 3.2 fb-1 at CDF) and took another fourteen years  (61,62). What 

makes single top quark events so difficult to extract from data is the fact that the final state 

contains fewer features than in tt  to exploit for the purpose of discriminating signal from the 

overwhelming background of W+jets and QCD multijet production (wherein a jet is 

misidentified as a lepton). The use of multivariate methods was indispensable in the analyses in 

both experiments. 
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Single top quarks are produced at the Tevatron through the s-channel btqq →  (σ ~ 0.95 pb) and 

t-channel tqbgq →′  (σ ~ 2.05 pb) processes (63). The top quark almost always (as per the SM) 

decays to a W boson and a b-quark. Final state channels involving leptonic decays of the W 

boson and at least one b-tagged jet are considered by both experiments, in order to have better 

signal-to-background ratio from the outset.  Both experiments use NNs to enhance the b-tag 

efficiency and purity.  

After implementing the initial selection criteria, requiring a high-pT lepton, high-pT jets, and 

large missing transverse energy, both experiments estimate a very similar overall signal-to-

background ratio of ~ 0.05, (CDF: 0.053, DØ: 0.048). CDF observes 4726 events while 

expecting 4524±511 background and 255 ± 21 signal events (62), while DØ observes 4,519 

events with an expected background of 4427±213 events and an expected signal of 223 ± 30 

events (61).  At this point in the analysis, the signal, in both cases, is smaller than the 

uncertainties in the background estimates.  

The single top signal is further discriminated from the backgrounds through the use of 

multivariate techniques. DØ performs three independent analyses using (a) BNNs, the first such 

application in HEP, (2) BDTs and (3) the ME method.   In addition to these techniques, CDF 

uses the likelihood discriminant method.  Because the results from these methods are not 

completely correlated, the discriminant outputs are further combined into a single discriminant 

(referred to as the combination discriminant by DØ, and the super discriminant by CDF).  The 

final discriminant is then used to extract the cross section for single top quark production and the 

signal significance. The signal to background ratio in the signal region of the final discriminants 

(>5)  is about a factor of 100 larger than that of the base samples.  Using the final discriminants 

and a Bayesian technique, the cross sections are measured to be 2.3±0.5 pb by CDF (at  mt=175 

GeV/c2 ) and 3.94±0.88 pb by DØ (at mt = 170 GeV/c2). The significance of the signal is five 

standard deviations in both results.  

The analyses, depending on the channel, use as few as  14  to as many as 100 variables.  To 

ensure that the background is modeled correctly, both CDF and DØ compared thousands of 

distributions of the data sample with the modeled backgrounds.  The output discriminant 

modeling was also verified at various stages with control samples from known physics processes.   
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The observation of the single top quark production at the Tevatron is described in a dedicated 

review in this volume (64).

 

4.3 Searches for the Higgs Boson 
Since the discovery o the top quark 15 years ago, the Higgs boson has been the most sought after 

particle. The intense searches by the four experiments (ALEPH, DELPHI, L3 and OPAL) at 

the −+ee collider LEP at CERN (√s = 189 - 209 GeV) before it was decommissioned, resulted in a 

95% C.L. lower bound on the Higgs boson mass of 114.4 GeV/c2 (65-67).  In 2000, studies of 

the Higgs discovery reach at the Tevatron (68, 69) led to the conclusion that the use of 

multivariate methods could significantly enhance the potential for its discovery at the Tevatron if 

the planned luminosity upgrades for Run II were to be implemented.  With the help of several   

fb-1 of data accumulated in Run II and the help of advanced analysis techniques, the Tevatron 

experiments have reached the sensitivity levels to detect hints of the Higgs boson or to rule out 

certain masses beyond the range of LEP exclusion. 

The predicted cross sections for the production of SM Higgs at the Tevatron are more than an 

order of magnitude smaller than for single top production in the mass regions of interest. The 

dominant production process at the Tevatron is Hgg → , with cross sections between 1 pb and 

0.2 pb in the mass range of 100-200 GeV/c2. The cross sections are between 0.5 pb and 0.03 pb 

for WHqq →' or ZH and between 0.1 pb and 0.02 pb for Hqqqq →  in the same mass range. 

The dominant decay channels are bbH →  for mH < 135 GeV/c2 and H → WW* for mH > 135 

GeV/c2 (W* is off-shell if mH < 160 GeV/c2).  The bbHgg →→  channel suffers from very 

large QCD multijet background. Therefore, for mH < 135 GeV/c2, the WH and ZH production 

channels are used for the searches.  For mH > 135 GeV/c2, gg→ H → WW* is the most 

promising channel.   

The searches for the SM Higgs boson have been performed in 90 mutually exclusive final states 

(36 for CDF and 54 for DØ).  The analysis channels are sub-divided based on lepton-type, 

number of jets and number of b-tags.   The most important features that can help discriminate 

Higgs signal from background are efficient b-tagging and good dijet mass resolution (in low 
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mass Higgs searches).  To achieve high b-tag efficiency, both experiments use a NN to combine 

outputs of simpler discriminants based on secondary vertex and decay track and jet information.  

CDF constructs two separate networks to discriminate b-jets from c-jets and b-jets from light-

quark jets.  DØ has built an NN b-tagger to discriminate b-jets from all other types of jets.  The 

DØ NN b-tagger gives significantly higher efficiencies compared to that of the next best method 

based on the JLIP (jet lifetime probability) algorithm (70).  The benefit of the NN tagger is 

estimated to be equivalent to nearly doubling the luminosity (71) in SM Higgs boson searches. 

Also, CDF has used a multivariate approach for b-jet energy correction and has demonstrated 

improved dijet mass resolution which in turn helps the Higgs search sensitivity (72).   

 
Figure 7.  

 

 Neural network output distributions from H WW* analyses at the Tevatron. (Left) CDF 

results showing data compared with total and individual backgrounds.  Also shown is the 

expected distribution for the SM Higgs signal for mH = 160 GeV/c2. (Right) DØ results 

comparing data with total background in the dilepton + missing transverse energy channel.  Here, 

the Higgs signal distribution is shown for mH = 165 GeV/c2.  In both cases, the signal is scaled up 

by a factor of ten relative to the SM prediction.  

 

Both CDF and DØ use NNs, boosted decision trees and other multivariate discriminants in all 

their analyses.  In the case of ∗→ WWH  analysis, CDF has found that the multivariate 

techniques provide a gain factor of 1.7 to 2.5 (depending on Hm )  in effective integrated 

luminosity over an optimized cut-based selection.   Some example NN discriminants are shown 
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in Figure 7.  The combined results from the two experiments provide 95% C.L. upper limits on 

Higgs boson production that are a factor of 2.7 (0.94) times the SM cross-section  for 
2GeV/c )165(115=Hm .  As of December 2009, the combination of results from the two 

experiments, using data sets of luminosities of up to 5.2 fb-1,  has yielded a 95% C.L. exclusion 

for a SM Higgs for 163 GeV/c2 < mH < 166 GeV/c2 (73-75).

4.4 Determination of Parton Distribution Functions 
One of the exciting applications of multivariate methods is in the parametrization of parton distribution 

functions (PDFs) with NNs by the NNPDF collaboration (76).  The PDFs are essential inputs in making 

predictions of physics processes at hadron colliders. The PDFs are determined by fitting the theoretical 

predictions to various sets of experimental measurements, primarily from deep-inelastic scattering of 

leptons on hadrons (or nuclei).  The Tevatron experiments have produced numerous results on a variety 

of hard interaction processes, thereby providing precision tests of the SM akin to the LEP and SLC 

electroweak measurements.  The tests of these results as well as predictions for searches beyond the 

SM demand very precise determination of the PDFs. The PDF uncertainties are sometimes the 

dominant ones in an analysis, and it is therefore important to have reliable estimates of them.    

The standard approach to fitting PDFs is to assume a specific parameterized functional form 

)()1(),( 2
0 xPxxQxf βα −=  and determine the parameters and the associated errors from a fit to the data 

by minimizing 2χ .  The choice of a specific functional form, as discussed above, results in an inflexible 

model that introduces unnecessary systematic errors (bias in the region of sparse or no data) and 

uncertainties that are underestimated unless informed, but ad hoc, corrections are made in the fitting 

procedure.  One way to build more flexible models for PDFs is to rely on the fact that NNs are 

universal approximators.  

To train the NNs that model the PDFs, an ensemble of Monte Carlo data sets, “replicas” of the original 

experimental data points, are generated.  The Monte Carlo data sets have points that are Gaussian 

distributed about the experimental data points, with errors and covariance equal to the corresponding 

measured quantities.  The Monte Carlo set thus gives a sampling of the probability distribution of the 

experimental data.  The NN  architecture uses two inputs ( x and xlog ), two hidden layers with two 

neurons each, and one output [ ),( 2
0Qxf ] at a reference scale 2

0Q .  GAs are used for optimization, 
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yielding a set of NN parameters for each replica.  The mean value of the parton distribution at the 

starting scale for a given x is found by averaging over all the networks and the uncertainty is given by 

the variance of the values.  The errors on the PDFs from the NNPDF  fits are larger than those from 

other global fitting methods, which may indicate that the latter methods have underestimated the errors, 

as noted above.  Moreover, the PDF uncertainties as a function of x behave as expected: where there 

are no constraints the uncertainties are large while they are small where the data points provide strict 

constraints.  

5 OPEN ISSUES    
Over the past two decades, a lot of experience has been gained in the use of advanced multivariate 

analysis methods in particle physics and spectacular results have been obtained because of their use.  

However, there are still some important open issues to be considered. 

• Choosing the variables:  How do we choose the best set of feature variables so that no more 

than a prescribed amount of information is lost?  Even though ranking the efficacy of individual 

variables for a given application is straightforward, the best way to decide which combination 

of variables to use can only currently be done, by evaluating the performance of different sets in 

the given application.   Choosing variables will not be an issue if the chosen method can make 

use of all of the observables directly.  This is not an issue for decision trees which can use 

unlimited number of variables and for the ME method which uses the four-vectors directly.  

However, validating the modeling of high-dimensional feature space is extremely challenging, 

as discussed below.   

• Choosing a method:  The so called “No free lunch theorem” states that there is no one method 

that is superior to all others for all problems. This prompts the question: Is there a way to decide 

which method is best for each problem?  Here, again, one needs to try out different methods for 

a given application and compare performance.  In general, however, one can expect Bayesian 

neural networks, boosted decision trees and random forests to provide excellent performance 

over wide range of problems. The ME method, though equally popular, has the disadvantage of 

being computationally very demanding, and has not been shown to be superior in any of the 

recent applications. Nor is there any reason to expect it to be superior. 
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• Optimal Learning:  How can one test convergence of training and know when the training 

cannot be improved further?    Additionally, how can one verify that a discriminant is close to 

the Bayes limit? The practice is to stop training when the prediction error on an independent test 

data set begins to increase. Once again, methods such as BNNs, BDTs and RFs are robust, and 

are less likely to be affected by overtraining. The most direct way to optimize learning may be 

to make use of the desired criteria for the specific analysis, that is, say to maximize the signal 

significance or to minimize the uncertainty in the desired measurement. But then, the 

interpretation of the discriminant (or the estimator) that one obtains may not be straight-

forward. 

• Testing the procedures:  For complicated analyses with many feature variables and small 

signals, it is necessary to validate the procedure itself or even the whole chain of analysis.  

Given that doing so is computationally demanding, are there alternative and reliable methods of 

validation?  If not, it is important that an algorithm be computationally efficient so that an 

analysis can be repeated for many scenarios to ensure the robustness of the results.    

• Modeling of backgrounds: By far, the most important issue of any non-trivial analysis is how 

to ensure the correctness of modeling of the backgrounds (and signal). If the data used in 

modeling the signal and background are faulty, the results will be unreliable. When we use a 

large number of variables, how do we verify the modeling? How many arbitrary functions of the 

variables do we need to check?  If we use, for example, 100 variables in a multivariate analysis, 

how can we check modeling of the 100-dimensional density?  The larger the number of feature 

variables used, the higher the burden of verifying the correctness of the modeling. In simple 

applications such as in particle identification, data from well-understood physics processes can 

be used to cross-check results.  But when discriminating new signals from very large 

backgrounds, the task of verifying a multivariate density in high dimensions is daunting.  The 

number of combinations of variables and functions thereof that one needs to check grows 

rapidly with the number of feature variables used.  In fact, only an infinitely large number of 

arbitrary functions can guarantee that all correlations have been verified. The practical questions 

are as to how many and what checks are needed to achieve a specified level of confidence in the 

validity of the results?  
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• Systematic uncertainties:  To estimate systematic uncertainties in results obtained is in 

principle straightforward: the uncertainties in the model parameters are propagated through the 

analysis chain using samples with model parameters altered within uncertainties.  Currently, 

multivariate classifiers (or estimators) are built with model parameters set at their nominal 

values. A better approach would be to build the classifiers (or estimators) using ensembles of 

samples that incorporate systematic uncertainties (77).  

6 SUMMARY AND PROSPECTS  
Advanced analysis methods that match the sophistication of the instruments used in high energy 

physics research and meet the challenges imposed by the vast data sets and extremely rare signals are 

imperative.  The field already has several high profile results that simply could not have been obtained 

without such methods.  Clearly, there is no going back! 

In this article, I have provided an overview, with a unified perspective, of the concepts and methods of 

optimal analysis.   I have discussed a range of methods: from the simple to the sophisticated, especially 

those that make use of multivariate universal approximators.  I have discussed some useful heuristics, 

outlined open issues and presented just a few examples of successful applications of these methods 

over the past 15 years.   There are other examples from the Tevatron, as well as from LEP (78, 79), 

HERA (80), the b-factories (81) and neutrino experiments (82).  

 

The LHC experiments (see http://cms.web.cern.ch/cms/; http://atlas.ch/) are planning to use advanced 

methods in many analyses, but there is some concern about whether their use in the early data-taking 

period is appropriate due to the expected lack of good understanding of the detectors and systematic 

effects.  These are valid concerns. Nevertheless, there are ample opportunities for safe use of these 

advanced methods including (a) when it is possible to ascertain the correctness of modeling using well 

known physics processes such as Z boson decays, QCD bb  events, etc., and (b) when one has arrived 

at a set, albeit small, of well understood variables.   

Moreover, the following points should be kept in mind: 

1. Even two or three variables treated in a multivariate manner can provide significant gains over 

cuts applied directly to the variables. 

http://cms.web.cern.ch/cms/�
http://atlas.ch/�
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2. Combining simple classifiers based on a few variables can help cross-check the modeling more 

easily and may significantly boost the final performance and precision of the results. 

3. One can employ available easy-to-use analysis kits to attempt two or more methods, thereby 

ensuring that there are no bugs in the procedure or biases arising from possible incorrect use of 

a method.  For example, one could use a feed-forward neural network, Bayesian neural network 

and boosted decision trees and check the consistency of the results.  

4. One can use data as the background model in channels where the signal to background ratio is 

initially very small.  One advantage of this approach is that the data (necessarily) model both 

physics and instrumental backgrounds precisely.   

 

The bar for the quality of the analyses, especially when a potential discovery is at stake, should be (and 

almost certainly will be) set very high.  The advanced methods I have described need to be used in 

every step of the data analysis chain, if possible, to reap maximum benefits. But, as is true of all 

scientific methods and tools, these methods should be used with a great deal of diligence and thought.  

We would be well served to follow the principle of Occam’s razor, which in this context can be stated 

thus: if we have two analyses of comparable quality we should choose the simpler one.  I am sure 

Einstein would agree. 
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