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Interferometers as Holographic Clocks
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It is proposed that the spatial positions of bodies, relative to a classical metric and measured by
interactions with classical radiation, are represented by directional quantum operators with Planck
scale quantum conditions. With an antisymmetric commutator, the measured speed of light is
the same at all frequencies, null fields are nondispersive, and phase is invariant on null sheets,
but spacetime position measurements in different directions do not commute. This hypothesis
leads to a new source of spatially coherent, Planckian “holographic noise” in relative measured
phases of null fields propagating in different directions. Predicted phase correlations are estimated
and compared with the sensitivities of current and planned interferometer experiments. Nearly
co-located Michelson interferometers correlated at high frequency should be able to achieve the
Planckian noise limit.

INTRODUCTION

The Einsteinian notion of a pointlike spacetime event is a classical approximation. In a description of the world
as a quantum-mechanical system, the position of an event should emerge from quantum mechanical operators that
correspond in the classical limit to known behavior of matter and energy in spacetime. Quantum mechanics limits the
precision with which classical observables, such as the interval between events described by the classical metric, can
be defined [1–6]. In addition, gravitational theory argues for a fundamental minimum length or maximum frequency
at the Planck scale that imposes a new kind of uncertainty, whose physical character is not known[7].

This paper posits particular properties for Planckian quantum limits on spacetime position measurements, and
quantitatively evaluates some of their macroscopic consequences. The two main hypotheses here are that interactions
of null fields with matter define spacetime position, and that position operators in different directions do not commute
at the Planck scale. As a result, Planckian transverse uncertainty in spacetime position measurements accumulates
over macroscopic times and distances, leading to a new kind of spacetime position indeterminacy with particular
statistical properties, and thence to a new kind of noise in radiation fields of systems that are sensitive to transverse
relative positions at large separations. It is then shown how this prediction can be precisely tested using correlated
Michelson interferometers.

PHYSICAL INTERPRETATION OF NONCLASSICAL GEOMETRY

Consider an idealized world consisting of matter and radiation. We wish to establish an operational definition of
position for matter. For definiteness, consider a reflecting surface. It forms a spacelike boundary condition (∇φ = 0)
for an electromagnetic field. Its position is defined by its effect on the field, which is how the position is measured:
the field solution depends on the position and orientation of the surface. The system is classical: neither the surface
nor the field is quantized. Since this measurement can include a large area that averages over many atoms, we can
take the surface to be perfectly smooth. The field in vacuum obeys the standard classical relativistic wave equation,
and propagates in a flat classical metric. The vacuum solutions of the field can be decomposed in the usual way into
plane wave modes. These modes are not quantized, so we are not here considering quantization or photon noise in
position measurement.

Position in each direction can be measured by the reflected phase of a field mode traveling in that direction. Let
xi(t), where i = 1, 2, 3, denote the 3D position of some reference point on the surface in its rest frame, in rectilinear,
orthonormal coordinates, in flat spacetime. Its position is defined by measurements based on configurations of reflected
radiation. We wish to consider limits on the definition of relative position that may be imposed by fundamental
physical limits on frequency at the Planck scale.

The new physics we seek to study is introduced by imposing quantum conditions on the geometry just defined.
The correspondence between classical and quantum positions is posited to obey the following quantum conditions on
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position operators:

[x̂i, x̂j ] = i(CctP )2θij . (1)

The scale is set by the Planck time, tP ≡
√
h̄GN/c5 = 5.39×10−44 seconds, with a coefficient C of the order of unity.

We have adopted a commutator θij in three rather than four dimensions. Commutators with a time operator, with
the physical interpretation used here, are are already constrained by experiments to be significantly less than the
Planck length, as discussed below. The spatial off-diagonal elements however are harder to measure. They are not
yet constrained by experiments at the Planck scale, but we will argue that Planckian sensitivity appears to be within
reach of current technology.

Of particular interest is an antisymmetric θij : the unit antisymmetric matrix, θij = −θji = 1 for i 6= j, with
zero diagonal. This choice of quantum conditions is “holographic”, in the sense that it imposes a Planckian limit on
degrees of freedom in transverse spacelike directions defined by a null surface. Arguments originating in black hole
thermodynamics suggest that the number of degrees of freedom of any system is given by the area of a bounding
null surface in Planck units, a “holographic principle”[8–11]. An antisymmetric commutator in Eq. (1) imposes a
Planckian limit on the degrees of freedom on light sheets. In the same way that conventional quantum conditions
define a quantum of action in phase space, h̄, the conditions given by Eq. (1) define a quantum of 2D Planck surface
area. The numerical coefficient C in the commutator should naturally be set so that the information flux agrees with
the entropy surface density of black hole event horizons[12–15].

There are other physical motivations for choosing antisymmetric θij . One set of arguments for new physics at the
Planck scale is the spontaneous formation of black holes; a particle at rest, confined to a Planck 3-volume, has enough
mass-energy to create a black hole— it lies within its own Schwarzschild radius. However, a plane gravitational-
wave metric perturbation can exceed the Schwarzschild energy density without forming a black hole. This suggests
that particles delocalized in the transverse directions might be possible even above the Planck frequency, so that a
longitudinal Planck cutoff is not even needed. The Planck cutoff may have a particular transverse character.

It is important that the new, nonclassical behavior is associated with directions in which positions are measured.
A plane wave exactly aligned with a planar reflecting surface reflects in an exactly classical way; no new physics is
detectable. Thus, a one-dimensional optical cavity that records phases of waves reflecting between parallel surfaces
detects no new nonclassical effect, to first order. On the other hand, reflections of plane waves with orientations
inclined to the surface depend on position components in those directions, and these do not commute. The state of
the (otherwise classical) radiation field is affected by the (quantum) state of the boundary condition.

Indeed, nothing about photon propagation in vacuum is changed by adding the commutator, Eq.(1). The elec-
tromagnetic field still behaves as in a perfect classical spacetime with no new Planckian physics. The metric is not
perturbed; the new effect is thus not the same as gravitational waves, or any quantization of a field mode. However,
this classical spacetime on its own is not directly accessible to an actual position measurement. That requires interac-
tion with matter at some position, and also a particular choice of frame and measurement direction. The position of
the boundary condition with matter is where the new Planckian quantum behavior enters: it applies to the position
of matter in the spacetime, as opposed to the unaltered metric. The boundary condition affects the radiation field in
the usual way, so the configuration of the radiation field depends on the matter position state (and depends on the
quantum position operator) even though its equation of motion in vacuum and the metric itself are not changed.

Even though this formulation is based on classical spacetime, radiation and matter, we have added a new quantum
condition on the spacetime positions, which affects the radiation. The system can be placed by interactions into
different states. We can thus speak of a measurement in a particular direction placing the system into an eigenstate
of that direction. A measurement of a definite, measurable macroscopic configuration state of the field “collapses
the wavefunction” in the usual way. In this situation, the relative transverse position is not fixed classically until
the radiation is detected, which of course may be a macroscopic distance away. This holographic nonlocality does
not violate causality, but it does correspond to a new kind of uncertainty in position that is shared coherently by
otherwise unconnected bodies.

As noted previously, the usual one dimensional wave equation is obeyed in each direction. However, quantum
operators that measure spacetime intervals, say by comparing ticks of a physical clock with the phase of a wave
travelling between events, have an orientation in space. If the operators in different directions do not commute, a
fundamental limit follows on the accuracy of position measurements compared in different spatial directions over
macroscopic intervals. A new source of noise appears in devices that compare phases of null fields that propagate
in different directions, at high frequencies (comparable to the inverse light travel time), across a macroscopic system
extending in two spacelike dimensions. The noise resembles an accumulation of transverse Planck scale position errors
over a light crossing time. The new behavior appears as a new kind of transverse jitter or displacement from a classical
position.
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Some properties of this “holographic noise” were previously derived[12–15] using wavefunctions with a fundamental
Planck carrier frequency. The position-operator formulation presented here appears to describe equivalent physics.
However, it allows more direct calculations of spatial correlations of the noise in general configurations, such as cross
correlation in the case of displaced or misaligned interferometers, that are likely to be of value in experimental tests.

Noncommutative geometries[16, 17] and some of their observational consequences[18] have been extensively dis-
cussed in the literature. The two new features added here are the particular physical interpretation of position
operators, and the particular choice of antisymmetric (holographic) θij . The physical interpretatation proposed
here— which leaves the classical geometry intact for the purpose of null field propagation, but attaches directional
quantum conditions to the position of matter interactions— significantly affects macroscopic phenomenology. The
macroscopic position noise derived from these features is qualitatively different from previously considered Planckian
effects. It is independent of any parameters of effective field theory. Because of the transverse commutator, there
are no dispersive effects, such as those potentially observable in cold-atom interferometers[19] or in cosmic photon
propagation: null fields always propagate at exactly c, in agreement with current cosmic limits[20]. Holographic noise
in interferometers also has spatial correlations that distinguish it from other Planckian noise sources predicted from
quantum-gravitational fluctuations, quantization of very small scale spatial field modes, or spacetime foam[21–28].
Thus, an experimental program can distinguish between different hypotheses about Planck scale physics.

PLANCKIAN PHENOMENOLOGY OF INTERFEROMETERS

With a frequency-bounded system, the number of degrees of freedom is finite so the state of the system is specified
by a countable set of numbers at the Shannon sampling density. There is thus no loss of generality in assuming that
position operators are discrete[29–31]. Measurement of a position in any direction places a system into an eigenstate
of that direction; measurement of position in another direction is then uncertain in the usual way for a conjugate
variable. Continuous interaction of matter with null waves in two directions xi, xj resembles a series of such discrete
measurements, with associated uncertainty, each of which takes about a Planck time. The accumulated uncertainty
(the width of position wavepackets) after N measurements is

∆xi∆xj ≈ θijN(CctP )2 (2)

where τ = NtP can be a macroscopic time. This effect resembles the accumulation of quantum errors in atomic
clocks, except that it refers to transverse spatial positions as measured by null waves. As in an atomic clock, the
fractional error decreases with time, but the absolute error increases, like a random walk.

A holographic uncertainty relation for transverse position was derived previously using a wave description[12–15].
To agree with that theory, normalized by the black hole areal entropy density, we set C = 1/2π in the numerical
results below. The effect is based on null wavefront propagation so there is no physical distinction in using position
or time. However, the construction here using directional operators shows more clearly that the effect is spatially
coherent and inseparable from time measurement. A plane wave phase propagates nearly synchronously with other
waves with the same orientation, even those separated on a macroscopic scale. The uncertainty is in definition of the
spacetime frame rather than the positions of individual quantum particles, so there is a spatially coherent jitter in
relative transverse phase displacement of amplitude ≈ CtP

√
N on scale NCtP . The range of the random jitter itself

is microscopic (on the attometer scale for a laboratory-scale NctP ), but is much larger than the Planck scale, and is
potentially observable.

The new physics proposed here violates Lorentz invariance, but in a way that has not been previously tested to
Planck precision. It can only be detected in an experiment that compares transverse positions over an extended
spacetime volume to extremely high precision. The effect of the fluctuations is strongly suppressed in laboratory
tests. Over time, average positions approach their classical values. The apparent fractional distortion in geometry is
of order

√
tP /τ for measurements averaged over time τ , about a factor of ≈ 107 below the noise level of even the best

atomic clocks. On the other hand, the required differential sensitivity in directional phase over an extended spacetime
volume may be achieved by Michelson interferometry.

The optical elements and detectors of an interferometer create particular boundary conditions for the radiation field
that make this effect detectable. In a simple Michelson interferometer, light propagates along two directions, say, x
and y arms of length L. A single incoming wavefront is split into two noncommuting directions for a time 2L. Light
enters the apparatus prepared with a particular phase and orientation; the final signal depends on the position of the
beamsplitter in two directions, at two different times separated by 2L. When recombined the relative phases of the
wavefronts have wandered apart from each other by X ≈

√
2CLctP , just as if the beamsplitter had moved by this

amount. The motion however is not a true motion; it is due to Planckian uncertainty in the position of matter.
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For short time intervals, the x axis light can be regarded as a reference clock, equivalent to defining a frame.
Relative to this phase, the y axis light experiences phase fluctuations that appear as noise in the output. For time
differences τ up to 2L/c, Eq.(2) suggests that there is noise in the phase comparison of the light from the two arms,
equivalent to a variance in beamsplitter position σ2

X(τ) = τtP /2π at time lag τ :

∆y(x)∆y(x+ cτ) = c2τtP /2π. (3)

The same result can be obtained using the y axis light as a phase reference. For larger time differences τ > 2L/c,
the phase does not continue to drift apart, since the wavefronts from the two directions are not actually independent,
but constrained by the finite apparatus size. Phase differences at intervals τ > 2L/c represent independent samplings
of a distribution about the classical position. The distribution has a variance σ2 = 2LtP /2πc, with a mean that
approaches the classical expectation value of arm length difference.

The effect is nonlocal and depends on measurement with macroscopic spacelike extent in two directions. For exper-
iments, this nonlocality provides a powerful diagnostic technique using cross correlation. Two nearly co-located and
co-aligned interferometers that share an overlapping volume of spacetime, but otherwise have no physical connection,
experience common mode holographic fluctuations, since the wavefunctions of the spacetime volumes they measure
must collapse into the same state. If they are offset or misaligned from each other, the cross correlation is reduced.

It seems quite strange that the positions of bodies in a given rest frame and a given direction share the same
displacement, even if there is no physical connection between them. In the classical situation, with zero commutator,
this coherence is of course taken for granted; everything has zero holographic displacement. The coherence is perhaps
most easily understood in terms of departure from the classical behavior: the new transverse jitter in any direction
only becomes apparent between paths with a significant transverse separation. If two parallel paths are much longer
than the transverse separation between them, they will measure almost the same total transverse displacement when
compared with a single, similarly long transverse path. The mean square displacement difference grows linearly with
transverse separation. This is a consequence of Planckian random walks occuring transversely relative to light sheets,
rather than a fixed laboratory rest frame. It is coherent because the amplitude of the holographic jitter grows with
scale; once again, the effect is different from microscopic quantum fluctuations, which average out in a macroscopic
system. Indeed, this averaging is the key to reducing quantum noise enough to allow macroscopic phase measurements
in an interferometer with such precision. The coherence is needed for holographic jitter to be detectable at all; entire
macroscopic optical elements of the interferometers “move” almost coherently. It is also the reason that holographic
noise has escaped detection up to now, since it is harder to detect on small scales.

Let us estimate the correlation properties. Let XA, XB denote the apparent arm length difference in each of two
interferometers A and B. The cross correlation is defined as the limiting average,

Ξ(τ)× = lim
T→∞

(2T )−1
∫ T

−T
dtXA(t)XB(t+ τ). (4)

Eqs.(3,4) can be used to determine the cross-correlation of two interferometers, including the cases when they are
displaced from each other or misaligned. Based on the above interpretation of the uncertainty, we adopt the following
rule for estimating correlations. Transverse holographic displacements are the same everywhere on a null plane
wavefront; thus, the differential phase perturbations in the two machines are the same when both pairs of laser
wavefronts are traveling in the same direction at the same time in the lab frame. If they are displaced or misaligned
the correlation is reduced by appropriate directional and overlap projection factors.

For aligned interferometers displaced by ∆L along one axis, the cross correlation of measured phase displacement
(in length units) then becomes

Ξ×(τ) = (ctP /2π)(2L− 2∆L− cτ), 0 < cτ < 2L− 2∆L (5)

= 0, cτ > 2L− 2∆L. (6)

For two interferometers with co-located beamsplitters, but misaligned by angle θ, there are two projection factors,
one for the amount of time with parallel propagation in both, the other for the angular projection of the in-common
component of displacement noise:

Ξ×(τ) = (ctP /2π)[2(L cos θ)− cτ ] cos θ, 0 < cτ < 2(L cos θ) (7)

= 0, cτ > 2(L cos θ). (8)

These formulae provide concrete predictions for experimental tests of the hypothesis (1). Assuming the theory is
normalized by black hole thermodynamics, there are no parameters in the predictions.
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COMPARISON WITH EXPERIMENTS

It is interesting to compare this Planckian directional position error with the best atomic clocks. Over a time τ the
holographic uncertainty limit corresponds to a standard deviation of phase in orthogonal directions,

∆ν(τ)

ν
= ∆t(τ)/τ =

√
5.39× 10−44sec

2πτ
= 9.26× 10−23/

√
τ/sec. (9)

For comparison, atomic clock frequency inaccuracy is currently [32] ∆ν(τ)/ν = 2.8 × 10−15/
√
τ/sec. Thus the

holographic limit is far beyond the currently practicable level of time measurements using atomic clocks. It is not
possible for example to measure Planckian phase variations relative to a local time standard.

However, over short (but still macroscopic) time intervals, Planckian holographic noise in relative phase anisotropy
in different directions may be detectable using interferometers. For times ≈ 2L/c, interferometers are, in this limited
differential sense, by far the most stable clocks. The sensitivities attainable by current and planned experiments are
shown in Figure (1), along with the holographic noise prediction, Eq. (9).

At very low frequencies, interferometers are of limited use even as differential clocks, since they are susceptible
to environmental influences. Spaceborne interferometers such as LISA, in isolated parts of the solar system, could
achieve near-holographic precision at frequencies as low as a millihertz, but even then, their sensitivity is likely to be
limited by ubiquitous gravitational waves.

Existing gravitational wave interferometers, such as LIGO, VIRGO, and GEO-600, have approximately the required
phase sensitivity to reach the level in Eq.(9). The lower plotted experimental points are derived by taking published
noise curves[33, 34] at the most sensitive frequency, and evaluating the corresponding rms arm-difference fluctuation
in a single wave cycle at that frequency. In the case of LIGO, this leads to a value (labeled “gravitational waves” in
Figure 1) that is actually below the holographic noise curve. The fact that as LIGO does not see excess noise at this
level is an approximate bound on time-space commutation: new terms of that kind must apparently be significantly
smaller than the Planck length. While this estimate is only approximate, it appears that LIGO can already impose
a profound constraint on the interpretation of noncommutative geometry, even well beyond the Planck scale.

However, there is another factor that must be included to compare these experiments with the holographic pre-
diction. Because they are designed to find gravitational waves, GEO600 and LIGO are both optimized to measure
displacements at rather low frequencies, about a kilohertz and below, two orders of magnitude below the light-crossing
frequency characteristic of their holographic jitter. To compare with the holographic noise prediction, we must es-
timate what level of jitter at frequency c/2L would match the maximum instrument sensitivity at the measured
sub-kilohertz frequencies. For intervals longer than L/c, the long-time average displacement approaches to its classi-
cal value; each light-crossing time represents an independent sampling of a classical position, so that the distribution
of the time average position get narrower with time, instead of growing (as it would in measurements by a larger ap-
paratus). In effect, the whole apparatus “moves together” so the measured phase is not affected by longer wavelength
transverse modes. Therefore we should multiply the rms values just quoted by another factor of

√
c/2Lf∗, where f∗

is the frequency at the minimum of the noise curve. This averaging factor makes the LIGO and GEO600 sensitivities
to holographic jitter worse by factors of about 15 and 20 respectively, as shown by the upper points in Figure 1.
(This factor was not included in earlier estimates of these instruments’ responses, e.g. [12, 13]). When it is included,
holographic noise is not expected to be a detectable contribution in the current noise budget of either experiment.
The factor does not apply to LISA, which is designed to measure displacements at frequencies comparable to c/L.

It appears that current interferometer technology is adequate to detect the effect, but that a new experiment must
be built to achieve a convincing detection or limit. The design should optimized to extract a holographic noise
signature that would allow it to be distinguished from other noise sources at high frequencies comparable to c/L,
particularly the dominant photon shot noise.

One way to isolate the holographic noise would be to cross-correlate two nearly-collocated interferometers at high
frequencies. Because of their overlapping spacetime volumes, their holographic displacements are correlated (as in Eq.
5), whereas their photon shot noise is independent. With a long integration, a time-averaged holographic correlation
emerges above uncorrelated photon shot noise. This is similar to the correlation technique used with LIGO at lower
frequencies for isolating gravitational-wave stochastic backgrounds. (The LIGO correlations however do not themselves
constrain holographic noise, because the interferometers being correlated are not co-located— indeed, they are kept
separate to avoid other sources of cross correlation at low frequency.)

Assuming a photon shot noise limit, this design (labeled Holometer in Fig.1) should achieve better than Planckian
sensitivity for holographic noise. For this purpose, nearly co-located interferometers must be able to record correlated
signals at high frequencies, that is, ≈ c/2L ≈ 3.74 MHz(40m/L), and distinguish other external sources of cross
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correlation at high frequencies. Such an experiment should be able to achieve better than Planckian sensitivity to
transverse components of θij .

I am grateful to D. Berman, A. Chou, and M. Perry for useful comments and discussions, and to the Aspen Center
for Physics for hospitality. This work was supported by the Department of Energy at Fermilab under Contract No.
DE-AC02-07CH11359, and by NASA grant NNX09AR38G at the University of Chicago.

[1] E. P. Wigner, “Relativistic Invariance and Quantum Phenomena”, Rev. Mod. Phys. 29, 255 (1957)
[2] H. Salecker & E. P. Wigner, “Quantum Limitations of the Measurement of Space-Time Distances”, Phys. Rev. 109, 571

(1958)
[3] A. Peres, “Measurement of Time by Quantum Clocks”, Am. J. Phys. 48(7), 552 (1980)
[4] V. B. Braginsky and F. Ya. Khalili, “Quantum Measurement”, Cambridge: University Press (1992)
[5] Y. Aharonov, J. Oppenheim, S. Popescu, B. Reznik, W. G. Unruh, “Measurement of time of arrival in quantum mechanics”,

Phys. Rev. A 57, 4130 (1998)
[6] W. H. Zurek, “Decoherence, einselection, and the quantum origin of the classical”, Rev. Mod. Phys. 75, 715 (2003)
[7] T. Padmanabhan, “Limitations on the operational definition of space-time events and quantum gravity”, Class. Quant.

Grav. 4, L107 (1987).
[8] G. ’t Hooft, “Dimensional reduction in quantum gravity,” in “Conference on Particle and Condensed Matter Physics

(Salamfest)”, edited by A. Ali, J. Ellis, and S. Randjbar-Daemi (World Scientific, Singapore, 1993), arXiv:gr-qc/9310026.
[9] L. Susskind, “The World As A Hologram,” J. Math. Phys. 36, 6377 (1995)

[10] R. Bousso, “The holographic principle,” Rev. Mod. Phys. 74, 825 (2002)
[11] T. Padmanabhan, “Thermodynamical Aspects of Gravity: New insights,” Rept. Prog. Phys. 73, 046901 (2010)
[12] C. J. Hogan, “Measurement of Quantum Fluctuations in Geometry” Phys. Rev. D 77, 104031 (2008),
[13] C. J. Hogan, “Indeterminacy of Quantum Geometry” Phys Rev D.78.087501 (2008),
[14] C. J. Hogan and M. G. Jackson, “Holographic Geometry and Noise in Matrix Theory,” Phys. Rev. D.79.124009 (2009)
[15] C. J. Hogan, “Holographic Noise in Interferometers,” arXiv:0905.4803 [gr-qc].
[16] A. Connes, M. Marcolli, “A Walk in the Noncommutative Garden”, [arXiv:math/0601054]
[17] N. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP 9909, 032 (1999)
[18] D. Mattingly, “Modern Tests of Lorentz Invariance”, Living Rev. Relativity 8, (2005), 5.

(http://relativity.livingreviews.org/Articles/lrr-2005-5/)
[19] G. Amelino-Camelia, C. Laemmerzahl, F. Mercati and G. M. Tino, “Constraining the Energy-Momentum Dispersion

Relation with Planck-Scale Sensitivity Using Cold Atoms,” Phys. Rev. Lett. 103, 171302 (2009)
[20] A. A. Abdo et al., “A limit on the variation of the speed of light arising from quantum gravity effects”, Nature 462,

331-334, doi:10.1038/nature08574 (2009)
[21] J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos and M. Srednicki, “Search For Violations Of Quantum Mechanics,” Nucl.

Phys. B 241, 381 (1984).
[22] G. Amelino-Camelia, “Gravity-wave interferometers as probes of a low-energy effective quantum gravity,” Phys. Rev. D

62, 024015 (2000)
[23] G. Amelino-Camelia, “A phenomenological description of quantum-gravity-induced space-time noise,” Nature 410, 1065

(2001)
[24] S. Schiller, C. Laemmerzahl, H. Mueller, C. Braxmaier, S. Herrmann and A. Peters, “Experimental limits for low-frequency

space-time fluctuations from ultrastable optical resonators,” Phys. Rev. D 69, 027504 (2004)
[25] L. Smolin, “Generic predictions of quantum theories of gravity,” arXiv:hep-th/0605052.
[26] Y. J. Ng, “From computation to black holes and space-time foam,” Phys. Rev. Lett. 86, 2946 (2001) [Erratum-ibid. 88,

139902 (2002)] [arXiv:gr-qc/0006105].
[27] Y. J. Ng, “Quantum foam and quantum gravity phenomenology,” Lect. Notes Phys. 669, 321 (2005)
[28] S. Lloyd, “Quantum limits to the measurement of spacetime geometry,” arXiv:quant-ph/0505064.
[29] A. Kempf, “A covariant information-density cutoff in curved space-time,” Phys. Rev. Lett. 92, 221301 (2004) [arXiv:gr-

qc/0310035].
[30] A. Kempf, “On fields with finite information density,” Phys. Rev. D 69, 124014 (2004) [arXiv:hep-th/0404103].
[31] A. Kempf, “Information-theoretic natural ultraviolet cutoff for spacetime,” Phys. Rev. Lett. 103, 231301 (2009)

[arXiv:0908.3061 [gr-qc]].
[32] C.-W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, and T. Rosenband, “Frequency Comparison of Two High-

Accuracy Al+ Optical Clocks”, Physical Review Letters, 104, 070802 (2010)
[33] B. P. Abbott et al. [LIGO Scientific Collaboration and VIRGO Collaboration], “An Upper Limit on the Stochastic

Gravitational-Wave Background of Cosmological Origin,” Nature 460, 990 (2009)
[34] H. Lück et al., “The upgrade of GEO600,” J. Phys. Conf. Ser. 228, 012012 (2010) [arXiv:1004.0339 [gr-qc]].

http://au.arxiv.org/abs/gr-qc/9310026
http://au.arxiv.org/abs/0905.4803
http://au.arxiv.org/abs/math/0601054
http://relativity.livingreviews.org/Articles/lrr-2005-5/
http://au.arxiv.org/abs/hep-th/0605052
http://au.arxiv.org/abs/gr-qc/0006105
http://au.arxiv.org/abs/quant-ph/0505064
http://au.arxiv.org/abs/gr-qc/0310035
http://au.arxiv.org/abs/gr-qc/0310035
http://au.arxiv.org/abs/hep-th/0404103
http://au.arxiv.org/abs/0908.3061
http://au.arxiv.org/abs/1004.0339


7

-18

-16

-14

-12

-10

-8

-6

-4

-2

1 3 5 7 9 11 13 15

lo
g(
di
ffe
re
nt
ia
l l
en
gt
h 
or

 ti
m
e/
m
et
er
s)

log(length or time interval/meters)

atomic clocks

interferometers

HOLOMETER

LIGO 

LISA

GEO600 holograp
hic noise

LIGO (gravitational waves)

FIG. 1: Sensitivities of spacetime fluctuation experiments. Differential length or time is plotted as a function of system scale
or duration, both with decimal log scales in meters. The holographic noise line shows the transverse displacement amplitude
estimated in Eq.(9), as a function of time or length. Atomic clocks are shown with the currently best-measured accuracies over
a range of frequencies[32]. Current (LIGO, GEO600) and planned (LISA) interferometer sensitivities show the rms sensitivity
to displacement in a single period at the frequency of the minimum of the noise curve, as a function of the instrument size. In
the case of LIGO and GEO600, the higher points are the ones appropriate for holographic noise comparisons; these take into
account differences in apparatus response between holographic noise and gravitational waves. The point labeled Holometer
shows the estimated photon-shot-noise limit for two 40-meter, correlated, co-located interferometers at 2000 watt cavity power
and 1 hour integration time. Interferometers with similar parameters may detect or rule out transverse, Planckian holographic
noise.
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