

Monitoring the CMS Data Acquisition System

G Bauer1, U Behrens2, K Biery3, J Branson4, E Cano5, H Cheung3, M Ciganek5, S
Cittolin5, J A Coarasa4,5, C Deldicque5, E Dusinberre4, S Erhan5,6, F Fortes
Rodrigues7, D Gigi5, F Glege5, R Gomez-Reino5, J Gutleber5, D Hatton2, J F
Laurens5, J A Lopez Perez5, F Meijers5, E Meschi5, A Meyer2,5, R Mommsen3, R
Moser5,8, V O’Dell3, A Oh5, L B Orsini5, V Patras5, C Paus1, A Petrucci4, M Pieri4,
A Racz5, H Sakulin5, M Sani4, P Schieferdecker5, C Schwick5, D Shpakov3, S
Simon4, K Sumorok1 and M. Zanetti5
1MIT, Cambridge, USA; 2DESY, Hamburg, Germany; 3FNAL, Chicago, USA;
4UCSD, San Diego, USA; 5CERN, Geneva, Switzerland; 6UCLA, Los Angeles, USA;
7CEFET/RJ, Brazil; 8also at Technical University, Vienna, Austria

E-mail: Luciano.Orsini@cern.ch

Abstract. The CMS data acquisition system comprises O(20000)
interdependent services that need to be monitored in near real-time. The ability
to monitor a large number of distributed applications accurately and effectively
is of paramount importance for robust operations. Application monitoring
entails the collection of a large number of simple and composed values made
available by the software components and hardware devices. A key aspect is
that detection of deviations from a specified behaviour is supported in a timely
manner, which is a prerequisite in order to take corrective actions efficiently.
Given the size and time constraints of the CMS data acquisition system,
efficient application monitoring is an interesting research problem. We propose
an approach that uses the emerging paradigm of Web-service based eventing
systems in combination with hierarchical data collection and load balancing.
Scalability and efficiency are achieved by a decentralized architecture, splitting
up data collections into regions of collections. An implementation following
this scheme is deployed as the monitoring infrastructure of the CMS
experiment at the Large Hadron Collider. All services in this distributed data
acquisition system are providing standard web service interfaces via XML,
SOAP and HTTP [15,22]. Continuing on this path we adopted WS-* standards
implementing a monitoring system layered on top of the W3C standards stack.
We designed a load-balanced publisher/subscriber system with the ability to
include high-speed protocols [10,12] for efficient data transmission [11,13,14]
and serving data in multiple data formats.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022042 doi:10.1088/1742-6596/219/2/022042

c© 2010 IOP Publishing Ltd 1

1. Introduction
Monitoring the CMS [1] data acquisition system spans all tasks needed to retrieve, collect and display
information used to track the status and operation as well as the processing of errors and alarms in a
uniform manner. The system is characterized by a large number of hosts and applications
[18,19,20,21]. In addition to all traditional requirements that specify the monitoring tasks, scalability
requirements are a key concern that pervades all aspects of the system design. Scaling requirements
[1,3,5,8] along several dimensions are imposed on the on-line monitoring infrastructure:

Numerical scalability refers to the ability to seamlessly perform operations with an increased
number of users, resources, and services.

Geographical scalability refers to the ability to perform the same identical function regardless of
the physical resource location.

Administrative scalability is achieved if the system is managed in the same way even if it
encompasses multiple administrative domains. This includes network boundaries, physical computers
and mapping of applications to resources.

Functional scalability refers to the ability to accommodate additional functionality.
The proposed infrastructure fits these needs by providing a set of expandable and reusable solutions

allowing use of the monitoring and alarming system for development, test and operation scenarios.

Figure 1. DaqMon (Labview). Layout of the running system with all nodes and their states,
history and current status of data flow elements.

2. Architecture and design
The infrastructure is based on service-oriented architecture [2,3,4], in which a 3-tier structured
collection of communicating components cooperates to perform the monitoring task. The universal

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022042 doi:10.1088/1742-6596/219/2/022042

2

application connectivity, that makes every monitoring and application service inter-communicating is
based on the XDAQ [5,6,7,8] middleware. As shown in Figure 2, the system builds upon a scalable
publisher-subscriber service consisting of a pool of eventing applications orchestrated by a load
balancer called a broker.

Figure 2. Architecture.

The DAQ applications act as data producers through sensor services to publish monitoring data.
Similarly sentinel services are used to report errors and alarms. Other services for processing, storing,
filtering and transforming the information express their interest by selectively subscribing to eventing
services. Presentation components can either subscribe or directly retrieve monitoring data from the
required provider services (An example of presentation is shown in Figure 1). All services are re-
locatable and run independently of each other without a need for external control. Communication
among services is established through a rendezvous mechanism with the help of discovery services
facilities [16]. The heartbeat service keeps track of all running services and DAQ applications.

3. Data Collection
This is the method by which data tuples defined for the data acquisition system are retrieved from the
distributed applications, merged and made available in various standard formats. All metrics are
treated, through the whole processing chain, using a uniform table based data format, as shown in
Figure 3.

Table definitions enumerating all data items, called flashlists, are specified in XML. Flashlist
specifications reliably identify the content for merging, tracking and analysis with additional
information, including timestamps, version and application identification (URI, URL, UUID, IP and
others) fields. The framework inserts these data fields transparently into the application software.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022042 doi:10.1088/1742-6596/219/2/022042

3

Figure 3. Data life cycle from monitorable sources to user display. Tuples from all
applications are merged into hash tables according to configuration

Data collection is initiated in either of two ways at the sources: push from the application or pull

according to a configurable time period. Merging of distributed tables is performed in one or more
steps by a service called a collector. A load-balanced pool of data collectors copes with the data
traffic. The data so collected is served to user interface applications on request in JSON, XML, CSV
and SunRPC binary format by the live access services over HTTP protocol

4. Errors and Alarms
DAQ applications have the capability to asynchronously notify exceptional conditions using the same
data format as the monitoring infrastructure.
Two different scenarios can be identified: applications that detect persistent deviations from the
normal system behavior can report errors or a deviation may also be transient, meaning an alarm is
fired and eventually revoked when the asserted condition is resolved
.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022042 doi:10.1088/1742-6596/219/2/022042

4

Figure 4. Error and Alarms event report diagram

As shown in Figure 4, reporting errors and alarms is performed through sentinel plug-in services

that take care of routing notifications, guaranteeing delivery and preventing the system from flooding.
All reports are recorded by a persistency service called spotlight that keeps the history of all events,
allowing a playback of all reports. Errors and alarms are visualized by a graphic web application [17]
the hotspot facility (Figure 6) that maps them to the graphics according user defined models of the
system.

Figure 5. Hotspot viewer.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022042 doi:10.1088/1742-6596/219/2/022042

5

The system model as shown in Figure 5 is an abstract view of the system. Several views can be
defined and organized in hierarchical structures. The model so defined is used to categorize errors
originating from the running system elements. In order to match errors reported by the running system
with the abstract model a number of filters are defined. Filters are associated with views by means of
special nodes called guards. The guards define regular expressions matching the group and tag
attributes from the error report.

Exceptions raised by XDAQ applications contain information about the system configuration.
Therefore, in addition to the specific exception information, exceptions contain an indication of the
XDAQ application group and zones to which they belong.

Figure 6. Hotspot example of errors and alarms report according to two different perspectives of the
system. Errors and alarms are associated to elements of the system model and displayed according to
their severity levels. The tool offers different views of the model such as tree navigation, heat maps,

tables and scrolling terminals

5. Benchmarks
The two plots shown in Figure 7 below give scalability measurements for different system sizes in
terms of total message rate and throughput. Increasing the size means adding slices starting from 800
applications on 150 computers to 5500 applications on 1000 computers. The standard deviation of
the rate and throughput measurements grows with the system size.

The achieved performance allows running the system at the required update rate of 1 Hz for all data
sources.

The current system collects about 20 different flashlists and all updated values can be synchronized
within 1 second. The latency for each report depends on the number of collection steps. It has been
measured to be within one second.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022042 doi:10.1088/1742-6596/219/2/022042

6

Figure 7. Benchmark measurements

6. Summary
The CMS online monitoring system has been implemented and is currently used in an operational
environment. This software product line [9] is the result of several years of development and has
proven its fitness for operation with the acquisition of the first beam events on September 10, 2008.

 This paper summarized key requirements and outlined the resulting architecture of the CMS online
monitoring software infrastructure.

Acknowledgements
This work was supported in part by DOE and NSF (USA) and the Marie Curie Program.

References
[1] Gutleber J, Murray S, Orsini L 2003 Towards a homogeneous architecture for high-energy

physics data acquisition systems Elsevier Comp. Phys. Comm. 153(2) 155-163
[2] Gutleber J, Moser R, Orsini L 2007 Data Acquisition in High Energy Physics Proc.

Astronomical Data Analysis Software and Systems (ADASS 23-26 Sept 2007) XVII, ASP
vol. 394 pp 47

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022042 doi:10.1088/1742-6596/219/2/022042

7

[3] CERN 2002 Data Acquisition & High-Level Trigger, Technical Design Report CMS TDR 6.2,
LHCC 2002-26 (ISBN 92-9083-111-4)

[4] McIllroy M D 1968 Mass-produced software components in: Software Engineering Concepts
and Techniques, eds. Buxton J M, Nauran P and Randell B, Reprinted proceedings of the
1968 and 1969 NATO Conferences, Petrocelli/Charter (ACM Press, 1076) pp 88-98.

[5] Parnas D L 1979 Designing Software for Ease of Extension and Contraction, IEEE Trans.
Softw. Eng SE-5(2) 128-137

[6] Nierstrasz O, Gibbs S and Tsichritzis D 1992 Component-oriented software development
Comm. ACM 35(9) 160-164

[7] Bauer G et al 2009 Dynamic configuration of the CMS Data Acquisition cluster J. Phys. Conf.
Ser. (same conference, in print)

[8] Grama A Y, Gupta A and Kumar V 1993 Isoefficiency: measuring the scalability of parallel
algorithms and architectures, IEEE Par. & Distr. Tech.: Systems & Applications 1(3) 12-21

[9] Clements P, Northrop L 2002 Software Product Lines Addison-Wesley (ISBN 0-201-70332-7)
[10] Gutleber J and Orsini L 2002 Software Architecture for Processing Clusters based on I2O Clust.

Comp., J. of Netw., Software and Applications Kluwer Acad. Pub., 5(1) 55-65
[11] Fujimoto R M and Panesar K S 1995 Buffer management in shared-Memory Time Warp

Systems ACM SIGSIM Sim. Digest, 25(1) 149-156
[12] Wind River Systems Inc. 1999 Network Protocol Toolkit, User’s Guide V 5.4 ed. 1 Part # DOC-

12820-ZD-03 500 Wind River Way, Alameda, CA 94501-1153, USA
[13] Thadani M and Khalidi 1995 An efficient zero-copy I/O framework for UNIX Tech. Rep. SMLI

TR95 -39 Sun Microsystems Lab Inc. USA
[14] Bershad B N et al 1995 Extensibility, Safety and Performance in the SPIN Operating System in

Proc. 15th ACM SOSP pp 267-284
[15] Booth D. et al. 2004 Web Service Architecture http://www.w3.org/TR/ws-arch
[16] Guttman E, Perkins C, Vaizades J and Day M 1999 Sevice Location Protocol Version 2 Internet

RFC http://www.ietf.org/rfc/rfc2608.txt
[17] Adobe Flex 3 Rich Internet Applications http://www.adobe.com/products/flex/
[18] Antchev G et al 2001 The Data Acquisition System for the CMS Experiment at LHC in Proc.

7th Intl. Conf. Adv. Tech. and Particle Phys. Villa Olmo, Como, Italy (Oct. 15-19, 2001)
World Scientific Publishers (ISBN 981-238-180-5)

[19] Murray S 2007 RU Builder User Manual CERN EDMS ID 875261,
http://edms.cern.ch/document/875261/1.6

[20] Antchev G et al 2001 The CMS Event Builder Demonstrator and Results with Myrinet, Comp.
Phys. Comm. 140(1-2) 130-138

[21] Bauer G et al 2008 CMS DAQ Event Builder Based on Gigabit Ethernet IEEE Trans. Nucl. Sci.
55(1) 198-202

[22] Gutleber J, Orsini L et al 2005 HyperDAQ Where Data Acquisition Meets the Web Proc. 10th
Intl. Conf. Accel. and L. Exp. Phys. Control Sys. (Geneva, Switzerland, 10-14 October 2005)

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022042 doi:10.1088/1742-6596/219/2/022042

8

