

Usage of the Python programming language in the CMS

experiment

R Wilkinson
1
, B Hegner

2
, and C D Jones

3

1
California Institute of Technology, Pasadena, CA, USA

2
 CERN, Geneva, Switzerland

3
 Fermi National Accelerator Laboratory, Batavia, IL, USA

E-mail: rickw@caltech.edu

Abstract. Being a highly dynamic language and allowing reliable programming with quick

turnarounds, Python is a widely used programming language in CMS. Most of the tools used in

workflow management and the GRID interface tools are written in this language. Also most of

the tools used in the context of release management: integration builds, release building and

deploying, as well as performance measurements are in Python. With an interface to the CMS

data formats, rapid prototyping of analyses and debugging is an additional use case. Finally in

2008 the CMS experiment switched to using Python as its configuration language. This paper

will give an overview of the general usage of Python in the CMS experiment and discuss

which features of the language make it well-suited for the existing use cases.

1. Introduction

Many software projects on the Compact Muon Solenoid experiment (CMS) have independently

chosen to use Python

[1], not as a result of a top-down decision from management. When asked why

they use Python, some common reasons emerge. Python is seen to be easy to learn, without the steep

learning curve of C++. Python syntax is seen as simpler and more comprehensible than either C++ or

Perl, which makes it easier to understand code written by others. This simplicity leads to the option of

writing prototype code in Python, and then, once objects and behaviors are determined, translating to

C++ for performance. Finally, many standard tools are native to the language, and many useful

external packages exist, such as cherrypy [2] for web programming, PyROOT [3] for physics analysis,

and PyQt

[4] for graphics.

2. Job Configuration

The CMS software framework uses a “software bus” model, where data is stored in the event which is

passed to a series of modules. A single executable, cmsRun, is used, and the modules are loaded at

runtime. A configuration file defines which modules are loaded, in which order they are run, and with

which configurable parameters they are run. Note that this is not an interactive system. The entire

configuration is defined once, at the beginning of the job, and cannot be changed during running. This

design facilitates the tracking of event provenance [5], that is, the processing history of the event.

A software release contains over 6000 configuration files. Three quarters of these are fragments,

meant to be shared, defining the parameters for a single module or sequence of modules. The rest are

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042026 doi:10.1088/1742-6596/219/4/042026

c© 2010 IOP Publishing Ltd 1

mailto:rickw@caltech.edu

full, executable configurations. Our standard full-chain release validation job defines over 700

modules, over 150 sequences of modules, and over 13,000 configurable parameters.

These configurations have a rich syntax. Many data types exist, including int32, uint32,

int64, double, string, InputTag, EventID, and vectors of these types. These data

types can be stored hierarchically in PSets or VPSets. Modules which operate on event data can be

defined as EDProducers, EDFilters, or EDAnalyzers. Modules which handle time-

dependent conditions can be defined as ESSources or ESProducers, and sets of conditions can

be chosen using ESPrefer statements. Modules can be grouped into Sequences and execution

Paths, which can be stopped by EDFilters. In addition, operators can define the relationships

between elements in a path, such is inverting (“~”) or ignoring (“-“) a filter, or expressing whether or

not modules depend on their previous element for data (“*” or “+”).

These configurations had been implemented using a custom language syntax, parsed by the GNU

tools Flex and Bison [6]. This system was designed to be a simple declarative language, but it soon

proved too inflexible. Users commonly wanted to copy and modify sets of parameters and modules,

which meant that we had to provide that syntax for each of the many elements of the language. The

production system especially needed easy access to modify input and output file names and random

number seeds. We needed a full programming language, and since the production system was already

written in Python, it was the natural choice.

To design the language syntax, we tried to mimic the original language as much as possible. The new

Python configuration returns a single Python data structure, the Process, into which modules would

be inserted. The Python configuration would be started from the C++ cmsRun program through a

boost::python

[7] interface, and the Python Process object would be converted into the same C++

data structure as the old language was, again, using boost::python. Examples of the old and new

languages are shown in figure 1.

Figure 1. Examples of the old (left) and new (right) configuration languages.

After the new Python data structures were defined, we created a tool to parse old configuration files

into the new data structure, using the pyparsing

[8] module. The new Python data structures could

process foo = {

 module jetAnalyzer = MyJetAnalyzer {}

 module jet50Filter = jetFilter from

 “Jets/Reco/data/JetFilter.cfi”

 replace jet50Filter.minPt = 50.

 module jet100Filter = jetFilter from

 “Jets/Reco/data/JetFilter.cfi”

 replace jet100Filter.minPt = 100.

 sequence jet50to100Filter =

 {jetFilter50 & !jetFilter100}

 path jet50to100 =

 {jet50to100Filter, jetAnalyzer}

}

import FWCore.ParameterSet.Config as cms

process = cms.Process(“foo”)

process.jetAnalyzer

 = cms.EDAnalyzer(“MyJetAnalyzer”)

from Jets.Reco.JetFilter_cfi import jetFilter

process.jet50Filter = jetFilter.clone()

process.jet50Filter.minPt = 50.

process.jet100Filter = jetFilter.clone()

process.jet100Filter.minPt = 100.

process.jet50to100Filter = cms.Sequence(

 process.jet50Filter + ~process.jet100Filter

)

process.jet50to100 = cms.Path(

 process.jet50to100Filter *

 process.jetAnalyzer

)

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042026 doi:10.1088/1742-6596/219/4/042026

2

dump themselves into both the new and the old formats, so the production system could immediately

use this parsing tool to edit configurations.

Next came the task of translating the ~6000 configuration files in the system. We were given CVS

permissions for the entire release, and we made scripts to automatically parse, translate, commit, and

tag all packages that had configuration files. Some structures didn’t translate well automatically, so

we edited the original configuration by hand, because we expected iterations of automatic translations.

A period of one pre-release was defined where we would support both configuration languages, and

we made scripts to detect when an old configuration file was changed without a change to the new

one.

One disadvantage of this translation scheme was that neither comments nor order of configuration

statements were preserved. To translate comments, we made a second-pass script which tried to

match the line following the comment in the new file.

After we automatically translated all configuration files in CVS, we announced the location of the

translation scripts, so users could translate their own configurations. We created a validation program,

which dumped the C++ data structure that resulted from both old and new configurations, and checked

them for differences.

After the transition, the maintenance burden was indeed reduced. In addition, the new system had

powerful new features. The configurations became easier to debug, because users could inspect the

configurations interactively, and could test their configuration syntax simply by compiling it. It

became easier to build configurations, and to keep the configurations internally consistent by, for

example, changing input and output file names simultaneously. We no longer need separate Perl or

shell scripts to edit the configurations. Users can now use command-line arguments, and higher-level

Python functions such as loops. Finally, a browsing GUI was created, which uses PyQt

[9].

We also have configuration builder utilities, written in Python, to assemble common uses, such as

simulation and reconstruction chains, and to add common sets options to them, such as those needed

for fast simulation or cosmic ray reconstruction. This configuration builder is used for release

validation, and to create standard workflows for production.

3. Analysis

CMS stores its data in ROOT files. There are two common methods to access this data, described in

more detail in

[10]. The most common is to use the standard framework, creating a C++

“EDAnalyzer” module to read the data, and perhaps create a new ROOT file, extracting selected data.

Another way is to use “FWLite”, a utility which provides easy access to the objects in the event, and

their C++ member functions, in either C++ or Python. FWLite auto-loads the C++ objects it needs,

with class dictionaries provided by ROOT’s REFLEX utility.

 FWLite can be combined with PyROOT to create a powerful and intuitive analysis tool. The code

in figure 2 can be used to create analysis plots, produces histogram windows directly from a Python

prompt, with a simplicity approaching pseudocode. To further simplify the use of Python

interactively, the user could save the first four lines of setup code into a new script, and use that script

to start an interactive Python session:

> python –i openRecoFile.py

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042026 doi:10.1088/1742-6596/219/4/042026

3

Figure 2, Example of FWLite & PyROOT analysis.

 4. Production

The CMS Data Management and Workflow Management team uses Python extensively in data

processing. Clusters of Python daemons perform tasks such as request management, allocation, job

submission, tracking, bookkeeping, and error handling

[11]. These daemons use a common Python

framework for event-driven message passing and MySQL persistency.

In this architecture, the processing work is done by “ProdAgents” [12], independent daemons

which act as front ends to diverse resources, ranging from farms to grid systems. These ProdAgents

receive tasks from a “ProdMgr”, which manages requests, and does the final accounting.

 In addition, many web applications use cherrypy servers, for such tasks as data moving

[13], site

monitoring

[14], data monitoring

[15], and database browsing

[16]. These tools are being consolidated

into a single framework

[17].

5. Conclusion

CMS uses Python for a wide variety of applications, including scripting, job configuration,

analysis, GUIs, web interfaces, message passing, and database interfaces. We anticipate that Python’s

popularity on the experiment will continue to grow, as more shared utilities and frameworks in Python

become available.

References

[1] http://www.python.org

[2] http://www.cherrypy.org

[3] http://root.cern.ch/root/HowtoPyROOT.html

[4] http://www.riverbankcomputing.co.uk/software/pyqt/intro

[5] Jones C D “File level provenance tracking in CMS”, these proceedings

[6] http://flex.sourceforge.net, http://www.gnu.org/software/bison

[7] http://www.boost.org/doc/libs/release/libs/python/doc/

[8] http://sourceforge.net/projects/pyparsing

from PhysicsTools.PythonAnalysis import *

from ROOT import *

prepare the FWLite autoloading mechanism

gSystem.Load("libFWCoreFWLite.so")

AutoLibraryLoader.enable()

events = EventTree("reco.root")

book a histogram

histo = TH1F("photon_pt", "Pt of photons", 100, 0, 300)

event loop

for event in events:

 photons = event.photons # uses aliases

 print “# of photons in event %i: %i" % (event,len(photons))

 for photon in photons:

 if photon.eta() < 2:

 histo.Fill(photon.pt())

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042026 doi:10.1088/1742-6596/219/4/042026

4

http://flex.sourceforge.net/
http://www.gnu.org/software/bison
http://www.boost.org/doc/libs/release/libs/python/doc/
http://sourceforge.net/projects/pyparsing

[9] Hinzmann A “Visualization of the CMS Python configuration system”, these proceedings

[10] Jones C D, Lista L and Hegner B “Analysis environments for CMS”, Journal of Physics

Conference Series 119 (2008) 032027

[11] Wakefield S et al. “CMS production and processing system – design and experiences”, these

proceedings

[12] Spiga D 2007 Nuclear Physics B Proceedings Supplements p 141-144

[13] Kuznetsov V “CMS FileMover: one click data”, these proceedings

[14] Metson S “SiteDB: marshalling the people and resources available to CMS”, these proceedings

[15] Tuura L “Authentication and authorization in CMS’ monitoring and computing web services”,

these proceedings

[16] Pierro A “CMS Conditions Database Web Application Service”, these proceedings

[17] Wakefield S et al. “Job life cycle management libraries for CMS workflow management

projects”, these proceedings

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042026 doi:10.1088/1742-6596/219/4/042026

5

