

Expression and cut parser for CMS event data

Luca Lista1,5, Christopher D Jones2 and Giovanni Petrucciani3,4
1 INFN Sezione di Napoli, Complesso Universitario di Monte Sant’Angelo, via Cintia,
I-80126, Naples, Italy
2 Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510-5011, USA
3 Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
4 INFN Sezione di Pisa, Edificio C - Polo Fibonacci, Largo B. Pontecorvo, 3, I-56127,
Pisa, Italy

E-mail: luca.lista@na.infn.it

Abstract. We present a parser to evaluate expressions and Boolean selections that is applied on
CMS event data for event filtering and analysis purposes. The parser is based on Boost Spirit
grammar definition, and uses Reflex dictionaries for class introspection. The parser allows for
a natural definition of expressions and cuts in users’ configurations, and provides good run-
time performance compared to other existing parsers.

1. Introduction
CMS provides collaborators with a flexible framework[1] that allows one to define applications for
simulation, reconstruction, on-line event selection and off-line analysis in a modular way. Users can
plug together modules provided with the standard CMS software releases along whith their user-
defined modules. A module can perform analysis tasks, production of new object collections to be
stored in the event, and event filtering. All modules may have configurable parameters, and jobs for
event processing are configured with python scripts. In order to reach the desired degree of flexibility
in the configuration, mainly for analysis applications, we realized a parser that allows the framework
to interpret expressions and Boolean conditions (usually intended as “cuts”) written by the user as
strings, and evaluate those user-defined expressions and cuts on objects that are retrieved from the
CMS event store. In this way, many analysis modules for object selection and event filtering achieve
the sufficient generality for a wide range of applications without the need of writing a large number of
specialized modules.

2. Parser description
The parser can interpret an expression that returns a floating point or Boolean value and then evaluate
that expression on a user-supplied object. We don’t support at the moment expressions that evaluate
on multiple objects. This could become a future extension of the current parser.

5 To whom any correspondence should be addressed.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 032050 doi:10.1088/1742-6596/219/3/032050

c© 2010 IOP Publishing Ltd 1

2.1. Object method calls
Object methods returning a floating point, integer or Boolean value can be part of the evaluation, and
are specified by the user as string variables. For instance, the expression “pt” evaluates in C++ as
object.pt(), object being the C++ object on which the evaluation applies. Cascading method
calls are implemented with a dot (‘.’), and are automatically applied to methods that return an object
either by value, by reference or by pointer. We also support persistent references, a type of reference
specific to the CMS Event Data Model[1], with the same syntax. So, the expression "track.pt"
evaluates as object.track().pt(), if the method track() returns an object or a reference to
an object, or object.track()->pt() if the method track() returns a pointer or a persistent
reference. We support one or more arguments to method calls that can be either any type of integer or
floating point, string and enumerators (via either single or double quotes: "abc" or 'abc'). So, for
instance, the expression "daughter(1).pt" will evaluate as object.daughter(1).pt()
and so on. For methods that admit default argument values, the default arguments can be omitted in
the expression. In case of overloaded methods that may lead to ambiguous argument types, we give
precedence to integer arguments. So, for instance, "f(1)" will match f(int) if both f(int) and
f(float) are defined, while "f(1.0)" will only match f(float). In case of an overloaded
method that can take either a string or an enumerator, the string takes precedence.

2.2. Mathematical and logical expressions
The parser supports the usual mathematical operators +, -, * and /, as well as ^ for power raising,
and the logical operators &&, ||, and !. We support the comparison operators <, >, <=, >=, ==, as
well as the “trinary” operator cases: a < x < b, a > x > b, etc., that are frequent in analysis
applications to specify a variable range. Operators can be used with parentheses of any level of
nesting, and all the math functions provided by cmath are also supported, with either one (sin(x),
log(x), …) or two arguments (atan2(y, x), min(x, y), …). We also support functions
specific to some of our physics application, like the chi-squared probability, as chi2prob(c2,
ndf).

3. Parser implementation
The parser is written in C++ using the tool Spirit[2], which is part of the Boost C++ libraries[3]. Spirit
allows one to specify the desired grammar in C++ with an approximate Extended Backus Normal
Form (EBNF) syntax[4]. The implementation requires a number of helper class structures to
implement the required actions to be performed on the call stack, but the core part of the grammar
code is rather compact, around 70 lines of C++ code. We map string literals to method calls using
Reflex dictionaries[5], now supported as part of ROOT[6]. Reflex dictionaries must be generated for
the object class that is being used in the user application in order for the parser to work in a user
application. Since this is a requirement for all objects that are stored in CMS Event Data Model, the
ability to work with the parser is supported for all objects in the event. The result of the parsing phase
is an object tree where each node represent an ‘atomic’ evaluation step, as in Figure 1. The complete
expression evaluation is performed by recursively performing the evaluation of all the nodes in the
tree.

4. Parser applications in CMS software
The cut and expression parser has become a core part of the CMS software release, and is used in a
variety of applications, either as part of user modules’ configuration, or as part of the configurability
of pre-defined modules. In particular, it is the standard selection technique recommended for CMS
Analysis Tools[7], in particular in the recently established PAT, the CMS Physics Analysis Toolkit[8].

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 032050 doi:10.1088/1742-6596/219/3/032050

2

4.1. Use in C++ code
We provide a C++ user interface to the parser via two class templates:
StringCutObjectSelector and StringObjectFunction, whose template argument is the
object type the parser is able to evaluate. Examples of user code fragment are given below, and are
hopefully self-explanatory:

StringObjectFunction<reco::Track> f("px^2 + py^2");
StringCutObjectSelector<reco::Track> select("pt>15.0 && abs(eta)<2");

reco::Track trk = …; // get a track from somewhere

bool pass = select(trk);
double ptSquare = f(trk);

For simplicity, the expression string is displayed above as hard-coded in the C++ but in a real
application this is of course taken as input from the job configuration, in order to allow the user to
specify it within configuration scripts.

4.2. Use as part of a modules configuration
Several modules provide a user selection as part of their configuration implemented with the cut
parser. An example of a selection of candidates for the decay Z→μμ with cuts on the muon daughters’
transverse momentum (method: pt) and pseudo-rapidity (method: eta) is given below as a fragment
of the configuration script. Below the daughter indices 0 and 1 represent the first and second muon of
the Z decay:

zCandidates = cms.EDFilter("CandSelector",
 src = cms.InputTag("dimuons"),
 cut = cms.string("min(daughter(0).pt,daughter(1).pt)>20 &&" +
 "fabs(daughter(0).eta)<2 && fabs(daughter(1).eta)<2 &&" +
 "daughter(0).isGlobalMuon=1 && daughter(1).isGlobalMuon=1"
)

Figure 1.Example of translation from a string cut to an object tree model. The

“leaves” of the tree that refer to an object method are mapped to Reflex method calls.

pt>15 && abs(eta)<2

Expression/cut Object
&&

> <

pt 1

eta

abs 2

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 032050 doi:10.1088/1742-6596/219/3/032050

3

Another application where the expression parser is adopted is a generic histogrammer module that
allows users to store histograms with the spectra of the desired quantities. The quantities to be plotted
are specified using the expression parser. A configuration fragment for this module can be found
below. In the example, the spectrum of the mass of Z→μμ candidates and the maximum transverse
momentum of the muon daughters is plotted:

zPlots = cms.EDAnalyzer("CandHistoAnalyzer",
 src = cms.InputTag("zCandidates")
 histograms = cms.VPSet(
 cms.PSet(
 min = cms.untracked.double(0.0),
 max = cms.untracked.double(200.0),
 nbins = cms.untracked.int32(200),
 name = cms.untracked.string("zMass"),
 description = cms.untracked.string("Z mass [GeV/c^{2}]"),
 plotquantity = cms.untracked.string("mass")
),
 cms.PSet(
 min = cms.untracked.double(0.0),
 max = cms.untracked.double(200.0),
 nbins = cms.untracked.int32(200),
 name = cms.untracked.string("mu1Pt"),
 description = cms.untracked.string("Highest muon p_{t} [GeV/c]"),
 plotquantity =
 cms.untracked.string("max(daughter(0).pt,daughter(1).pt)")
),
)
)

A similar module that saves simple ROOT trees with customizable variable content is also supported.
The parser is also used as part of the event display Fireworks[9] in order to interactively select a sub-
set of the objects to be displayed: a user-specified selection can be typed in a dedicated text box area.

5. Performance
Once the expression parsing is performed at run time in the initialization phase, the evaluation of the
expression or cut can be done on every object of the specified type, without the need to re-do the
parsing again. The extra cost of the evaluation with respect to a C++ compiled expression is a virtual
function call for each evaluation node, the call of the object methods via Reflex, and the lack of
possible optimization. We observe a modest performance loss compared to C++, that makes the parser
suitable for off-line analysis applications. We anyway discourage the application of this tool for
performance-critical applications, like on-line event selection, where parser cuts were initially used in
some cases. We compared the performance of the evaluation of the object tree model generated by our
parser with equivalent CINT[10] expressions, and we measures typically factors of 50 improvements
in our application.

6. Conclusions
We developed a parser that allows users to specify expressions and cuts as part of their application
configuration. The parser is now widely used in CMS software applications, in particular for off-line
analysis, where expressions and cuts are part of the job configuration, and in the new Fireworks event
display. The tool provides good run-time performance that make it suitable for off-line analysis
interactive and batch processing. The possibility to flexibly configure their application has been
appreciated by users who expressed very positive feedback. A more detailed user reference of the
parser can be found in Ref. [11].

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 032050 doi:10.1088/1742-6596/219/3/032050

4

References

[1] Jones C D, Kowalkoski J, Paterno M, Sexton-Kennedy E and Tannenbaum W 2006 Proc. of

CHEP 2006, vol 1, ed S Banerjee (India: Macmillan) pp 248-251
[2] de Guzman J 2009 Spirit: http://spirit.sourceforge.net/
[3] Dawes B, Abrahams D, Rivera R 2009 Boost C++ libraries: http://www.boost.org/
[4] Donald K E 1964 Backus Normal Form vs. Backus Naur Form Communications of the ACM vol

7 (12) pp 735–736
[5] Reflex: http://root.cern.ch/drupal/content/reflex
[6] Brun R and Rademakers F 1996 Nucl. Inst. & Meth. in Phys. Res. vol A 389 pp 81-86
 See also http://root.cern.ch/
[7] Lista L, Fabozzi F, Jones C D and Hegner B 2008 Physics Analysis Tools for the CMS

Experiment at LHC IEEE Trans. on Nucl. Sci. vol 55 (6) pp 3539-3543
[8] Petrucciani G et al. 2009 PAT: the CMS Physics Analysis Toolkit Proc. of CHEP 09, Prague,

21-27 Mar. 2009
[9] Kovalskyi D 2008 Fireworks: A Physics Event Display for CMS Proc. of CHEP 09, Prague, 21-

27 Mar. 2009
[10] Goto M C++ Interpreter - CINT, CQ publishing, ISBN4-789-3085-3 (Japanese)
 See also http://root.cern.ch/drupal/content/cint
[11] Physics Cut and Expression Parser - CMS Offline Software Guide:
 https://twiki.cern.ch/twiki/bin/view/CMS/SWGuidePhysicsCutParser

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 032050 doi:10.1088/1742-6596/219/3/032050

5

