
Automation of user analysis workflow in CMS

D Spiga1, M Cinquilli2, G Codispoti3, A Fanfani3, F Fanzago4,

F Farina5, S Lacaprara6, E Miccio7, H Riahi2, E Vaandering8

1CERN
2Università and INFN Perugia
3Università and INFN Bologna
4INFN-Padova
5INFN Milano Bicocca
6INFN-LNL
7INFN-CNAF
8FNAL

E-mail: Daniele.Spiga@cern.ch, Mattia.Cinquilli@cern.ch,

Giuseppe.Codispoti@bo.infn.it, Alessandra.Fanfani@bo.infn.it,

Federica.Fanzago@cern.ch, Fabio.Farina@cern.ch, Stefano.Lacaprara@pd.infn.it,

vmiccio@mail.cern.ch, Hassen.Riahi@pg.infn.it, ewv@fnal.gov

Abstract. CMS has a distributed computing model, based on a hierarchy of tiered regional
computing centres. However, the end physicist is not interested in the details of the computing
model nor the complexity of the underlying infrastructure, but only to access and use efficiently
and easily the remote services. The CMS Remote Analysis Builder (CRAB) is the official CMS
tool that allows the access to the distributed data in a transparent way. We present the current
development direction, which is focused on improving the interface presented to the user and
adding intelligence to CRAB such that it can be used to automate more and more the work
done on behalf of user. We also present the status of deployment of the CRAB system and the
lessons learnt in deploying this tool to the CMS collaboration.

1. Introduction

The Compact Muon Solenoid (CMS) experiment [1] is one of the two general purpose physics
experiments at the European Laboratory for Particle Physics (CERN) [2] starting operation in
2009. The scientific analysis of data taken by the detector and MonteCarlo events simulation
requires a large amount of well organized computing resources. To guarantee more than 2000
CMS collaborators located in 40 countries around the world to be able to carry out their physics
analysis with minimal geographical and processing constraints the CMS experiment has had a
worldwide distributed computing model [3] from the beginning. The CMS distributed model
implements the Grid middleware to manage three main levels, or tiers, of computing.
Tier 0 (T0) is located at CERN where the accelerator and experiment are located and includes
20% of the total required computing resources of CMS. The next level is represented by Tier 1
(T1) regional centers which represent 40% followed by the Tier 2 (T2) centers which represent
another 40% of the total required computing resources of CMS. Each Tier level has its well
defined responsibilities mainly differentiated by their resources dedication.
Also a set of specialized tools have been developed on top of WorldWide LHC Computing Grid
(WLCG) [4] and Open Science Grid (OSG) [5] to manage the distributed resources. Phedex [6]

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072019 doi:10.1088/1742-6596/219/7/072019

c© 2010 IOP Publishing Ltd 1



distributes data across the destination sites; Dataset Bookkeeping System (DBS) [8] is the
data discovery service allowing to track datasets both for real data and simulated events. The
ProductionSystem [7] manages Monte Carlo data production and the CMS Remote Analysis
Builder (CRAB), the interface proposed to the physicist to perform the Grid distributed analysis
in a transparent way. Section 2 gives an overview of the analysis workflow in the CMS
experiment. Section 3 discusses how the automation has been implemented and near future
development. Section 4 discusses the status of deployment, while Sections 5 and 6 report on
results and conclusions respectively.

2. Overview

The CMS analysis model is data location driven. The user analysis runs where data are located,
and foreses that all CMS users must use the Grid in order to perform their own analysis. Within
the computing model the Tier-2 level represents the primary analysis facilities for CMS, where
more flexible, user driven activities can occur.
To optimize the distributed resources usage an association of users to Tier-2 centers either
based on geography or regions of interest has been defined. In addition the Tier-2 centers are
also associated with one or more CMS defined Physics Groups.
The typical analysis workflow can be summarized as follows:

• User runs interactively on small data sample developing the analysis code.

• Users analysis code is shipped to the site where sample is located.

• Results are made available to the user for the final plot production.

The workflow involves the concept of task and job. The job is the traditional queue system
concept, corresponding to a single instance of an application started on a worker node with a
specific configuration and output. A task is generally composed of many jobs.
From a technical point of view, each one of the previously listed steps corresponds to one or
more interactions with a set of different services. Job preparation requires both to query the
Data Bookkeeping and Location System (DBS) and to interact with the user local environment
setup. The job submission, tracking, output retrieval and all the other batch interations require
to interact with the middleware, and in particular to configure the Grid job in the case of
WLCG consists of a file filled using the Job Description Language (JDL) interpreted by the
Workload Management System (WMS) [9] (a similar approach is required for OSG and many
batch systems). Also, specific T2s configuration parameters, (e.g. namespaces, storage endpoint)
are made available querying the CMS Sites information (SiteDB) [10] service.
All this complexity can represent a hard task for the end user who is mainly interested in the
end-results of the job. To hide as much as possible the computing infrastructure, but always
preserving the flexibility required by end user analysis activity, CMS designed and deployed a
dedicated tool, called the CMS Remote Analysis Builder (CRAB).

3. Automation: Client Server Architecture

The first implementation of CRAB was based on a standalone tool. The interaction with the
Grid was only direct, leaving to the user all the tasks such as submission, status check and
output retrieval. After a long experience achieved with this CRAB setup, CMS planned and
designed its natural evolution to a more scalable, automated and powerful architecture, based
on a Client-Server approach. The guidelines of the evolution were mostly aimed to keep the
intereface proposed to the user invariate w.r.t. the previous standalone implementation, and
to design a server as similar as possible to the Production and T0 System. The programming
language used to develop CRAB is Python [11].

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072019 doi:10.1088/1742-6596/219/7/072019

2



Figure 1. Minimal CRAB config-
uration file organized in three sec-
tions containing different configura-
tion parameters

3.1. The Client

The client is a command line application used by the user on the User Interface(UI). It takes care
of the local environment interaction, packing private user library and code in order to replicate
remotely the very same local configuration; it queries the DBS performing the data discovery.
Finally it implements the communication with the server, based on web services technology,
using SOAP [12]. The client uses an SQLite [13] database for logging purpose. The interaction
with the database is performed using the BossLite [14] API.
To interact with CRAB, the end user just needs to use a simple configuration file organized into
sections containing key-value pairs (Fig. 1), and uses it relying on the friendly CLI proposed.

3.2. The Server

The internal CRAB server architecture (Fig. 2) is based on components implemented as inde-
pendent agents communicating through an asynchronous and persistent message service (as a
publish and subscribe model) based on a MySQL [15] database. Each agent takes charge of
specific operations and the modular design allows new features to be added to the service in a
transparent way. Most of the components implement a multithreading approach, using safe con-
nection to the database. This feature allows to manage many tasks at the same time shortening
the delay time for a single operation that has to be accomplished on many tasks. This is a key
point for a service with the role to provide the user with data to analyse in order to produce
the final physics results.
As shown in Figure 2 the CRAB Server architecture relies on a dedicated Grid Storage Element

to store the input/output-sandboxes transferred by/from the Client/Worker Nodes. The server
uses a specific interface made up by a set of API and a core with hierarchical classes which
implement different protocols, allowing to interact transparently with the associated storage
area. By design the storage area is not required to be close to the service itself; such feature
plays a key role in the Grid Scheduler interaction. The latter is performed through BossLite
API designed to guarantees the complete interoperability between different flavours of both the
Grid and local batch systems.

The new architecture offers many opportunities for improving the automation by reducing
the number of operations to be performed by the physicist. The user prepares the configuration
and responsibility for task execution is delegated to the server. Most of the operations, which
do not need direct user actions, can be addressed by the server, a 24x7 service designed to care
care of managing user’s tasks (using exactly the user credential). After the request submission
the user should just wait for the server notification about the output availability. The server
is the place where to implement the intelligence needed to detect the jobs success/failure and
takes action for eventual job resubmission. The aim of the server is to improve scalability of
the whole system providing to CMS specific functionality. Finally the service represents also a
natural place where more advanced and automated workflows can be integrated. An example of
a real use case will be supported is the new submission logic that uses the trigger system. The

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072019 doi:10.1088/1742-6596/219/7/072019

3



flow is summarized in the following:

• User submits jobs to the server asking to run on a defined dataset.

• Server queues submitted jobs and polls data bockkeping system.

• Once requested data becomes available the server automatically releases jobs.

4. CRAB Server Deployment

At the end of 2008 the CRAB server deployment activity started and at the time of writing
4 instances have been installed around the world. Two instances have been deployed in Italy,
one in France, one in Germany plus one at CERN. All of them use the gLite WMS to submit
jobs. One more instance is under deployment in USA which is actually submitting jobs through
glide-in WMS [16]. One of the lessons learnt thanks to this activity, is the importance to have
an easy access to the information of all the services and daemons running within the server. For
this purpose the HTTPFrontend component, which provides a web interface to the server, has
been implemented providing intuitive interfaces to the most relevant information for both users
and administrators. For each component/daemon/service running within the server the web
interface shows the related status, the CPU and Memory usage. In addition it gives information
on the number of users submitting jobs, the number of jobs and tasks, and related status.
These features are used by the administrator of the service in order to promptly detect problems.
Figure 3 illustrates a snapshot of a relevant summary page presented by the HTTPFrontend
component. The Server is by definition a centralized system collecting users jobs, which could
in princple represents a single point of failures. Having many istances running at different sites
will of course avoid this eventual issue.

Figure 2. Schema of the CRAB Server architecture and its internal inter-connections. Shown
are the various components including the mysql core (in yellow) and storage elements (in orange).

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072019 doi:10.1088/1742-6596/219/7/072019

4



5. Results

The huge CRAB user community, which during 2008 saw more than 1000 physicists submitting
jobs, generates a lot of feedback. This is a really important aspect in view of the LHC start-up
since feedback contributed to define development and operation priority in order to be prepared
for the first collisions. Figure 4 shows a mean value of ∼90 distinct users per day using the
distributed computing infrastructure and the described machinery to run over simulated dataset
and cosmic ray samples. The large user base impacts strongly on the effort required to develop,
support and deploy tools that support analysis on the grid. The overall efficiency, described
in term of job success rate is reported in Figure 5. The resulting fraction of succeeded jobs is
approaching 60%. From a detailed analysis (Fig. 6) aimed to understand root problems of the
∼40% of failure rate, it appears that 12% of problems come from the Grid infrastructure issues
(e.g. site specifc, gLite WMS etc.) while 25% can be decomposed mainly as:

• User configurations errors.

• Remote stage out issues.

• Few % of failures reading data at site.

These are the results obtained considering the statistics achieved from July 2008 to March 2009
and the related data have been achieved by the CMS monitoring project (DashBoard) [17]

These results are of course an important indication that something must be done in order to
improve the overall analysis job efficiency. A part of the irreducible fraction of failures due to
problems within the user own code, CRAB probabily could help on this. Some possible ideas to
reduce the actual ∼28% of failures can be:

• To provide some interactive checks to help in preventing user misconfigurations.

• To allow to run on its workstation the very same crab jobExecutor in order to debug
problems.

• To check the remote stage out configuration at creation time.

Note that about the stage out issues strategies for more stable solutions have being discused
within the Collaboration.

Figure 3. Snapshot of one of
the web interface implemented by
the server. In particular this
show the relevant informations for
administrator purpose.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072019 doi:10.1088/1742-6596/219/7/072019

5



Figure 4. Number of CRAB daily distinct users in the 2008.

6. Conclusion and perspective

At the time of writing more than 1/3 of the whole CRAB user community migrated to use
the server for jobs submission. The implemented client-server architecture demonstates that
automation of the analysis workflow can be supported. The stress test performed demonstrated
that the CMS analysis jobs scale can be reached using about 4 CRAB server instances, even if
the final deployment strategy is still something under discussion within the Collaboration.
From the development point of view in the short term the effort will be spent on user
interface optimization adding new functionality mostly focused on the physics domain like the
implementation of minimal report per task to give to user the information he needs to create
meaningful histograms out of his outputs.
As middle/long term plan the goal of the development team is to migrate to use the CMS
Workload Management common core [18], under development at the time of writing.

Figure 5. Success rate of jobs
CMS jobs submitted with CRAB.
Values computed referring to data
achieved from July 2008 to March
2009.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072019 doi:10.1088/1742-6596/219/7/072019

6



Figure 6. Pie chart showing suc-
cess rate of analysis jobs. Val-
ues computed referring to data
achieved from July 2008 to March
2009.

References
[1] S. Chartrchyan et al., The CMS Experiment at CERN LHC Jornal of Instrumentation, vol 3, pp.s08004

(2008).
[2] LHC Homepage, http://cern.ch/lhc-new-homepage/
[3] The CMS Collaboration CMS: The computing project. Technical design report., CERN-LHCC-2005-023,

166pp (2005).
[4] LHC Computing Grid (LCG), Web Page, http://lcg.web.cern.ch/LCG/ and LCG Computing Grid - Technical

Design Report, LCG-TDR-001 CERN/LHCC 2005-024, (2005).
[5] OSG Web Page, http:/opensciencegrid.org
[6] A. Delgado Peris et al. Data location, transfer. and bookkeeping in CMS Nucl.Phys.Proc.Suppl.177-178:279-

280,(2008).
[7] S. Wakefield et al. Large Scale Job Management and Experience in Recent Data Challenges within the

LHC CMS experiment.
[8] A. AFAQ et al., The CMS dataset bookkeeping service, 2008 J. Phys.:Conf. Ser. 119 072001.
[9] P. Andreetto et al., The gLite Workload Management System Proceedings of Computing in High Energy

and Nuclear Physics (CHEP) 2007, Victoria, British Columbia (CA), Sep 2007.
[10] S. Metson et al. SiteDB: Marshalling the people and resources available to CMS Proceedings of this

conference.
[11] Python Programming Language http://www.python.org/
[12] SOAP Messaging Framework http://www.w3.org/TR/soap/
[13] SQLite Home Page www.sqlite.org
[14] G. Codispoti et al. Use of the gLite-WMS in CMS for production and analysis Proceedings of this

conference.
[15] MySQL Open Source Database http://www.mysql.com/
[16] S. Padhi et al. Use of glide-ins in CMS for production and analysis Proceedings of this conference.
[17] Julia Andreeva et al. Dashboard for the LHC experiments. Proceedings of Computing in High Energy

and Nuclear Physics (CHEP) 2007, Victoria, British Columbia (CA), Sep 2007.
[18] S. Wakefield et al. Job Life Cycle Management libraries for CMS Workflow Management Projects

Proceedings of this conference.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072019 doi:10.1088/1742-6596/219/7/072019

7




