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The eikonal approximation is at the heart of many theoretical and phenomenological studies involving multiple

soft gauge boson emissions in high energy physics. We describe our efforts towards the extension of the eikonal

approximation for scattering amplitudes to the first subleading power in the soft momentum.

1. Introduction

It is well-known that soft gauge boson emis-
sions often give rise to large corrections to hard
scattering cross-sections. Generically, if 1−x is a
dimensionless variable related to the energy car-
ried by undetected soft gauge bosons in a given
process, the differential cross-section receives per-
turbative corrections of the form

dσ

dx
=
∑

m,n

αn

[
cnm

(
logm(1− x)

1− x

)

+ dnm logm(1 − x) + . . .

]
, (1)

where α is the coupling constant and generically
m ≤ 2n − 1. The first term contains contribu-
tions that are not integrable as x → 1, displaying
an IR divergence that must be cancelled by vir-
tual corrections, and the ellipsis denotes terms
that are suppressed by powers of 1 − x. When
x → 1, the convergence of the perturbative ex-
pansion breaks down and resummation becomes
necessary: one would like to know the coefficients
{cnm} and {dnm} for all values of n. Much is

known about the cnm coefficients, which are re-
lated to the eikonal approximation for soft radi-
ation. This amounts to taking in each diagram
the leading power term when all soft gauge bo-
son momenta ki → 0. A full understanding of
the dnm coefficients requires the use of the next-
to-eikonal (NE) approximation, in which ki → 0
for all but one gluon, whose momentum is kept to
first subleading order in the scattering amplitude.
A crucial result for resummations based on the

eikonal approximation is the fact that amplitudes
for soft gauge bosons form an exponential (“ex-
ponentiate”). For abelian gauge theory this has
been understood since the early 1960s [1]. For
non-abelian theories, remarkably, similar results
hold [2,3,4,5].
We have revisited this exponentiation with an

eye to extending the eikonal approximation, and
the results that are built upon it, to next-to-
leading power in the soft energy/momentum. We
begin by describing a simple ansatz which gener-
alizes threshold resummation, incorporating some
recent insights into the structure of NE terms in
the QCD splitting functions, as well as some well-
understood phase space effects. While this ansatz

1

FERMILAB-CONF-10-767-T

http://arxiv.org/abs/1007.0624v1


2

is successful in reproducing the bulk of NE terms
for inclusive cross sections, it does not give the full
answer. We then go on to describe recent more
systematic attempts to organize all NE terms, us-
ing either a path integral or a diagrammatic ap-
proach.

2. Extended threshold resummation

The authors of the three-loop calculation of
Altarelli-Parisi splitting functions [6] found a re-
markable relation between eikonal and next-to-
eikonal contributions: taking Mellin moments of
splitting functions, they noted that the coeffi-
cients of terms proportional to lnN/N are deter-
mined by the coefficients of eikonal logarithms,
lnN . Subsequently, Dokshitzer, Marchesini and
Salam (DMS) [7], proposed a modified evolution
equation for parton distributions that connects
eikonal and sub-eikonal terms in the splitting
function in a nontrivial way, providing a justi-
fication for the results of [6]. In [8], we used
these results to extend the threshold resumma-
tion formulae of [9,10,11], including the modified
DMS evolution equation, and taking into account
threshold kinematics at NE level. For the Mellin
moments of the Drell-Yan partonic cross section,
ω̂(N), we proposed the resummed expression

ln
[
ω̂(N)

]
= FDY

(
αs(Q

2)
)
+

∫ 1

0

dz zN−1

{
1

1− z
D

[
αs

(
(1− z)2Q2

z

)]

+ 2

∫ (1−z)2Q2/z

Q2

dq2

q2
Ps

[
z, αs(q

2)
]}

+

, (2)

where the nth order term in the DMS-improved
space-like evolution kernel is given by

P (n)
s (z) =

z

1− z
A(n) + C(n) ln(1− z) + . . . , (3)

The function FDY controls N -independent terms
according to [11], and the function D controls
contributions from wide-angle soft radiation. The
1/z factors in the argument of the coupling in the
function D(αs), as well as the upper limit of the
q2 integral, reflect a more accurate accounting of

threshold kinematics, and also lead to 1/N ef-
fects. For DIS we proposed a similar form.
To assess the quality of our proposal, we com-

pare the expansion of Eq. (2) in powers of αs(Q
2),

up to two loops, with the exact results of [12], in
terms of the coefficients anm and bnm in the ex-
pression

ω̂(N) =

∞∑

i=0

(αs

π

)n
[

2n∑

m=0

anm lnm N̄

+

2n−1∑

m=0

bnm
lnm N̄

N

]
+O

(
lnp N

N2

)
, (4)

where N̄ = N exp(γE). As expected, all a coeffi-
cients are reproduced. At the 1/N level we find
the results shown in table 1. We see that the
leading 1/N terms (b23) are reproduced for each
color structure, while an excellent approximation
for the next-to-leading ones (b22) is reached, and
even b21 is well reproduced. A similar conclusion
holds for the DIS case, where we could compare
with 2-loop [13] and even 3-loop results [14].
Full agreement at NE accuracy is, however, not

reached here, nor in other approaches [15,16,17,
18,19,20,21]. To this end, a deeper understanding
of exponentiation at NE accuracy is called for.

3. Path integral approach

It is possible to cast the exponentiation all pos-
sible subdiagrams involving soft gauge boson ex-
changes between external charged energetic lines
in terms of the textbook exponentiation of con-
nected Feynman diagrams [22]. This technique
in fact encompasses both the eikonal and next-
to-eikonal approximations.
To show how this works, consider the path-

integral representation of the free scalar Feynman
propagator

∆F = [i(S − iε)]
−1

, S = (−�x +m2) , (5)

which in momentum space reads

∆̃F (p
2
f ) =

1

2

∫ ∞

0

dT
〈pf |U(T )|xi〉

〈pf |xi〉

= −
i

p2f +m2 − iε
. (6)
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Table 1
Comparison of exact and resummed 2-loop coefficients for the Drell-Yan cross section. For each color
structure, the left column contains the exact results, the right column contains the prediction derived
from resummation according to Eq. (2).

C2
F CACF nfCF

b23 4 4 0 0 0 0

b22
7
2 4 11

6
11
6 − 1

3 − 1
3

b21 8ζ2 −
43
4 8ζ2 − 11 −ζ2 +

239
36 −ζ2 +

133
18 − 11

9 − 11
9

b20 − 1
2ζ2 −

3
4 4ζ2 − 7

4ζ3 +
275
216

7
4ζ3 +

11
3 ζ2 −

101
54 − 19

27 − 2
3ζ2 +

7
27

In Eq. (6) we may introduce a path-integral rep-
resentation for the matrix element

〈pf |U(T )|xi〉 = e−ipfxi−i 1
2 (p

2

f+m2)T

×

∫ p(T )=0

x(0)=0

DpDxei
∫

T

0
dt(pẋ− 1

2
p2) . (7)

The path integral is over all paths x(t) with asso-
ciated momentum p(t), starting at fixed position
xi and ending with final momentum pf . It is not
hard to generalize this by including an abelian
gauge field. One gets

〈pf |U(T )|xi〉 =

∫ p(T )=pf

x(0)=xi

DpDx exp

[
−i p(T )x(T )

+ i

∫ T

0

dt

(
pẋ−

1

2
(p2 +m2) + p · A

+
i

2
∂ ·A−

1

2
A2

)]
. (8)

One may now express the n-point Green func-
tion correlating n hard particles by assuming a
factorized form (which is known to be exact in
the eikonal approximation), where hard fields are
implicitly integrated out, while the path integral
over soft fields yields eikonal and NE Feynman
rules for soft emissions. We write

G(p1, . . . , pn) =

∫
DAµ

s H(x1, . . . , xn)

× 〈p1|(S − iε)−1|x1〉 . . . 〈pn|(S − iε)−1|xn〉 , (9)

where H collects all hard interactions, and there
is an implicit integration over the coordinates xi.

Notice that the one-particle path integrals for
each external line are functionals of the soft fields
which are then integrated explicitly in Eq. (9). To
extract a scattering amplitude, we must truncate
the external lines. Each external line then carries
a factor of the form

(p2f +m2)〈pf |(S − iε)−1|xi〉 ≡ e−ipfxif(∞) , (10)

where, after carrying out the Dp integration,

f(∞) =

∫

x(0)=0

Dx exp

[
i

∫ ∞

0

dt

(
1

2
ẋ2

+(pf + ẋ) ·A (xi + pf t+ x(t))

+
i

2
∂ ·A(xi + pf t+ x)

)]
. (11)

From the point of view of the path integral over
As in Eq. (9) this is a collection of 1-point ver-
tices for As, i. e. source terms. The scattering
amplitude now reads

S(p1, . . . , pn) =

∫
DAµ

s H(x1, . . . , xn)

× e−ip1x1f1(∞) . . . e−ipnxnfn(∞) eiS[As] . (12)

Each external line factor contains As sources dis-
tributed along paths which are summed over in
the one-particle path integrals. The As path inte-
gral then connects these sources with propagators
in all possible ways. The resulting gauge boson
subdiagrams are either connected (as in Fig. 1)
or disconnected (as in Fig. 2). At this point we
can use the textbook result that, after perform-
ing the As path integral, the scattering amplitude
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Figure 1. Examples of connected subdiagrams Gc

for soft emissions between hard outgoing particles
in abelian perturbation theory.

Figure 2. Example of a disconnected subdiagram
between two outgoing external lines, to be com-
pared with the connected subdiagrams of Fig. 1.

is the exponent of connected graphs. This gives
a simple and direct proof of exponentiation for
eikonal diagrams, and for a class of NE contribu-
tions: those that obey the factorization assumed
in Eq. (9).

The combinatorics underlying this statement
assume commuting sources. When considering a
non-abelian gauge field this no longer holds, as
each source carries a non-abelian charge. In or-
der to use the same approach nevertheless, we
employ a method that effectively shortcuts much
of the combinatorial analysis for exponentiation:
the so-called replica trick, which is used at times
in statistical physics. Let us briefly sketch how
the method works.

The Green functions of a given quantum field
theory are described by the generating functional

Z[J ] =

∫
Dφ eiS[φ]+i

∫
Jφ , (13)

where J is a source for the field φ, and S is the
classical action. Now consider defining N replicas

of the theory, involving fields φi (i ∈ {1, . . . , N}).
The generating functional becomes

ZN [J ] =

∫
Dφ1 . . .DφN

× eiS[φ1]+i
∫
Jφ1 . . . eiS[φN ]+i

∫
JφN , (14)

which clearly satisfies

ZN [J ] = (Z[J ])
N

. (15)

The Feynman rules for each field are identical,
and there are no interactions between the dif-
ferent replicas of the fields: thus, there can be
no more than one field in each connected Feyn-
man diagram, and connected diagrams come in
N copies. By the same reasoning, disconnected
diagrams containing k ≥ 2 connected components
come in Nk copies. It follows that the sum of all
connected diagrams is proportional to the number
of replicas,

∑
Gc ∝ N . Furthermore, no discon-

nected diagrams contribute terms proportional to
N . From Eq. (15) one has

ZN [J ] = 1 +N log(Z[J ]) +O(N2) , (16)

which leads us to conclude that
∑

Gc = log (Z[J ]) . (17)

Finally, we may write this as

Z[J ] = exp
[∑

Gc

]
, (18)

and set N = 1. For non-abelian gauge theory we
note that although the fields are replicated, the
gauge group is not, so that all replicas live in the
same Lie algebra.
Let us consider the case of two external col-

ored particles, corresponding to color-singlet pro-
cess such as Drell-Yan. The scattering amplitude
reads

S(p1, p2) = H(p1, p2)

∫
DAµ

s

× f ij1
1 (∞) f ij2

2 (∞) eiS[As] , (19)

where the external lines factors are path-ordered
exponentials similar to Eq. (11). We can now use
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the combinatorial power of the path integral by
replicating the gluon field, and defining a replica-
ordering operator R such that

N∏

i=1

P exp

[∫
dx ·Ai(x)

]

= RP exp

[
N∑

i=1

∫
dx ·Ai(x)

]
, (20)

where

R [Ai(x)Aj(y)] =

{
Ai(x)Aj(y) , i ≤ j
Aj(y)Ai(x) , i > j

. (21)

The classical path x(t) in Eq. (11) is a straight
line, leading to the standard eikonal approxima-
tion. By combining the two half-infinite paths
into one path, we can categorize NE corrections
using 1-dimensional field theory on the path.
Two-point correlators correspond to path fluctua-
tions, and lead precisely to NE Feynman rules for
the soft gauge field in 4-dimensional Minkowski
space.
The replica trick allows us to decide which di-

agrams connecting the sources on the path oc-
cur in the exponent, and, moreover, what their
color factors are. In the eikonal approximation
we recover precisely Gatheral’s webs [2,3,4], with
a non-recursive recipe to determine their modified
color factors. Moreover, we identify at NE accu-
racy which new diagrams occur in the exponent
(NE webs), and what their color factors are. Note
however that not all NE corrections exponentiate:
emissions that connect the hard function H to
the external lines, violating the factorization as-
sumed in Eq. (9), and which are associated with
the Low-Burnett-Kroll theorem [23,24,25], do not
exponentiate. They can, however, be organized
into an iterative pattern, as shown in [22].

4. Diagrammatic approach

For a different perspective on these results,
one can follow a purely diagrammatic approach.
For abelian gauge theory, in the eikonal approx-
imation, one can consider all diagrams with an
arbitrary number of photon exchanges (possibly
via closed fermion loops). Such diagrams will in

general contain disconnected pieces. Upon ex-
panding all propagators and vertices to leading
power in the soft momenta, and summing over all
permutations π of the emitted photons, one can
decorrelate all photon emissions from each other
by using the eikonal identity

∑

π

1

p · kπ1

1

p · (kπ1
+ kπ2

)
. . .

×
1

p · (kπ1
+ kπ2

+ . . . kπn
)
=
∏

i

1

p · ki
. (22)

Simple combinatoric arguments then show that
the full amplitude A, dressing the radiationless
amplitude A0 with multiple soft photon radia-
tion, takes the form

A = A0

∑

{Ni}

∏

i

1

Ni!
[G(i)

c ]Ni , (23)

where G
(i)
c is a connected photon subdiagram

joining the external lines, and Ni is the multi-
plicity of this subdiagram occurring in the full
diagram. Eq. (23) clearly displays an exponenta-
tion of the form of Eq. (18).
For non-abelian gauge theories one must use a

generalization of the eikonal identity

∑

π̃

1

p · kπ̃1

1

p · (kπ̃1
+ kπ̃2

)
. . .

×
1

p · (kπ̃1
+ . . .+ kπ̃n

)
(24)

=
∏

g

[
1

p · kg1

1

p · (kg1 + kg2)

× . . .
1

p · (kg1 + . . .+ kgm)

]
,

where the product is over “groups” g, defined as
projections of webs onto each eikonal line. The
permutations π̃ are restricted to keep the order-
ing of gluon attachments within each group fixed.
This product actually gives the set of eikonal
gluon amplitudes the structure of a shuffle alge-
bra [26]. Using this algebraic structure one can
set up an inductive proof of exponentiation, both
for eikonal and NE approximations [27], which
confirms and complements the discussion of [22].
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The NE approximation, for those terms that
exponentiate according to our discussion, can be
implemented in practice through a set of effective
Feynman rules. As a test, we used these rules
to compute the abelian terms of the double-real
emission contribution to the Drell-Yan process at
two loops, we combined the result with the cor-
responding phase space and compared with the
exact result [12]. We find

K
(2)
NE(z) =

(
αsCF

4π

)2
[
1024D3(z)

3

−
1024 log3(1 − z)

3
+ 640 log2(1− z)

+
512D2(z)− 512 log2(1− z) + 640 log(1− z)

ǫ

+
512D1(z)− 512 log(1− z)

ǫ2
(25)

+
256D0(z)− 256

ǫ3

]
.

where Dk(z) are plus distributions, Dk(z) =
[lnk(1 − z)/(1 − z)]+. The result is in complete
agreement with [12].

5. Conclusions

How to resum sub-leading logarithms at next-
to-eikonal accuracy is an unsolved problem, rel-
evant for phenomenological applications [16,28].
An approach based on path integrals and using
the replica trick yields much insight into exponen-
tiation of these contributions in terms of (next-
to-)eikonal webs, and it is corroborated by a dia-
grammatic analysis. We hope in future to extend
our study to the level of full cross sections, and
to processes involving more hard colored partons.
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