
P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
2

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Design, Development and Evolution of the ROOT
System

Rene Brun1
CERN
1211 Geveva 23 Switzerland
E-mail: Rene.Brun@cern.ch

Philippe Canal
FNAL
Batavia, Illinois
E-mail: pcanal@fnal.gov

Fons Rademakers
CERN
1211 Geveva 23 Switzerland
E-mail: Fons.Rademakers@cern.ch

The ROOT system started in 1995, at a time when future software directions were unclear.
Many ideas were around, many prototypes were developed and many languages were candidate
to replace Fortran77, but there were many committees too. Initially started as a successor of the
PAW system, ROOT has considerably evolved since its initial conception. Following the long
saga with Object-Oriented databases, more emphasis has been put on data modelling, data
storage and data access. This paper describes the main features of ROOT as it is today and
discusses the many steps, controversies and challenges that had we had to overcome to arrive at
the current situation. This long process reflects the fact that systems in High Energy Physics,
designed to operate for decades, require a very close collaboration with experiments.

13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research - ACAT 2010
Jaipur, India
February 22–27 2010

1 Speaker

FERMILAB-CONF-10-738-CD

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
2

Design, Development and Evolution of the ROOT System René Brun

 2

1. The ROOT System Today

ROOT [1, 2] has become the de facto standard in High Energy and Nuclear Physics for the
experiment independent software. Figure 1 is a sketch of the various software layers in a typical
HEP experiment. All these layers use in one way or another the ROOT infrastructure. Some
components use ROOT only as a data storage & retrieval system. Some use it only for data
analysis and the graphics features. While PAW [3] was only a single executable module
paw.exe that could only be extended via its limited Fortran interpreter, ROOT offers about 100
shared libraries that can be directly linked by the application, or dynamically linked at run time
as soon as a class of a library is referenced. This structure of shared libraries has gradually
evolved during the ROOT history such that only a minimum number of libraries are required for
an application. You pay only for what you use. The root.exe module uses less than 20 MBytes
of memory at start-up and a typical application linking with the I/O and graphics requires less
than 100 MBytes of memory. Libraries are organized in major logical units, see Figure 2,
reflecting the way that they are typically used and also the way the project is organized into
work packages for the development.

Figure 1: sketch of the various software layers in a typical HEP experiment.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
2

Design, Development and Evolution of the ROOT System René Brun

 3

Figure 2: logical grouping of the different ROOT modules.

1.1 The CINT Interpreter and ACLIC

CINT [4] was originally developed as a C interpreter and then extended to support C++
features required by the I/O and graphics sub-systems. The success of CINT has been such that
users have always pushed to support all features of the C++ language. The typical use is to start
an analysis script with a few C++ statements to open a ROOT file and draw some histograms
with more and more options. Then this script evolves as a more complex analysis system
involving user classes, STL collections and complex code. At this point it becomes safer to,
transparently via ACLIC, compile the script with the native compiler and link the code with the
running executable module. ACLIC is the internal ROOT machinery that takes care of
compiling and linking the script in a platform independent way. When executing ".x
myscript.C+", ACLIC compiles myscript.C if it has been modified since the previous
invocation. This process has proved to be very successful and it is our intention to simplify even
more this task by replacing CINT by an LLVM [5] based compiler/interpreter with its Just-In-
Time features. The move to LLVM has the advantage to provide support for the latest C++x0
version of C++. With LLVM, the interpreter is the compiler itself. The interpreter will be able to
just-in-time compile scripts that otherwise would take far more time to execute, and this in a
transparent way for users [8].

ROOT also provides the Python interface PyROOT that uses some of CINT features. This
allows it to do dynamic call translation instead of relying on a fixed wrapper. Also provided is
an interface to Ruby. Python and Ruby offer late binding and an easy to learn syntax. For a C++
framework, the major advantage of providing a C++ interpreter (e.g. compared with a Python
interpreter) is the homogeneity of languages: users write compiled and interpreted code in the

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
2

Design, Development and Evolution of the ROOT System René Brun

 4

same language, they can transfer code or parts of it from the interpreted mode to the compiled
mode without any transition.

1.2 The Math Libraries

The ROOT Math package consists of the following components:
● MathCore: a self-consistent minimal set of tools required for the basic numerical

computing. It provides the major mathematical functions in the namespaces
ROOT::Math and TMath, classes for random number generators, TRandom, class for
complex numbers, TComplex, common interfaces for function evaluation and numerical
algorithms. MathCore also provides basic implementations for numerical algorithms
like integration and derivation. Furthermore, there are classes required for fitting the
ROOT data objects (or any data set).

● MathMore: package incorporating advanced numerical functionality and dependent on
external libraries like the GNU Scientific Library (GSL). It complements the MathCore
library by providing a more complete sets of special mathematical functions and
implementations of the numerical algorithms interfaces defined in MathCore using
GSL.

● Minimization and Fitting Libraries: libraries required for numerical minimization and
fitting. The minimization libraries include the numerical methods for solving the fitting
problem by finding minimum of multi-dimensional function. The common interface for
fitting is class TVirtualFitter and implemented by derived classes in the minimization
and fitting libraries. The fitting in ROOT is being re-organized and new fitting classes
are introduced in MathCore for providing the fitting functionality and the use of the
minimization libraries via a new common interface (ROOT::Math::Minimizer). In detail
the minimization libraries, implementing all the new and old minimization interface,
include:

● Minuit: library providing via a class TMinuit an implementation of the popular
MINUIT [6] minimization package. In addition the library contains also an
implementation of the linear fitter (class TLinearFitter), for solving linear least
square fits.

● Minuit2: new object-oriented implementation of MINUIT, with the same
minimization algorithms (such as Migrad or Simplex). In addition it provides a
new implementation of the Fumili algorithm, a specialized method for finding
the minimum of standard least square or likelihood functions.

● Fumili: library providing the implementation of the original Fumili fitting
algorithm

● Linear algebra: two libraries are contained in ROOT for describing linear algebra
matrices and vector classes:

● Matrix: a general matrix package providing matrix TMatrix and vector TVector
classes and the complete environment to perform linear algebra calculations,
like equation solving and eigenvalue decompositions.

P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
2

Design, Development and Evolution of the ROOT System René Brun

 5

● SMatrix: [7] a package optimized for high performances matrix and vector
computations of small and fixed size. It is based on expression templates to
achieve a high level of optimization.

● Physics Vectors: classes for describing vectors in 2, 3 and 4 dimensions (relativistic
vectors) and their rotation and transformation algorithms. Two package exist in ROOT:

● Physics: library with the TVector3 and TLorentzVector classes.
● GenVector: a new library providing generic class templates for modelling the

vectors.
● Unuran: package with universal algorithms for generating non-uniform pseudo-random

numbers, provides a number of classes of continuous or discrete distributions in one or
multi-dimensions.

● Foam: multi-dimensional general purpose Monte Carlo event generator (and integrator).
It generates randomly points (vectors) according to an arbitrary probability distribution
in n dimensions.

● FFTW: a library with implementation of the fast Fourier transform (FFT) using the
FFTW package.

● MLP: library with the neural network class, TMultiLayerPerceptron based on the NN
algorithms.

● Quadp: optimization library with linear and quadratic programming methods. It is
based on the Matrix package.

Figure 3: Hierarchy of ROOT math libraries.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
2

Design, Development and Evolution of the ROOT System René Brun

 6

2. 2-D and 3-D Graphics

The graphics classes are based on 10 years experience with PAW and 15 years of
operation with ROOT itself. They have been designed to support the typical needs for
presenting data in HEP. The system has been developed incrementally by adding zillions of tiny
new features and options suggested by our large user community. These classes are designed to
work equally well in an interactive environment as a batch environment where postscript and
PDF files must be produced without running graphics systems like X11 or OpenGL. The classes
produce high quality output pictures and provide interactive object editors.

There are several ways to render 3D graphics in ROOT. The preferred one uses the
OpenGL graphics library, which is used in ROOT to display data using lego and surface plots
and to render detector geometries. Work is in progress to also use it for 2D graphics and thus
have a single, portable rendering interface for 2D and 3D screen graphics.

2.1 The Graphical User Interface

The ROOT Graphical User Interface (GUI) integrates typical GUI functionality with
ROOT features, like exporting the GUI as C++ source, interpreting GUI code using CINT and
CINT-based signal/slot event handling. The result is a flexible, cross-platform, GUI toolkit with
a rich set of widgets and functionalities, including a GUI builder. The ROOT GUI builder
provides tools for developing user interfaces based on the ROOT GUI classes. We also provide
an interface with Qt. Although Qt is a popular and widely used system, maintaining the
interface is quite expensive due to the many backward incompatible changes between the
different Qt versions and their spotty deployment. Also history has shown that many systems
considered as standards (GKS -> Phigs -> Motif -> Qt) have a relative short lifetime, at least
with respect to the lifetime of HEP experiments.

Development is ongoing to extend the ROOT GUI and graphics to be fully OpenGL
based. And we are investigating how to bring them to the browser via a JavaScript interface.

2.2 The Geometry and Event Display Packages

Geometry in 3D space is described in ROOT by means of basic solids that can be joined,
intersected or subtracted to create more complex shapes. The possibility to visualize 3D objects
is very important. ROOT implements its own scene-graph management library and rendering
engine that provides advanced visualization features and real-time animations. OpenGL is used
for actual rendering. Event display programs are an important application of 3D visualization.
EVE, the event visualization environment of ROOT, uses extensively the ROOT data
processing, GUI and OpenGL interfaces. EVE can serve as a framework for object management
offering hierarchical data organization, object interaction and visualization via GUI and
OpenGL representations and automatic creation of 2D projected views. On the other hand, it
can serve as a toolkit satisfying most HEP requirements, allowing visualization of geometry,

P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
2

Design, Development and Evolution of the ROOT System René Brun

 7

simulated and reconstructed data such as hits, clusters, tracks and calorimeter information.
Special classes are available for visualization of raw-data and detector response.

Figure 4: EVE based event display, also showcasing the ROOT GUI.

2.3 I/O and Trees

A ROOT file is read and written by the class TFile and is designed to be write-once, read-
often (while supporting deletion and extension of contained data). The content of a ROOT file is
a simple binary stream consisting of variable length logical records, each one with a short
header describing the record content. All data but the header is usually compressed to reduce the
storage space and I/O bandwidth at the cost of slightly increased CPU time when reading and
writing the files. The file consists of a content index, the list of type descriptions relevant for the
file, and the actual data. Each data chunk is named and it can be retrieved by name. The TFile
also supports hierarchical storage in nested directories. Typical file sizes range from a few
kilobytes to several gigabytes. Files can be merged into new, larger files; this can be done
recursively, i.e. merging also the collections themselves that are contained in the files, as long as
they have the same name and are of the same type. Collections of files can also be merged into a
zipped container; ROOT supports transparent unzipping of and navigation in this collection of
files. The description of the classes stored in the file can be used to read the data even without
the C++ class definition. One can thus write C++ objects using the definition from a user
library, and read them back without the user library being available. Available reflection data is
used to interactively browse a ROOT file using the TBrowser that can also expand and browse
the content of all C++ objects, either from ROOT, STL containers, or user defined classes.
ROOT files can be opened via the HTTP protocol, without any special server requirements.
ROOT only asks for those parts of the file (using http content-range requests) that are actually

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
2

Design, Development and Evolution of the ROOT System René Brun

 8

required. This allows a low-latency, efficient remote browsing of ROOT files. In addition to the
HTTP protocol, there are many more TFile plugins supporting different file access protocols.

A TTree is a container that is optimized for I/O and memory usage. A TTree consists of
branches. Branches can contain complete objects of a given class or be split up into sub-
branches containing individual data members of the original object. This is called splitting and
can be done recursively till all sub-objects are split into branches only containing individual
data members. Splitting can even transform containers into branches of the containee’s data
members. Splitting can be done automatically using the class dictionary information. Each
branch stores its data in one or more associated buffers on disk. The optimal level of splitting
depends on the typical future access patterns of a tree. If during analysis all data members of an
object will be accessed then splitting will not be needed. Typical analyses access only a few
data members; in this case splitting is highly beneficial. Branch-based storage is called vertical
or column-wise storage (CWS), as opposed to horizontal or row-wise storage (RWS) as is
usually found in RDBMS databases. In CWS, just like in RWS, a collection (“table”) of similar
objects (“rows”) is assumed. However, in RWS all data members of an object are always read,
while in CWS only the needed buffers (e.g. data members) are read. Splitting is an automated
way to create these columns. CWS reduces the number of I/O operations and the amount of
transferred data, because it reads only the needed parts of each object. All other members of the
object keep the values defined by the class default constructor. When iterating through the
collection, data members that need to be read are consecutive on the storage medium in the case
of CWS. This allows block-wise reading of the data for several entries (rows) in one go,
something massively favoured by all modern operating systems and storage media. Another
advantage stems from the fact that ROOT compresses the data buffers using Huffman encoding,
which benefits from seeing the same byte pattern more often, because the same data members
usually have similar values (e.g. a particle’s type ID). Because a TTree describes the objects it
contains, one can read objects from a TTree even without their original class definition. The
TTree can even generate a C++ header file representing the layout of the object’s data as stored
in the TTree. Combined with the power of the interpreter and ACLiC, this allows a smooth
transition from stored binary data to C++ objects, even without C++ libraries. TTrees can also
generate a TSelector skeleton, used to analyse the data.

3. How Did We Reach the Current Situation

ROOT is based on our previous experience with the development of CERNLIB and in
particular packages like HBOOK, GEANT and PAW. The HBOOK system was the first large
package in CERNLIB providing a powerful histograming and ntuple management system. Data
could be saved in portable and compact HBOOK files and analyzed by interactive systems like
PAW. The design of these systems was the result of a long interaction between the developers
and the users. A short response time to implement a requested feature, the long term support and
the service to help users were key features of these systems and it was essential to preserve this
heritage when designing ROOT.

P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
2

Design, Development and Evolution of the ROOT System René Brun

 9

These CERNLIB packages and also the detector simulation package GEANT used a
powerful data structure management system, ZEBRA, able to build complex data structures (in
fact very similar to classes in an object-oriented system). ZEBRA provided a powerful way of
writing these structures to files and back in a portable way.

During the development of PAW between 1985 and 1994 we realized the importance of
efficient and flexible data structures for data storage in files. The success of row-wise ntuples
pushed us to implement column-wise ntuples to support larger data sets where queries could be
performed on a subset of the entries, subset of the columns or both. At the end of the PAW
development, we also had a good idea of the user requirements for user interfaces, interpreters,
graphics and access to large data sets. The Parallel Interactive Analysis Facility, PIAF, was a
very important step to understand the issues with parallelism with the I/O sub system and the
implications on the users analysis code. It was very important to understand the balance
between CPU, disk I/O and network I/O.

3.1 Software Crisis in 1992-1994

It was clear in 1992 that new languages and new techniques would impact our Fortran-
based systems. Many people thought that Fortran was the future. The MOOSE project
investigating languages (C++, Eiffel) and techniques (UML, Rose, OO-design) was set-up in
1993. Many computer scientists became involved in the discussion, most of them with no
experience with reality. Existing experience with large software systems was neglected as well
as feedback coming from experienced physicists who were kept very busy by the design of the
Large Hadron Collider. It took many years (of frustration) to move them from good old Fortran
to the magic of OO and C++.

The direction suggested by MOOSE and other software gurus was to invest in commercial
software systems for graphics and interactivity and move to commercial object-oriented
database management systems. The assumption in 1995 was that OODBMS systems would
dominate the world of databases in the near future. As a result a considerable investment was
made in a commercial system, Objectivity, by the BaBar experiment at SLAC and the LHC
experiments. Many people dreamed of a central database accessed worldwide at the bit level for
writing and reading, without worrying about container structures, CPU and network
performance; the technology helping to solve these problems. Most physicists trusted the gurus
for implementing an efficient solution. The LHC Computing Board (LCB) monitored the
progress. Unfortunately this committee relied too much on the same restricted set of experts
who were assessing the progress with databases and graphics tools. Despite early signs of
problems, these experts and the project referees persisted in their recommendations. A posteriori
it is surprising to think that the Objectivity system could be trusted as a possible solution for
object persistence in HEP.

P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
2

Design, Development and Evolution of the ROOT System René Brun

 10

4. The Initial Design and Development of ROOT

While the first ROOT prototype was a C++ version of PAW, we quickly realized that the
key problem was to work out a general object persistence solution and that an OODBMS like
Objectivity was not the solution. With ROOT, we continued the tradition started with
CERNLIB of developing packages directly targeted to the most important needs of our
experiments and with a long expected lifetime. For example, HBOOK has been in use for more
than 36 years, Geant3 for more than 28 year and PAW for more than 25 years.

ROOT first focused on data analysis bringing the PAW experience to the object-oriented
world, using an Open Source model of release early, release often to get contributions and
feedback as soon as possible. The first ROOT prototype, released end 1995, was already used
by the NA49 collaboration and quickly followed by many more adopters.

The development rule was primarily driven by user requests (bottom-up) rather than
following the committee (top-down) approach. Another essential factor were the frequent User
Workshops that helped shape and focus the ROOT development.

During the first 3 months of 1995, we prototyped several versions of the histograming
classes, including a version based on templates. In October 1995 we presented a first prototype
with histograms, functions, graphics (a la PAW). This prototype included a command line
interface supporting very primitive calls to ROOT class member functions. This prototype
generated a lot of interest and demonstrated that the ROOT development was going in the right
direction and highlighted which components needed to be strengthened.

Rather than developing our own interpreter based on our very basic prototype, we decided
to use an existing C/C++ interpreter, CINT, which had already been in use since 1991 and was
developed by Masaharu Goto from HP Japan. We used CINT not only as an interpreter, but also
as a parser for the ROOT header files to generate automatically a dictionary such that compiled
class member functions could be called from C++ interpreted scripts and such that objects could
be streamed to a buffer using automatically generated streamers. ROOT version 1 already
included many more classes and much better graphics.

The I/O Streamer functions generated by rootcint were quite simple to understand and
quite efficient. However, we realized soon that during the lifetime of an experiment and in the
lifetime of ROOT itself, both the library classes and the user classes would be evolving and that
at the same time the user would need, and expect to be able, to read files that were written with
previous versions of ROOT. To support this evolution of the data models, we introduced class
version numbers and the possibility for users to write their own custom streamers where they
could take into account the class schema evolution. At the same time, we made rootcint more
general such that it could parse many more classes, in particular non-ROOT classes developed
by our experiment’s early adopters.

We released version 2 with more features in the I/O, math and graphics sub-systems and
more sophistication in Trees, our main container for event data.

In the fall of 1998, after extensive analysis of the existing options at the time, ROOT was
selected by FNAL & RHIC as both their persistence and data analysis solution. This decision
generated a big chock-wave in the establishment, as it was a clear signal that the officially

P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
2

Design, Development and Evolution of the ROOT System René Brun

 11

supported top-down solutions were not measuring up to the need of experiments about to start
running. This increase in the user base leads to a widening of the scope of ROOT.

4.1 More on the Design and Evolution of ROOT I/O

The ROOT streamer functions were very efficient and simple to understand. However the
library containing the streamers was required in order to be able to read the data sets. While this
requirement was not a problem when reading objects through an experiment framework, it made
the sharing of ROOT files outside of these frameworks impossible. To solve this problem and to
add more advanced support for schema evolution, we implemented an automatic system to
stream data using the information in the dictionary instead of using the generated C++ streamer
functions.

When using this dictionary based streaming, we also save to the ROOT file the meta-data
information describing the classes of the objects stored such that ROOT files are now self-
describing. Over time in the following years we continued to optimize this system:

- To support the full C++ language in general.
- To enhance run time performance of the streaming system.
- To support more sophisticated cases and more customization of the class schema

evolution.

4.2 The Differences Between ROOT I/O and Objectivity

We list here the most important differences between ROOT I/O and Objectivity:
- In 99.99% cases people write a file once and read it many times. There is no need

for an expensive locking process during reading.
- Files are self-describing and independent of the location where they are

processed.
- Files are compressed and machine independent. Typical compression factors for

LHC experiments are between 3 and 5.
- ROOT adds support for transient data members and does not stream them.
- ROOT can stream collections member-wise, optimizing both speed and disk

space.
- Files can contain different class versions with an automatic class schema

evolution.
- ROOT has a complete query and visualization system.
- Files can be processed in parallel with PROOF
- Files are processed orders of magnitude faster.
- ROOT has a powerful readahead and caching mechanism allowing reading files

very efficiently across wide-area networks.

P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
2

Design, Development and Evolution of the ROOT System René Brun

 12

5. Conclusions

The ROOT development has been a great adventure lasting already for 15 years. Being the
underdog during the early years was providing us with a lot of motivation to prove our vision.
Currently ROOT has been adopted by basically the complete HEP community and the LHC
experiments have used it to store and analyse the first LHC data. This is an absolute milestone.
Currently, with the long running periods of the LHC, we are required to provide stable versions
that have to be maintained during these long periods (up to 2 years). At the same time we have
to avoid complacency and stay abreast of recent and new developments in the computing
industry, like C++ language evolution, many-core CPU and GPU processing, the LLVM
compiler suite, JavaScript browser side graphics rendering, etc. And in the meanwhile we have
to continue improving the performance and functionality of the core system. We are not finished
yet.

References

[1] R. Brun and F. Rademakers, ROOT – An Object Oriented Data Analysis Framework,
Proceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nuclear Instruments and Methods in
Physics Research A 389 (1997) 81-86. See also http://root.cern.ch.

[2] Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, Ph. Canal,D. Casadei, O.
Couet, V. Fine, L. Franco, G. Ganis, A. Gheata, D. Gonzalez Maline, M. Goto,J. Iwaszkiewicz,
A. Kreshuk, D. Marcos Segura, R. Maunder, L. Moneta, A. Naumann,E. Offermann, V.
Onuchin, S. Panacek, F. Rademakers, P. Russo, M. Tadel, ROOT - A C++ Framework for
Petabyte Data Storage, Statistical Analysis and Visualization, Computer Physics
Communications 180 (2009)2499-2512.

[3] R. Brun, O. Couet, C. Vandoni, P. Zanarini, PAW - A General purpose portable software tool for
data analysis and presentation, Computer Physics Communications 57 (1989) 432-437.

[4] M. Goto, The CINT C/C++ Interpreter, http://root.cern.ch/drupal/content/cint.

[5] C. Lattner, V. Adve, LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation, Proceedings of the international symposium on Code generation and
optimization, Palo-Alto (2004) 75.

[6] F. James, MINUIT - Function Minimization and Error Analysis. Reference Manual CERN
Program Library Long Write-up D506,
http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html.

[7] T. Glebe, SMatrix - A high performance library for Vector/Matrix calculation and Vertexing,
HERA-B Software Note 01-134, December 2, 2003.

[8] Höcker et al., TMVA - Toolkit for Multivariate Data Analysis, CERN-OPEN-2007-007 (2007),
arXiv:physics/0703039v4 http://tmva.sourceforge.net/.

[9] W. Verkerke and D. Kirkby, The RooFit Toolkit for data modelling, Proceedings to
PHYSTAT05, http://roofit.sourceforge.net.

P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
2

Design, Development and Evolution of the ROOT System René Brun

 13

[10] A. Naumann and Ph. Canal, The Role of Interpreters in High Performance Computing,
Proceedings of ACAT 2008, PoS(ACAT08)065,
http://pos.sissa.it/archive/conferences/070/065/ACAT08_065.pdf.

