
The Message Logging System for NO⌫A Experiment

Qiming Lu, J. B. Kowalkowski, and K. A. Biery

Computing Division, Fermi National Accelerator Laboratory
P.O.Box 500, Batavia, Illinois 60510, U.S.

E-mail: qlu@fnal.gov, jbk@fnal.gov, biery@fnal.gov

Abstract. The message logging system provides the infrastructure for all of the distributed
processes in the data acquisition (DAQ) to report status messages of various severities in a
consistent manner to a central location, as well as providing the tools for displaying and archiving
the messages. The message logging system has been developed over a decade, and has been
run successfully on CDF and CMS experiments. The most recent work to the message logging
system is to build it as a stand-alone package with the name MessageFacility which works for
any generic framework or applications, with NO⌫A as the first driving user. System designs
and architectures, as well as the e↵orts of making it a generic library will be discussed. We also
present new features that have been added.

1. Introduction
The basic functionality of a message logging system is to let user code report error or status
messages. Additional features allow for archiving of the messages so that they can be later
examined for problem diagnosis and handling. Moreover, a sound message logging system
should also provide a uniform and sensible logging behavior, in terms of information output and
formatting, while still keeping the low overhead. A certain degree of flexibility in customizing
the logging behavior is as well important, as has been demanded in real applications. In modern
high-energy experiments, the message logging system is one of the important components in
both online and o✏ine systems. It provides the functionalities to create, publish, display and
archive status messages in a consistent manner across the di↵erent experiments and di↵erent
groups within an experiment. It is an invaluable tool for diagnosing and handling problems in
the system during the development process as well as in the production phase.

The message logger package we discuss in the paper originated from the ErrorLogger package
in ZOOM (Fermi Physics Class Libraries Task Force project, named ZOOM). It was successfully
used in CDF, D0, and other experiments at Fermi lab. The first major rework of the ErrorLogger
package happened during its adoption by CMS and integration into the CMS source tree and
CMS framework [2]. The package continues to be maintained and modified to fit new user needs.
With the LHC coming online in early 2010, the MessageLogger continues to play a role in new
experiments.

The most recent development of the MessageLogger package has been to make it a generic
and stand alone package that can be easily integrated into any system or experiment. The source
code was again extracted from the CMS source tree and given a new name of MessageFacility.
NO⌫A (NuMI O↵-axis ⌫e Appearance experiment) is the first user and driving customer for the
generic MessageFacility package as it comes online in 2011.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 022017 doi:10.1088/1742-6596/331/2/022017

Published under licence by IOP Publishing Ltd 1

FERMILAB-CONF-10-705-CD

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. 



Figure 1. Flow chart of the message logging in a multi-thread environment. The
MessageLoggerQ is a single presence single consumer queue. It accepts data from multiple
producers, stores in a circular bu↵er, and supplies the data to the single consumer, which
is a single presence of MessageLoggerScribe. Such design can avoid conflicts and prevent
interlacing of message information from di↵erent threads, meanwhile minimizing the impact
to the performance of main user application.

The remainder of this paper is organized as follows. Section 2 briefly discusses the underlying
system design and architectures of Message Facility. Our new and most recent development to
the package, as well as its first application in the NO⌫A experiment are described in Section 3.
Finally, Section 4 gives the conclusions.

2. System design and architecture
The purpose of the MessageFacility package is to allow code in algorithm modules, service
libraries, and other framework components to send messages to a unified message logging
and statistics facility. The package captures and coordinates messages originating in multiple
sources into a specified set of destinations. Meanwhile, it also provides means of controlling
multiple output destinations, message limitations, and other behavior by a filtering using the
configuration subsystem.

2.1. Issuing Messages
In order to issue messages, the user code needs to have the service instantiated properly. One
of the following functions can be used in the user code to issue a message:

LogError ("category") << a << b << ... << z;
LogWarning ("category") << a << b << ... << z;
LogInfo ("category") << a << b << ... << z;

The functions represent three available levels of “severity” of the message. The string literal
category is used to specify what this message is about, i.e., the type of the message. A message
header is assembled with the category, severities, time and processing context, which is included
in each message. The message body is all the info added from subsequent strings, ints, doubles,
or any object that has stream insertion operator.

2.2. Message Handling
The e↵ect of a user issuing a LogInfo() (for example) is the formation of an error object
and the sending of it to the message queue. This error object is later consumed by the

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 022017 doi:10.1088/1742-6596/331/2/022017

2



Figure 2. Flow
chart of the exe-
cution path when
LogInfo() is called
in a multi-thread
environment. The
single presence of
the message server
residues in its own
thread. It interacts
with one or multiple
clients through the
MessageLoggerQ.
Both the server side
and the client side
are in one process.

MessageLoggerScribe. This scribe can be configured to filter error objects and will dispatch
the accepted messages to one or more destinations. This section will outline the steps involved.

The user code may be running in one or more threads, each of which might issue messages.
The issuer drops the message to the message queue then returns immediately. We call these the
client side. A single entity, the MessageLoggerScribe, picks up on these messages from the queue
and forwards them to the logger one at a time; this prevents interlacing of message information
from di↵erent threads. It also avoids the scribe being the bottleneck of the system. We call the
thread running MessageLoggerScribe the server side. Figure 1 shows the diagram of the message
service in multi-threaded environment. The single presence of MessageLoggerQ is the boundary
between client side and server side. All user programatic interaction is on the client side, but
the configuration (driven by the .cfg file) is dealt with on the server side.

The client log function uses RAII to generate and send out error object – it is a functor
under the hood. In its constructor a temporary instance of MessageSender is created. The
purpose of the MessageSender instance is to generate an ErrorObj on the heap, populate it with
message header and message body, and finally send it to the server upon the destruction of the
MessageSender instance. The interaction of MessageSender with the server side consists of two
steps. First, it uses the MessageDrop instance to supply the module and run/event context.
Here, the MessageDrop is a thread-specific singleton, whose purpose is to convey framework
information, provided by a ContextProvider class through callback functions, to the point-of-
invocation where a message is issued, as the functions issuing messages may not naturally have
access to the module description or event id, etc. After the injection, the module and processing
context go into the ErrorObj. Second, it invokes the static LOG method of MessageLoggerQ,
pushing the pointer to the ErrorObj to the queue and returns.

At the server side, the MessageLoggerScribe continually consumes commands from the queue,
as shown in the lower half of Figure 2. When an ErrorObj is received from the queue, the
category string is parsed. The ErrorLog() function is then called for each category given in
the ErrorObj. The purpose of ErrorLog() is to ship the ErrorObj to every destination. Each
destination (normally ELoutput) will apply the limits and thresholds, format the message, add
header information, and output the message. Finally, the completion of ErrorLog() deletes the
ErrorObj – completing the promise made when it was passed responsibility for this heap-resident
object.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 022017 doi:10.1088/1742-6596/331/2/022017

3



3. Message Facility for NO⌫A
E↵ort has been made to continue maintenance of the Message Logger libraries. A decision was
made to separate the message logging system from the CMS framework and build it as a generic
stand alone package.

3.1. Generic Message Logging System
For the CMS MessageLogger, the framework takes the responsibility of starting the service
and maintaining its lifetime. When used as a stand alone library, the MessageFacility must
provide an interface to start and configure its service. Internally the message service is held in
a singleton to avoid multiple instantiations within one process. The sequence of starting the
service is wrapped into a free function with arguments specifying whether to start the service in
a single-thread mode, or multi-thread mode, as well as detailed configuration information for the
service to configure itself. A major concern for the MessageFacility being a stand alone package
was the lifetime of the service. An intending design decision was to support the message logging
during the lifetime of a process. It is, however, not permissible to log messages in the destructor
of a static object.

In order to achieve this, the lifetime of the service presence has been designed to have three
stages (modes): o✏ine mode (pre-configuration), configuring mode (in-configuring), and fully
operational mode (post-configuration). Clear boundaries between stages have been defined
to instantiate a proper light-weighted or full service at each of the stages. When the main
thread returns and exits, the static object holding message service presence is destroyed. In its
destructor, it issues a FLUSH and a EXIT LOGGING commands to instruct the MessageLoggerScribe
to shut down the facility. All messages issued after this point are therefore ignored. The presence
keeps waiting for the MessageLoggerScribe thread to finish logging all remaining messages in
the queue and join to destroy itself.

3.2. Distributed Message Logging and Facilities
The data acquisition (DAQ) system of NO⌫A experiment consists of approximately 252 data
concentrate modules (DCMs) running embedded Linux on a PowerPC platform. Along with
the timing distribution units, bu↵er farm nodes, and permanent data loggers, the NO⌫A online
system is a combination of a large number of distributed processes and nodes. One imminent
requirement for the message logging subsystem is to provide the infrastructure for all of the
distributed processes in the DAQ system to report status messages to a central location. There
is also a need for tools to display and archive messages. Similar functionalities are provided
by generic message logging systems such as CMLOG [1] and rsyslog [3] etc. In addition,
MessageFacility also provides provides QoS control of the transportation, and API interfaces
for future developments based on the message server.

In the design of MessageFacility, each logging destination is an instance of class inherited
from the ELdestination base class, which is a virtual class defining the interface to a logging
destination. Concrete classes derived from provide overriding methods for destination output
needs. The system includes a destination that writes to files, called ELoutput, as shown in
Figure 2. The design allows for new destination types to be added to the MessageFacility
package. As per the requirements for distributed message logging, a new extension of
ELdestination for handling message logging through the network interface has been developed.
The added remote-logging destination is a mid-layer between MessageFacility and lower-level
network transportation interface. To achieve reliability and quality-of-service-capable network
transmission, it was decided to use one of the Data Distribution Service (DDS) implementations
from PrismTech called OpenSplice DDS. DDS is a network middleware that implements a
publish/subscribe model for sending and receiving data, events, and commands among the nodes.
Nodes that are producing information (publishers) create “topics” (e.g., temperature, location,

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 022017 doi:10.1088/1742-6596/331/2/022017

4



Figure 3. A screenshot of running msgviewer
GUI application. The msgviewer is designed
as a portable application that can be executed
on any participant nodes for monitoring and
inspecting the message flow on network. It also
provides interfaces for message filtering based on
the severity, message categories, hostname, and
application name.

pressure) and publish “samples”, while DDS takes care of delivering the sample to all subscribers
that declare an interest in that topic. In the MessageFacility, the hostname, process id, and
along with the severity of the message are defined as the DDS topic for messages. Thus, each
distributed process has its own topic to publish samples (messages). Correspondingly, the system
can have any number of active listeners subscribing to that topic. It adds great flexibility to the
message logging system because it allows to have any number of message receivers listening to a
subset of topics that are interested to them, on any participant nodes without interfering with
each other. Furthermore, the implementation of OpenSplice DDS provides a high performance,
real-time publishing subscribe messaging infrastructure. In our performance test, the peer-to-
peer message throughputs in a ethernet test stand can achieve over 40,000 messages per second
reliably with 256 bytes of message loads.

The newly developed ELDDSDest which uses OpenSplice DDS provides the solution for
the need of distributed message logging. As a generic package, MessageFacility cannot have
a dependency on OpenSplice libraries. For the balance between the functionality and the
portability, a plugin manager has been implemented in the core MessageFacility library to allow
additional functionalities with predefined interfaces, such as the DDS distributed message logging
facility, or other special destinations that might be introduced in the future, to be loaded at the
runtime. The core MessageFacility library shipped only has the facility of logging to files and
standard streams, while the remote-logging facility is provided in the extension package.

By providing distributed message logging facility to the MessageFacility package, it is now an
inter-process message logging and receiving facility. More information, such as the host name
of the issuing machine, ip address, process id and application name, need to be extracted and
added to the message header to make distinguish between message issuers.

In addition to distributed message logging, certain facilities are also needed for receiving,
viewing, and archiving the messages issued by network peers. msgserver is an application that
archives received messages, and msgviewer is a portable GUI application to inspect and view
the message flow on the network from any participant node. As shown in Figure 3, the tool also
provides message filtering tools based on the message severity level, category, application name
and the host name of the issuing machine, to help capture the most wanted messages.

3.3. Hierarchical Configuration Model with FHiCL Language
MessageFacility is highly flexible and configurable in customizing the behavior of message
logging. The main purpose of the configuration is to provide e↵ective and flexible ways for

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 022017 doi:10.1088/1742-6596/331/2/022017

5



users to tune the message filtering and throttling down to a fine level, which requires a robust
configuration model and a capable, human-friendly configuration language for that.

In MessageFacility, message filtering and throttling are based on the message severity and
category by adjusting the following parameters: (a) Threshold, where a message with a severity
level lower than a given threshold shall be ignored; (b) Limit, for a message category the logger
ignores messages after some number (the “limit”) have been encountered (limit of zero will
disable reporting that category of messages); (c) Timespan, meaning if no occurrences of that
type of message are seen in some number of seconds (the “timespan”), then the count toward
that limit is to be reset.

MessageFacility uses FHiCL language for interpreting user written configurations. FHiCL
(Fermilab Hierarchical Configuration Language), developed by the CET group in Computing
Division at the Fermilab, is a JSON-like (JavaScript Object Notation) language which defines
a series of name and value pairs, mainly to be used in system configuration. The language is
well capable of describing hierarchical and heterogenous structures, while keeping the grammar
simple and human readable.

4. Conclusions
MessageFacility as a stand alone distributed message reporting and central logging library has
been successfully deployed and used in the NO⌫A experiment on various architectures and
platforms ranging from x86 servers to embedded PowerPC with limited memory and CPU
resources, since early in the development phase of the online DAQ system. The package is
proven to be a reliable and flexible tool being used in wide range of applications including error
reporting and handling, daily run logging, and debugging in the development and integration
tests, etc.

More recently, MessageFacility has been adopted as an underlying library for a generic
framework project called ART developed by the CET group in the Computing Division at
Fermilab. Potential users of the ART framework, including Mu2e and NO⌫A o✏ine, will also
benefit from the message logging package shipped with ART.

For the near future, code maintenance and bug fixing are the main tasks for the
MessageFacility package. Major design changes will be focused on two items: the first is
the possibility of dropping support of the single thread mode, instead running the service in
multithread by default; the second is to consider eliminating or blurring the boundary between
the client side and the server side of the message service, as the concept of “Message Service”
is now vague and not necessary for the stand alone package. Both would be expected to make
the library smaller and more robust.

Acknowledgments
The MessageLogger package and its predecessor ErrorLogger was developed and maintained by
Mark Fischler, Walter Brown, et. al. I thank them for all the discussion we had that helped me
understand the design and details of the MessageLogger package. I also thank Marc Paterno,
Jim Kowalkowski, Mark Fischler for discussions on the design of the new configuration model.
Last but not least, I acknowledge Kurt Biery and all NO⌫A online DAQ software team fellows
for inputs and feedbacks from field tests and daily use of the MessageFacility package in the
NO⌫A online system.

References
[1] Jie C, Walt A, Matt B, Danjin W and William W III 1997 Proc. of ICALEPCS (Beijing) p 358
[2] https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideMessageLogger, Retrieved on 05/12/2011
[3] https://www.rsyslog.com, Retrieved on 05/12/2011

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 022017 doi:10.1088/1742-6596/331/2/022017

6




