
Horizontally scaling dCache SRM with the

Terracotta platform

T Perelmutov1, M Crawford, A Moibenko and G Oleynik
Fermi National Accelerator Laboratory, MS-120, PO Box 500, Batavia, Illinois 60510 USA

E-mail: timurp@gmail.com, crawford@fnal.gov

Abstract. The dCache disk caching file system has been chosen by a majority of LHC
experiments’ Tier 1 centers for their data storage needs. It is also deployed at many Tier 2
centers. The Storage Resource Manager (SRM) is a standardized grid storage interface and a
single point of remote entry into dCache, and hence is a critical component. SRM must scale to
increasing transaction rates and remain resilient against changing usage patterns. The initial
implementation of the SRM service in dCache suffered from an inability to support clustered
deployment, and its performance was limited by the hardware of a single node. Using the
Terracotta platform[1], we added the ability to horizontally scale the dCache SRM service to
run on multiple nodes in a cluster configuration, coupled with network load balancing. This
gives site administrators the ability to increase the performance and reliability of SRM service to
face the ever-increasing requirements of LHC data handling. In this paper we will describe the
previous limitations of the architecture SRM server and how the Terracotta platform allowed
us to readily convert single node service into a highly scalable clustered application.

1. Storage Resource Manager
The Storage Resource Manager (SRM)[2] is a web service protocol for managing a hierarchical
Mass Storage System on the grid. “Storage Resource Managers (SRMs), named after their web
services protocol, provide the technology needed to manage the rapidly growing distributed data
volumes, as a result of faster and larger computational facilities. SRMs are Grid storage services
providing interfaces to storage resources, as well as advanced functionality such as dynamic
space allocation and file management on shared storage systems.”[2] SRM was selected by the
Worldwide LHC Computing Grid (WLCG) as a management protocol to data storage systems
that are components of the WLCG Data Grid. DCache has been chosen by a majority of LHC
Experiments’ Tier 1 centers, and stores more data that any other disk storage used by LHC
Experiments. Dcache SRM interface has been implemented by Fermilab and was funded by
DOE and US CMS. Work on achieving Horizontal Scalability in dCache SRM server was mostly
funded by US CMS.

2. SRM performance issues
DCache SRM is a single point of remote entry into the system, and its performance is critical
to a successful operations of dCache based LHC Data Storage Systems. Experiments reported
reaching or nearing the performance limits of dCache SRM, and a review[3] was conducted.

1 Present address: Navteq, 425 West Randolph Street, Chicago, Illinois 60606 USA

FERMILAB-CONF-10-549-CD



One of the recommendations from that review was “The plan to load balance SRM horizontally
should be pursued at a high priority,” another one was “SRM (and dCache) should evaluate
using Terracotta in front of distributed database accesses.”

We evaluated Terracotta’s functionality and found that it could be used to develop a multi-
node load balanced dCache SRM Server. Implementation of simple prototypes demonstrated
that Terracotta works as advertised. Comparing with other technologies, using Terracotta
appeared to require fewer changes in dCache SRM code. The number of positive experience
reports on the web was another factor that led to the decision to pursue the integration of SRM
with Terracotta in order to achieve horizontal scalability and load balance the SRM service.

3. Terracotta platform description
Terracotta is open source infrastructure software that makes it inexpensive and easy
to scale a Java application to as many computers as needed, without the usual custom
application code and databases used to share data in a cluster.[1]

A Java application that relies on the Terracotta platform can store java objects of designated
classes in Networked Attached Memory managed by Terracotta servers. The application does
not have to use any of the Terracotta classes or interfaces. Certain configuration parameters
need to be passed to the Java Virtual Machine (JVM), to allow the Terracotta platform to
take over the memory management of the specified classes. Though a simple configuration file
certain fields are declared “Terracotta Roots,” making those fields “super-static.” After that
declaration, the objects referenced from these fields and the entire tree of objects reachable from
these roots becomes managed by Terracotta and stored in Network Attached Memory. If there
are several JVMs which are members of the same Terracotta cluster, they all see the same object
trees reachable from each Terracotta Root field. For example, if the Terracotta root is a Map,
than an object put in the map by code in one JVM can be retrieved by code running in a different
JVM. Also the standard java mechanisms for inter-thread communication and synchronization
now become clustered objects and allow communication and synchronization between threads
in different JVMs. One more feature of Terracotta worth mention is the support for distributed
methods. Methods that are declared distributed, when invoked in one JVM, will be invoked in
all JVMs of the cluster.

4. SRM-Terracotta integration
The simplicity of the Terracotta model might suggest that dCache SRM could be run in clustered
mode on top of Terracotta without modification. But experiments showed that the opposite is
true: SRM code required significant refactoring and updates as described below in order to
benefit from Terracotta. Let us first give a few details of the functions of a distributed SRM
that would require sharing state among multiple instances of the server. In dCache SRM there
are the following functions that require creation and maintenance of state objects on the server:

srmPrepareToGet srmPrepareToPut srmBringOnline
srmCopy srmLs srmReserveSpace

The partial class diagram in figure 1 shows SRM Classes that are created on the dCache
Server as the result of the invocation of the above functions. We will further refer to the the
instances of these classes as just jobs, since Job is the superclass of all such objects.

Once a job is created, the reply to the SRM status functions can be computed from the job
instance. In order to reply to the status inquiry from any server in a cluster, each of the servers
must be able to obtain a copy of the up-to-date Job objects. Some client functions, such as
srmPutDone, srmReleaseFiles, srmAbortRequest and others, can affect the state of the SRM
request in the server through a call to job.setState(...). Other notable cases in which a client call
leads to a change of state are the get{Get,Put,Ls,BringOnline}RequestStatus calls against



Job

state

Run()

Request FileRequest

GetRequest

PutRequest

GetFileRequest

PutFileRequest

CopyFileRequestCopyRequest

Figure 1. SRM requests class diagram

a job in the ReadyQueued state , which may lead to a transfer from ReadyQueued to Ready state,
subject to the availability of the limited number of “ready slots.” So the first order of business
was to create a mechanism that would allow the sharing of instances of Job objects among the
SRM servers, and the second task was to propagate all requests to change the state of a job to
the SRM server that “owns” the particular job and can act on such requests.

4.1. Definition of Terracotta “roots” and “instrumented classes”
We defined a class SharedMemoryCache, which contains a HashMap that became the distributed
storage for the Jobs. Each existing job is identified by a server-asigned unique id that is included
in all SRM web service requests concerning the job. These ids were used as keys, and jobs
themselves as values stored in the HashMap. SRM code was modified to store each job in
the static Job.sharedMemoryCache field of type SharedMemoryCache when it is created and to
remove the job from the SharedMemoryCache when its execution is completed. The last step to
making the jobs shared was to let Terracotta know that the static field Job.sharedMemoryCache
is a Terracotta Root. This was done by putting the following XML code in the Terracotta
configuration file:

<roots>
<root>
<field-name>org.dcache.srm.scheduler.Job.sharedMemoryCache</field-name>

</root>
</roots>

Furthermore Terracotta requires that all the types of all the objects that may possibly become
distributed be declared in the Terracotta configuration as “instrumented classes.” Here is an
example of the XML added to the Terracotta configuration for this purpose:

<instrumented-classes>
<include>
<class-expression>org.dcache.srm.request..*</class-expression>
<honor-transient>true</honor-transient>

</include>
...



</instrumented-classes>

4.2. Identification and isolation of shared state
In the dCache SRM that existed prior to this project, jobs and job dependents used to have
direct references to many objects that supported the execution of the job, but which could not be
distributed to other nodes in the SRM cluster. Such objects included those that encapsulate local
configuration, instances of local server credentials, connections to databases, references to the
dCache-specific objects used for dCache internal communication. SRM jobs had to be modified
so that they did not directly reference these objects, so that when replicated by Terracotta, these
objects and those they reference directly and indirectly are not “dragged along” with them into
other instances of SRM. We accomplished that by extensively using the Factory Method and
Abstract Factory Design Patterns and never storing direct references in our objects. These
changes also made SRM Code easier to read and maintain.

4.3. Protecting shared state with locks
Once an object is handed over to Terracotta for management by being stored in the Object
tree reachable from the “Terracotta Root,” all read and write access to the mutable fields of
that object need to be protected with lock objects that are themselves managed by Terracotta
(making them distributed locks). Any access to an unprotected field results in a runtime
exception. This initially led to a large number of failures in execution of the SRM code with
Terracotta, in completely unexpected places. We chose to use Reentrant Read Write Locks
from java.util.concurrent.locks package. When run under Terracotta, these locks are replaced
by Terracotta’s own locks. We initially used the Read Locks to protect reads and Write Locks
to protect writes but discovered that the Terracotta version of the locks were not upgradable.
(Code protected with a read lock can not be further in its execution be upgraded to be protected
with write locks.) This led us to just use Write Locks everywhere. Since distributed lock and
unlock operations are expensive and in order to minimize the use of locks, we identified and
made immutable (java “final”) the fields that really do not need changes to their values.

4.4. Defining distributed methods in SRM
In distributed SRM the node that receives a call resulting in a creation of a job object is defined
as the owner node of that job, and this owner node will use its local SRM Scheduler for execution
of the job. This is the node that should ultimately receive the request to change the state of the
job and this is the SRM that will do the proper accounting of resources used for the execution
of the job. Therefore if another node than the owner receives a call that results in a change of
state, it must be able to propagate the call to the owner node. We accomplished this sort of
messaging though the use of Terracotta “distributed” methods. Any method that is declared
distributed is invoked simultaneously on each instance of the service in the cluster where a copy
of the affected object is present in the heap. The only changes that we had to make to the
methods themselves was to ensure that accesses to the fields manipulated in the methods are
protected by the locks. We declare methods as Terracotta distributed by including the following
code in the configuration:

<distributed-methods>
<!-- An AspectWerkz-compatible method specification

expression denoting which method(s) to distribute. -->
<!-- An optional attribute run-on-all-nodes (default value "true")

can be set to false to execute distributed only on those nodes
that already have a reference to the object on which the method
is called -->



<method-expression run-on-all-nodes="false">
void org.dcache.srm.scheduler.Job.tryToReady()

</method-expression>
</distributed-methods>

4.5. Startup script
The Terracotta distribution includes a tool dso-env.sh, which sets the TC JAVA OPTS
environment variable, the value of which needs to be included as one of the arguments of the java
binary distribution. Dso-env.sh relies on the values of the TC INSTALL DIR and TC CONFIG PATH
variables. So modification of the dCache startup scripts was a trivial task of making sure that
the TC INSTALL DIR and TC CONFIG PATH are defined if Terracotta usage is enabled, and then
running dso-env.sh and inserting the value of TC JAVA OPTS in the command line starting
dCache.

5. Conclusion
We set out to create a distributed SRM server powered by Terracotta. The Terracotta platform
documentation had a clear recipe for converting a plain java application into a clustered one. The
technology was simple and mostly transparent to java application and provided the functionality
we needed to make distributed dCache SRM a new deployment option. With this new feature,
it is possible to deploy a number of the dCache SRM servers, with each one running on a
different node in a singe dCache instance, and, using a network load balancer, it is possible to
make all these servers appear as a single service endpoint. In addition to potentially increased
performance, this architecture also provides for greater availability, since the dCache SRM service
will continue to perform even if one of the SRM server nodes fails.

For measurements of Terracotta clustering’s effect on the performance of the dCache SRM
server, please see the accompanying paper from the BNL dCache group. Here, we will just
say that the gains from the multiple parallel SRM server nodes were almost entirely offset by
synchronization overheads. At least two avenues for improvement are under study. The first
is to use a ConcurrentHashMap instead of a HashMap for the registry of request ids and job
objects. The second approach is to have the “wrong server” receiving an operation concerning
an existing job discover the job’s owner node through an ad-hoc local multicast query or through
a predefined partitioning of the request id space.

References
[1] Terracotta I 2010 The terracotta scalability platform URL http://www.terracotta.org/platform/

[2] Sim A and Shoshani A (eds) 2008 The storage resource manager interface specification version 2.2 Tech. Rep.
GDF.129 Open Grid Forum URL http://www.ogf.org/documents/GFD.129.pdf

[3] Oleynik G, Crawford M, Behrmann G, Dumitrescu C, Gysin S, Levshina T,
Salgado P and Perelmutov T 2009 Srm scalability/performance review URL
http://srm.fnal.gov/srm/review/docs/SRM-review-report.pdf




