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Abstract 
Intrabeam scattering is the major mechanism resulting 

in a growth of beam emittances and fast luminosity 
degradation in the Tevatron. As a result in the case of 
optimal collider operation only about 40% of antiprotons 
are used to the store end and the rest are discarded. Beam 
cooling is the only effective remedy to increase the partic-
le burn rate and, consequently, the luminosity. Unfortuna-
tely neither electron nor stochastic cooling can be 
effective at the Tevatron energy and bunch density. Thus 
the optical stochastic cooling (OSC) is the only promising 
technology capable to cool the Tevatron beam. Possible 
ways of such cooling implementation in the Tevatron and 
advances in the OSC cooling theory are discussed in this 
paper. The technique looks promising and potentially can 
double the average Tevatron luminosity without 
increasing its peak value and the antiproton production. 

COOLING REQUIREMENTS 
The Tevatron luminosity evolution is driven by 

interplay of the following major effects: the intrabeam 
scattering, the residual gas scattering, the RF noise and 
the beam-beam effects. They determine the initial 
luminosity lifetime of about 5-7 hours. The optimal store 
duration is about 16 hours and about 40% of antiprotons 
are burned in the particle interactions (due to luminosity).  
The rate of antiproton production has achieved its design 
value and its further growth looks extremely challenging 
and impossible without a major upgrade to the Antiproton 
source. Thus a further luminosity growth cannot be 
attained without beam cooling. The cooling should result 
in a controlled decrease of emittances so that the beams 
would stay at the maximum acceptable beam-beam 
parameter, , in the course of entire store. That would 
allow us to burn in the luminosity ~80% of antiprotons 
and, consequently, to double the average luminosity. The 
required cooling times (in amplitude) are: for protons - 4 
and 8 hour, and for antiprotons - 4.5 and 1.2 hour for the 
longitudinal and transverse degrees of freedom, 
correspondingly.  Typical Tevatron store has 2.7·1011 
protons and 1011 antiprotons in a bunch with the rms 
bunch length increasing from 45 to 60 cm. Achieving the 
required cooling rates with stochastic cooling calls for the 
bandwidth of ~200 MHz which cannot be obtained in the 
presently tested micro-wave stochastic cooling.  Electron 
cooling of 1 TeV (anti)protons requires ~500 MV 
electrons which is an expensive and extremely 
challenging project.  

In this paper we consider a possibility of OSC 
suggested in Ref. [1] and later developed in Ref. [2]. Its 
use for the Tevatron was considered in Refs. [3] and [4]. 

A suggestion to test it experimentally is reported in Ref. 
[5]. First we consider theory developments required for a 
beam optics optimization and, then, possible 
implementations for undulators and optical amplifiers. 

Note that the OSC damps normally only horizontal and 
vertical degrees of freedom and the vertical cooling is 
achieved through the x-y coupling. In this case the 
horizontal motion has to be damped twice as fast resulting 
in the required horizontal cooling time of 4 and 0.6 hour 
for protons and antiprotons, correspondingly.  

TRANSFER MATRIX 
The OSC of an ultra-relativistic beam assumes [1] that 

the beam radiates an electromagnetic radiation in a pickup 
undulator.  Then, the radiation is amplified in an optical 
amplifier (OA) and produces a longitudinal beam kick in 
a kicker undulator. The path length difference between the 
light and the beam is adjusted so that a particle would 
interact with its own radiation. The kick is always in the 
longitudinal direction and the transverse cooling is 
achieved by coupling between transverse and longitudinal 
motion. The longitudinal - horizontal coupling is assumed 
below. The motion symplecticity binds up the transfer 
matrix elements so that only 10 of 16 of them are 
independent. In the absence of RF between points 1 and 2 
the matrix between them can be expressed through the 
Twiss parameters of the points and the partial slip-factor 
between them, 12, so that: 
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Here 1,2 and 1,2 are the beta-functions and their negative 
half derivatives at the points 1 and 2, D1,2 and D′1,2  are 
the dispersions and their derivatives, and  is the betatron 
phase advance between points 1 and 2. The matrix 
elements are enumerated similar to a 6x6 matrix but the 
elements related to the vertical motion (decoupled from 
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other two degrees of freedom) are omitted. For an ultra-
relativistic beam the partial slip factor is related to M56 as: 
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where R is the average ring radius.  Note that the motion 
symplecticity requires M56 sign being positive if a particle 
with positive p moves faster than the reference particle. 
Substituting the matrix elements from Eq. (2) one obtains: 
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where 1,2, 1,2, D1,2 and D′1,2 are the Twiss parameters at 
the pickup and kicker locations, correspondingly. 

 
Figure 1: Layout of the cooling system 

DAMPING RATES 
The layout of the cooling system is presented in Figure 

1. The longitudinal kick to this particle due to interaction 
with its own radiation in the kicker is:  
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p

k s
p
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where k is the wave vector of the amplified particle wave, 
s is the particle longitudinal displacement relative to the 
reference particle, and  is the kick maximum. Leaving 
only linear term in the expansion of sin(k s) in Eq. (5)
and expressing s through the particle positions in the 
pickup and the elements of the transfer matrix from 
pickup to kicker, M1, one obtains: 
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or in the matrix form  
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where x1 is the vector of particle positions in the pickup. 
Taking this into account one can write down a kicker-to-
kicker one turn map: 
        2 1 2 2 2 0 2 21 cn n n n

   x M M x δx M M M x , (8) 

where n enumerates turns, M2 is the kicker-to-pickup 
transfer matrix, M0 = M1 M2 is the entire ring transfer 
matrix, and (x2)n is related to the n-th turn origin 

beginning immediately downstream of the kicker. 
The perturbation theory developed in Ref. [6] for the 

case of symplectic unperturbed motion yields that the 
tune shifts are: 
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where vk are two of four eigen-vectors of unperturbed 
motion chosen out of each complex conjugate pair and 
normalized so that 2k k i  v U v  (k = 1,2), and  
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is the unit symplectic matrix. Performing matrix 
multiplication and taking into account that the 
symplecticity binds up M51, M52 and M16, M26 one finally 
obtains: 
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In the case of small synchrotron tune, s << 1, one can 
neglect the effect of RF cavities on components of the 
eigen-vector related to the horizontal betatron motion. 
Then the eigen-vector it is equal to:  
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Substituting Eq. (12) to Eq. (11) one obtains the damping 
decrement of the betatron motion: 
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The condition s << 1 also allows one to neglect the 
betatron motion on the synchrotron motion. 
Consequently, for the second eigen-vector (related to the 
synchrotron motion) one obtains: 
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where /s sR    is the beta-function of the longitudinal 

motion introduced so that smax = s (p/p)max. That yields 
the damping decrement of the synchrotron motion: 
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Summing Eqs. (13) and (15) one obtains the sum of the 
decrements: 
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THE COOLING RANGE 
The cooling force is linear for small amplitude 

oscillations only. Combining Eqs. (5) and (6) one obtains:  
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where ax, ap, x and p are the amplitudes (expressed in 
the phase advance of laser wave) and phases of pickup-to-
kicker path lengthening due to betatron and synchrotron 
motions 
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Expressing x1 and x1 through the particle Courant-Snyder 
invariant, , and introducing the amplitude of momentum 
oscillations, (p/p )max, one obtains: 
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Averaging momentum kicks over betatron and 
synchrotron oscillations one obtains the fudge factors for 
the transverse and longitudinal damping rates 
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where c is the phase shift of the transverse cooling force. 
Computation of the integrals yields 
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where J0(x) and J1(x) are the Bessel functions. One can 
see that the damping rate oscillates with growth of 
amplitudes. For a given degree of freedom it changes the 
sign at its own amplitude equal to 113.832 and at the 
amplitude of012.405 for other degree of freedom. 
Taking into account that the both cooling rates have to be 
positive for all amplitudes one obtains the stability 
condition, 

, 01 2.405x pa   . That yields the stability 

boundaries for the emittance and the momentum spread: 
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BEAM OPTICS  
To minimize the optical amplifier power 12 has to be 

chosen as large as possible, i.e. at the maximum allowed 
by the stability boundary of Eq.(23): 
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The ratio of the cooling rates is set by the cooling 

scenario. That allows one to determine M156. Combining 
Eqs. (13) and (15), and using Eq. (24) one obtains: 
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The Tevatron cooling scenario implies the initial rms 
momentum spread and the rms normalized emittance 
being equal to 1.2·10-4 and 3.3 mm mrad, 
correspondingly. Requiring 4 and 5 cooling ranges for 
the longitudinal and transverse motions, correspondingly, 
one obtains: max = 83 mm mrad and (p/p)max = 4.8·10-4.  
Corresponding values of 561M and 12 for equal damping 

rates (1 = 2) are shown in Table 1 for the wavelengths 
of 2 and 12 m*. 

Table 1: Major optics parameters  

Optical amplifier wavelength [m] 2  12  
M56 [mm] 3.2 19.2 
2R12 [mm] 1.6 9.6 
Total chicane length [m] 69.6 59.3 
D for 10% damping rate change [cm] 0.45 1.7 
D′ for 10% damping rate change[10-3]  2 1.2 

A particle and its radiation from the pickup undulator 
have to arrive to the kicker undulator simultaneously. But 
an optical amplification results in a delay of the beam 
signal. The study presented in Ref. [2] shows that a delay 
of 5 to 10 mm is required. To compensate this delay the 
beam path lengthening by a four-dipole chicane was 
proposed in Ref. [1]. The 5.3 mm delay created by a 
chicane with 6 T dipoles is implied in the below 
estimates. In the absence of quadrupole focusing in the 
chicane its delay, L, and M56 are approximately related 
so that: M56  2L. It also results in that M56 and 2R12 
are equal and, consequently, there is no horizontal 
damping. Therefore focusing in the chicane is required. 
As one can see from Table 1 the required M56 is almost 4 
times larger than L for 12 m wavelength and moderate 
focusing is sufficient. For the case of 2 m wavelength 
the required M56 is about 1.5 times smaller than L and 
strong focusing is required. Figure 2 presents the beta-
functions and dispersions in the chicane for both cases. 
For both of them the dispersion is much smaller than the 
dispersion in the Tevatron utility straights and additional 
quads will be required to match the cooling section to the 
Tevatron optics. In this example a periodic solution for 
beta-functions was used. For a practical proposal an 
additional beta-function adjustment is required so that the 
sample lengthening described by the top Eq. (19) would 
be optimized. The lengthening should not be too small, 
which results in an excessive optics sensitivity, and 
should not be too large so that particles with large 
betatron amplitudes would be cooled (see Eq. (22)). 

M56 for the chicane depends only on its structure. It is 
not affected by the rest of the ring optics and therefore is 
                                                           
*
 Note that the damping in both planes requires the signs of  M156 and 12 

to be the same. They can be changed by changing the cooling system 
phase by 180 deg. 



quite stable. Consequently, the sum of cooling rates 
(1+2) is stable too. In contrary, the chicane partial slip 
factor, 12, is determined by the dispersion in the chicane 
and is strongly affected by the ring optics. A requirement 
to keep the damping rates within 10% results in a 
dispersion accuracy at the chicane entrance being 1.7 and 
0.45 cm for 12 and 2 m wavelengths, correspondingly 
(see Table 1.) It is about an order of magnitude better than 
the present optics accuracy. Its further improvement, in 
particular for 2 m option, presents a very challenging 
task.  

 
Figure 2: Beta-functions and dispersions in the cooling 
chicane for optics optimized for 12 (top) and 2 (bottom) 
m optical amplifiers. 

KICKER UNDULATOR 
Because of large relativistic factor of the Tevatron 

beam ( = 1045) the period of undulator is large: ~1.5 m 
for 2 m and ~7 m for 12 m wavelength. Therefore a 
large number of wiggles cannot be used. Four types of 
magnetic field configurations were considered: (1) kick in 
a SC Tevatron dipole, (2) a wiggler build with alternating 
sign dipoles, (3) a standard harmonic undulator, and (4) a 
helical dipole. 

The electric field of electromagnetic wave propagating 
along z axis and polarized in the x-plane can be expressed 
in the following form 
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where 2
0 4 /E P c  is the electric field in the waist,  

2 2( ) / 2z iz k   , 2 / wk   , w is the wavelength,  

and  is the rms size at the waist (power density). The 
longitudinal kick was obtained by numerical integration 

of the following equation,  = ∫(E·v)dt, along the 
particle trajectory in the magnetic field. For all cases  
and the wave waist offset in the x and y planes were 
adjusted to maximize the kick value. Note that in the case 
of short undulator or dipole both Ex and Ez components 
make comparable contributions to the integral and have to 
be accounted. 

Making a harmonic magnetic field (By  sin(kwglz)) 
with period of many meters is not a practical engineering 
choice. Therefore a wiggler consisting of dipoles with 
constant magnetic field but changing polarity is 
considered. To separate the light and particle beams there 
are also dipoles immediately adjacent to the wiggler. 
They have the same polarity and strength as the outer 
wiggler dipoles.  Note that the harmonic undulator has the 
same kicker efficiency per unit length as the dipole 
wiggler and therefore its use does bring any advantages. 

A kick in a dipole (implying no wiggler at all) does not 
require additional space and therefore can be an attractive 
option. Although there are no wiggles in a dipole a tight 
focusing of the wave and its offset from the beam center 
in the horizontal plane allow one to obtain a considerable 
kick. As can be seen in Figure 3 there is little gain if a 
wiggler consisting of three dipoles (total length of ~25 m 
for 4 T dipoles and w= 12 m) is used. A wiggler 
consisting of five dipoles is about 2 times more efficient 
but requires ~40 m space per wiggler for w= 12 m. 
Taking into account  ~60 m required for the chicane it is a 
maximum space which can be allocated for the wiggler.  

 
Figure 3: Dependence of kicker efficiency on the 
magnetic field for 12 m wavelength with a kick in a 
dipole (red) and in wigglers build from 3 (blue) and 5 
(red) dipoles.  

A helical undulator with a circular polarized   electro-
magnetic wave is ~ 2  times more efficient than the flat 
ones. For large number of periods its kick amplitude can 
be expressed by the following expression 
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where e is the electron charge, nwgl is the number of 
wiggler periods, Z0 is the free space impedance, 

 2/ 2u wglK eB mc   is the undulator parameter, and wgl 

is its period.  The above equation implies that the 



radiation is focused into the rms spot size equal to 
0.473 wL   , and the wavelength and the period of 

undulator are related so that  2 22 / 1wgl w uK    . As 

can be seen in Figure 4 the efficiency is somewhat 
smaller than predictions of Eq. (27) for small number of 
periods. 

 
Figure 4: Dependence of helical undulator efficiency on 
the magnetic field and the number of periods for w = 12 
m. The black line represents an asymptotic for nwgl.  

Table 2: Parameters of possible cooling schemes 

w  
[m] 

Wiggler 
type/nwgl 

B 
[T] 

Length 
[m] 

Gkick 
[eV/W] 

Pl† 
[W] 

12 Tevatron 
dipole 
/(N/A) 

4.2 N/A 
26 125 

6 18 133 
2 14 71 

12 
HD/2.5 2 40 56 28 
HD/8 8 44 132 5 

6 HD/7 6 38 110 3.5 
2 HD/12 6 36 116 1.05 

* HD – helical dipole 
† It is the average power. The peak power is about 100 
   times higher 

POWER OF OPTICAL AMPLIFIER 
Expressing  in Eq. (15) through the kick amplitude 

one can express the damping rate in the following form 
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where np and nx are the cooling ranges (expressed in the 
beam ‘s) for longitudinal and transverse degrees of 
freedom, 0 is the beam energy, and p is the relative rms 
momentum spread.  

Assuming that the dependence of optical amplifier gain 
on the frequency can be described by a Gaussian we 
obtain the average power of laser amplifier: 
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where nb is the number of bunches, Np is the number of 
particles per bunch, f0 is the revolution frequency, fFWHM 
is the  bandwidth of OA (FWHM), and Gkick is the kicker 

efficiency introduced so that 
max / kicke G P  . The 

results of calculations are summarized in Table 2, where 
we assume that nb =36, Np = 3·1011, p =1.2·10-4, the 
relative optical amplifier bandwidth of 6% (FWHM), and 
the longitudinal damping time, (2f0)

-1, equal to 4.5 hour 
corresponding to the rms single particle kick max = 0.66 
eV. As one can see a usage of Tevatron dipole as a kicker 
does not look attractive because of too high power of 
laser amplifier. However a dipole can be used instead of 
pickup undulator in the case of insufficient space. It 
requires additional ~15 Db gain for the OA.  

DISCUSSION 
Potentially, the OSC allows one to double the average 

Tevatron luminosity. The system can be located in the 
Tevatron C0 straight section which has sufficient space. 
Its installation requires significant investment and 
downtime. In particular it requires a modification of beam 
optics which includes: new quadrupoles and new quad 
circuits for existing ones, a relocation of existing and 
installation of new dipoles. The optics work will be 
complicated by a requirement to keep the same fractional 
tunes and to support helical orbits separating protons and 
antiprotons in the cooling section. Cooling of protons was 
only discussed above but doubling the luminosity integral 
also implies aggressive cooling of antiprotons. Their 
cooling time should be ~4 times faster; but because they 
normally have 4 times smaller intensity the same power 
of OA is required. 

The 2 m wavelength looks attractive because the OA 
was already demonstrated [7] but that requires very high 
accuracy of optics control. A 12 m OA considered in 
Ref. [2] with its first tests reported in Ref. [8] requires an 
additional investment and considerable time for further 
development. For both wavelengths the power of OA 
stays below 10 W if the helical undulator is used. 

This study showed that there is no fast way (2-3 years) 
to introduce the OSC in Tevatron so that it could be 
implemented in the course of the Tevatron Run II. 
However it demonstrates a high potential of the OSC for 
the Tevatron luminosity increase. 
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