
A Grid Job Monitoring System

Catalin Dumitrescu1, Andreas Nowack2, Sanjay Padhi3 and Subir
Sarkar4,†
1 Fermi National Accelerator Laboratory, USA 2 RWTH Aachen, Germany 3 University of
California San Diego, USA 4 INFN, Sezione di Pisa & Scuola Normale Superiore, Pisa, Italy

Abstract. This paper presents a web-based Job Monitoring framework for individual Grid
sites that allows users to follow in detail their jobs in quasi-real time. The framework consists
of several independent components : (a) a set of sensors that run on the site CE and worker
nodes and update a database, (b) a simple yet extensible web services framework and (c) an
Ajax powered web interface having a look-and-feel and control similar to a desktop application.
The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one
of the first monitoring systems where an X.509 authenticated web interface can be seamlessly
accessed by both end-users and site administrators. While a site administrator has access to
all the possible information, a user can only view the jobs for the Virtual Organizations (VO)
he/she is a part of. The monitoring framework design supports several possible deployment
scenarios. For a site running a supported batch system, the system may be deployed as a whole,
or existing site sensors can be adapted and reused with the web services components. A site may
even prefer to build the web server independently and choose to use only the Ajax powered web
interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens
the scope significantly, allowing it to monitor jobs over multiple sites.

1. Introduction

Real-time job monitoring with easy access to job log files is essential to end-users who run long-
lived analysis jobs and wish to follow the various stages during the lifetime of a job. Computing
efficiency of a site critically depends on how fast mis-behaving jobs are found and removed. In
a distributed environment it is even more crucial and affects the overall success of the Grid
Computing in High Energy Physics in a significant manner. A number of monitoring tools do
exist in the Grid world but none of them even comes close to real time monitoring that we are
so used to with local batch systems.

The Grid Job Monitoring system discussed in this article is a web-based framework that
enables users to track jobs in substantial detail in quasi-real time. This is one of the
first monitoring applications where both end-users and site administrators can transparently
access information about Grid jobs using an X.509 authenticated web interface. A site
administrator has access to all the information, whereas to users the visibility of jobs of a
Virtual Organization (VO) depends on privacy settings of the site. The framework supports LSF,
Condor, and PBS like batch systems through a plug-in mechanism and can be easily extended
to integrate other batch systems. The system has been extended to monitor glideinWMS [1]
instances also. This broadens the scope significantly, allowing a single interface to monitor jobs
over multiple sites.

†Corresponding author, email : subir.sarkar@cern.ch

FERMILAB-CONF-10-229-CD

The web-based presentation layer is a Rich Internet Application (RIA) that is based on a
basic Asynchronous JavaScript and XML (Ajax) pattern [2]. An Ajax powered web application
matches desktop applications in terms of interactivity and simplicity. The added advantage is
that such an application is accessible from anywhere and requires only a modern web browser
and no other client-side software installation.

2. Objective

The monitoring system aims to achieve the following primary goals for end-users and site
administrators :

q End-users should be able to
– track jobs using global job-id and for each job find the following basic information :

- the summary information, process list,
- CPU, memory, and disk usage with time,
- job and working directory listing,
- access to job specific, user defined log files anywhere within the working directory,
- status of the computational (a.k.a worker) node that runs a job,

– select jobs based on
- Resource Broker/WMS,
- site Computing Element,
- submission/start time

for further debugging purposes.
q Site administrators must easily find jobs,

– running on individual worker nodes,
– by local queues/users,
– behaving unexpectedly (e.g. 0 CPU load, expiring Grid proxy, etc.)

using local job-id, in order to spot local problems immediately.

All these should be accessible using a single, intuitive, secured web interface respecting privacy
of information.

3. Description

The framework consists of several independent components : (a) a set of sensors that run
on the site’s computing elements and worker nodes and update a database, (b) a simple yet
extensible application server framework based on Common Gateway Interface(CGI) and (c) an
Ajax powered web interface with desktop-like look-and-feel and control. Figure 1 shows a simple
scheme of the framework.

Modularity in the design of the framework makes it possible to support several deployment
scenarios with minimum effort :

q The monitor can be deployed fully at a site that runs a supported batch system,
q Existing site sensors could be adapted to fill the database defined by the monitoring

framework and reused with the web services components,
q Sites may build the web server independently and use only the web interface.

The sensors may be easily replaced with other source of data, e.g. Condor Quill DB [3],
glideinWMS Collectors, experiment specific Dashboard etc.

Different possible use-cases prompted a number of different ways of accessing the web-based
monitor :

q The site monitor interface can be accessed directly using a URL like
https://gridse.sns.it/jobmon/pisa/jobmon.html in which case information of the first job
in the list is displayed. One can also access a site monitor and display information for a
selected job-id passed as a parameter along-with the URL as, e.g.
https://gridse.sns.it/jobmon/pisa/jobmon.html?gridid=https://gridlb1.desy.de:9000/8pX2aZXpCu y8mdEmNEf9Q

q A single job from another web page (e.g. CMS Dashboard [4] that may link user jobs using
the global Grid Id) can be accessed as, e.g.
https://gridse.sns.it/jobmon/pisa/jobinfo.html?gridid=https://gridlb1.desy.de:9000/8pX2aZXpCu y8mdEmNEf9Q

q An API based access to the monitoring information as JSON, XML, ASCII, and image data
by other web-based applications and possibly command line tools.

4. Client-Server Communication

The client-server communication is based on a simple Ajax pattern. The Ajax processing model,
shown in detail in figure 2, leverages the full potential of JavaScript which is at the heart of all
actions. The HTML page is fully loaded only initially. Subsequently, JavaScript intercepts all
the events and communication with the server side. As the server sends XML, ASCII, JSON,
and image data JavaScript updates relevant parts of the page programmatically. In this model,
asynchronous update of the web page fragment is the key to responsiveness.

Client
(Browser) WN

Secured Web
Server

WN

WN

MySQL
DB

Node Sensor

gridce1

gridce2
Queue Sensor

Figure 1. Schematic view of the monitoring framework. The framework consists of three
distinct components : (1) a set of batch system specific sensors that must be deployed at all the
computing elements (Queue Sensor) and worker nodes (Node Sensor) of a site. These sensors
run and collect monitoring data at regular intervals and fill several tables of a MySQL Database
which serve the monitoring information to the clients. (2) a simple, extensible CGI based
application server, and (3) a modern web interface powered by the Ajax technology with can
easily match interactivity and control of desktop applications.

C
l
i
e
n
t

User Interface

AJAX Engine

Function call DHTML+CSS

S
e
r
v
e
r

Web Server

CGI::Application

XML/Image Data

Request Response

1.

2.

3.

4.

5.

6.

7.

h t t p s t r a n s p o r th t t p s t r a n s p o r t

cg
i-
b

in

Ja
va

S
cr

ip
t

X
M

L
H

tt
p

R
e

q
u

e
st

D
o

cu
m

e
n

t
O

b
je

ct
 M

o
d
e

l (
D

O
M

)
e
X

te
n

si
b

le
 M

a
rk

u
p

 L
a
n

g
u

a
g

e
 (

X
M

L
)

X
S

LT

Figure 2. The Ajax Processing Model. In this model all the user actions involve JavaScript calls
through an Ajax engine. An XMLHttpRequest object is at the heart of the Ajax Engine which
prepares and sends the request to the server and unpacks the server response automatically
which is subsequently processed by the JavaScript callback functions. In the present application
the jQuery [5] library provides the Ajax capability. The present figure borrows heavily from
reference [2].

5. Privacy of Information

Web access requires a valid Grid certificate of the client which is true even for the site
administrators. Several distinct, configurable levels of privacy of information have been
implemented to cover various use cases :

q Site administrators can access all the information,
q A list of VO administrators may access all the detail of each job of that VO,
q An end-user shall access detailed views of jobs owned by that user (i.e. the Distinguished

Name (DN) of the Grid certificate of the user) and summary view of jobs for the VOs the
user is a member of,

q Strict privacy can be enforced such that a client can access only those jobs that belong to
the client DN.

Note that for VO level access, DN level privacy has been enforced for the detailed information
like directory listing and job log view.

6. Web Interface

The web interface, as shown in figure 3 is divided into two parts,

q Job Selection Panel on the left which is itself divided vertically into two parts : (a) the top
containing the job-id list with options to show global/local job-id, and (b) the bottom panel
consisting of four distinct tabbed panels as described below :

– State, in addition to running ones, one can also look at jobs that are queued as well
as those that were finished within a time window.

– Selection, one can select jobs belonging to a
- queue (e.g. cms, cdf),
- local user (e.g. cmsprd, babarsgm),
- subject or certificate DN,
- Resource Broker / WMS,
- worker node,
- date when certain jobs got submitted / queued,
- date when certain jobs started.

– Diagnosis, look for mis-behaving jobs,
- jobs falling in different CPU Efficiency(ε = ratio of CPU time to Wall time used

by a job) ranges (in %) :
· ε = 0,
· 0 < ε < 10,
· 10 ≤ ε < 30,
· ε ≥ 30 i.e well behaved jobs.

- Load = 0 : jobs that do not add any CPU load to the node,
- no proxy lifetime left : user proxy expired, stage-out would eventually fail,

– Query Builder, complements the Selection tab in order to combine a number of
related parameters in a DB query (work in progress).

q Individual Job Information Panel on the right which is further divided into the following
components :

– a summary table,
– graphical history of CPU load, memory, and disk usage,
– a table with Grid related information,
– several tabbed panels that show detailed information of a running job, namely :

- associated processes,
- job and work directories,
- last few hundred lines of output and error log files,
- worker node processes.

Figure 4 shows two job detail tabbed panels : (a) listing of the job directory and (b) the
last few lines of the job error log files. A configuration panel allows to control the client-server
communication and flow of information. There are also several logger panels for error reporting
etc.

Control View

Su
mm
ar
y
Vi
ew

Configuration

Authentication

Job detail

Job Selection

Job List

Figure 3. The entry point to the web-based monitoring. The main features are briefly annotated
and described in detail in the text.

7. Site Monitors

A number of sites running different local batch systems have deployed the monitoring system,
as shown in table 1 :

Condor
T1 US FNAL https://cmsjobmon.fnal.gov:8443/jobmon/fnal t1 newi

LPCCAF, FNAL https://cmsjobmon.fnal.gov:8443/jobmon/fnal newi
T2 US UCSD https://glidein-mon.t2.ucsd.edu/jobmon/ucsd

LSF
T2 IT Pisa https://gridse.sns.it/jobmon/pisa

PBS
T2 DE RWTH https://grid-mon.physik.rwth-aachen.de/jobmon/rwth-aachen/jobmon.html

glideinWMS
UCSD Instance https://glidein-mon.t2.ucsd.edu/jobmon/ucsd g

Table 1. The monitor has been adapted and deployed at various sites, both Tier-1 and Tier-2,
running different local batch systems. The monitoring instances are not yet synchronised to the
latest development of the web interface.

The CMS Analysis Support Task Force (ASTF) has recommended the Analysis Operations
team to deploy the monitoring tool at a few reference sites in order to facilitate debugging on

Job Directory Listing

Error Log File

Figure 4. Job detail panels. Here the listing of the job directory and the last few lines of the
job error log files are shown.

part of the end-users [6]. We expect more sites to deploy the monitor in the near future. We
also hope that the CMS Dashboard will eventually link jobs from its own monitoring page to
the site monitoring.

8. Deployment

The monitoring system is in active development. New features get added and existing ones
refined at a regular basis. The Job monitoring software is distributed as a tarball that must be
installed and configured individually for each service. We briefly describe below the deployment
procedure that we follow presently for LSF and PBS like batch systems :

> wget http://sarkar.web.cern.ch/sarkar/dist/jobmon_v1.1.tgz
> tar xzvf jobmon_v1.1.tgz -C /opt
> cd /opt/jobmon/install

A configuration file /opt/jobmon/install/jobmnon.cfg included in the distribution must be
suitably edited and then a service configured as :

> ./configure_jobmon service --basedir /opt

where service is one of

- db : prepare MySQL DB tables and grant access suitably on the DB server node

- webservice : install the CGI based application server on the web server
- ce : prepare queue sensor on computing elements
- wn : prepare node sensor on worker nodes

For Condor based farms and the glideinWMS instances we may be able to combine the two
kinds of sensors as a single service. The current status of the tool and all the relevant technical
information are available in reference [7].

9. Browser Support

The client side uses the jQuery JavaScript framework extensively, for basic effects and event
handling, User Interface (UI) as well as Ajax calls. jQuery has extended browser support
significantly beyond Firefox and Seamonkey to include IE 7+, Safari 3+ and Opera 9.6+.
Support for IE 6 is limited and there is no further plans while the Google Chrome has not
been tried out yet.

10. Conclusion

The Grid job monitoring system has evolved as a useful tool for the site administrators and
end-users alike. It is pretty robust due to its inherently distributed design. The major batch
systems are supported while plug-ins can be easily developed for new batch system integration.
The monitoring framework uses a basic secured web server; security issues have not yet been
addressed in detail which we plan to study in future. The system scales easily even for the largest
of Tier-2s. A number of scalability issues was successfully addressed by the implementation at
the FNAL Tier-1. However, with the recent deployment at a large glideinWMS instance, which
holds tens of thousands of jobs at a time, the system is up against a new challenge with scalability.

Acknowledgement

The authors are thankful to Giuseppe Bagliesi, Jon Bakken, Stefano Belforte, Giacinto Donvito,
Igor Sfiligoi and Frank Würthwein for many helpful suggestions and support.

References

[1] S. Padhi et. al., Use of glide-ins in CMS for production and analysis, CHEP 09, Prague, Czech Republic
[2] Jesse James Garrett, Ajax : A New Approach to Web Applications,

http://adaptivepath.com/ideas/essays/archives/000385.php, 2005
[3] Huang, J. et. al., An overview of Quill : A passive operational data logging system for Condor

https://www.cs.wisc.edu/condordb/overview 07-18-2007.pdf
[4] CMS Dashboard main page, http://dashboard.cern.ch/cms
[5] jQuery Home Page, http://jquery.com
[6] J. Letts et. al., CMS Analysis Operations, CHEP 09, Prague, Czech Republic
[7] https://twiki.cern.ch/twiki/bin/view/CMS/ItalianT2ToolsJobMonitor

http://cmswiki.fnal.gov/twiki/bin/view/USCMS/Jobmon

