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Abstract

Two-component spinors are the basic ingredients for describing fermions in quantum field
theory in 3 + 1 spacetime dimensions. We develop and review the techniques of the two-
component spinor formalism and provide a complete set of Feynman rules for fermions using
two-component spinor notation. These rules are suitable for practical calculations of cross-
sections, decay rates, and radiative corrections in the Standard Model and its extensions,
including supersymmetry, and many explicit examples are provided. The unified treatment
presented in this review applies to massless Weyl fermions and massive Dirac and Majorana
fermions. We exhibit the relation between the two-component spinor formalism and the more
traditional four-component spinor formalism, and indicate their connections to the spinor
helicity method and techniques for the computation of helicity amplitudes.
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1 Introduction

A crucial feature of the Standard Model of particle physics is the chiral nature of fermion quan-
tum numbers and interactions. According to the modern understanding of the electroweak
interactions, the fundamental degrees of freedom for quarks and leptons are two-component
Weyl-van der Waerden fermions [1], i.e. two-component Lorentz spinors that transform as irre-
ducible representations under the gauge group SU(2)z, xU(1)y. Furthermore, within the context
of supersymmetric field theories, two-component spinors enter naturally, due to the spinorial na-
ture of the symmetry generators themselves, and the holomorphic structure of the superpoten-
tial. Despite this, most pedagogical treatments and practical calculations in high-energy physics
continue to use the four-component Dirac spinor notation, which combines distinct irreducible
representations of the Lorentz symmetry algebra. Parity-conserving theories such as QED and
QCD are well-suited to the four-component fermion methods. There is also a certain perceived
advantage to familiarity. However, as we progress to phenomena at and above the scale of elec-
troweak symmetry breaking, it seems increasingly natural to employ two-component fermion
notation, in harmony with the irreducible transformation properties dictated by the physics.
One occasionally encounters the misconception that two-component fermion notations are
somehow inherently ill-suited or unwieldy for practical use. Perhaps this is due in part to a
lack of examples of calculations using two-component language in the pedagogical literature. In
this review, we seek to dispel this idea by presenting Feynman rules for fermions using two-
component spinor notation, intended for practical calculations of cross-sections, decays, and
radiative corrections. This formalism employs a unified framework that applies equally well to
Dirac fermions [2] such as the Standard Model quarks and charged leptons, and to Majorana
fermions [3] such as the light neutrinos of the seesaw extension of the Standard Model [4,5] or
the neutralinos of the minimal supersymmetric extension of the Standard Model (MSSM) [6-10].
Spinors were introduced by E. Cartan in 1913 as projective representations of the rotation
group [11,12], and entered into physics via the Dirac equation in 1928 [2]. In the same year,
H. Weyl discussed the representations of the Lorentz group [13], including the two-component
spinor representations, in terms of stereographic projective coordinates [14]. The extension
of the tensor calculus (or tensor analysis) to spinor calculus (or spinor analysis) was given
by B.L. van der Waerden [1], upon the instigation of P. Ehrenfest. It is in this paper that
van der Waerden (not Weyl as often claimed in the literature) first introduced the notation of
dotted and undotted indices for the irreducible (%,O) and (O,%) representations of the Lorentz
group. Both Weyl [15] and van der Waerden independently considered the decomposition of
the Dirac equation into two coupled differential equations for two-component spinors. In the
1930s, more pedagogical presentations of two-component spinors were given in refs. [16-18]. In

particular, ref. [16] was the first paper in English to employ the dotted and undotted index



notation. Ref. [17] also presents the first two-component spinor analysis for general relativity.
In the early 1950s, comprehensive reviews of two-component spinor techniques were published
in English by Bade and Jehle [19] and in German by Cap [20]. Shortly thereafter, Bergmann
reintroduced two-component spinors into the formalism of general relativity [21], which was
followed by significant developments by Penrose [22].! Two-component spinor techniques in
curved space are reviewed in refs. [23,24], with an extensive bibliography given in ref. [25].
A recent mathematical treatment of two-component spinors and their geometry can be found
in ref. [26]. Two-component spinors also play a central role in the covariant formulation of
relativistic wave equations [27].

The formalism of two-component spinors has also been discussed in many textbooks on
relativistic quantum mechanics, quantum field theory, elementary particle physics, group the-
oretical methods in physics, general relativity, and supersymmetry. For a guide to the non-
supersymmetric literature, see for example, refs. [14,28-67]. Among the early books, we would
like to draw attention to ref. [28], which has an extensive discussion of two-component spinor
methods. Scheck [41] includes a short discussion of the field theory of two-component spinors,
including the propagator. A more extensive field theoretic treatment, including Feynman rules
and applications, is given by Ticciati [49]. A modern textbook on quantum field theory by Sred-
nicki [65] includes a comprehensive treatment of two-component fermions and their quantization.
Most textbooks and introductory reviews of supersymmetry [6-9,68-89] include a discussion of
two-component spinors on some level, with a treatment of dotted and undotted indices and a
collection of identities involving two-component spinors and the sigma matrices. Particularly
extensive and useful sets of identities can be found in refs. [68,72,74,77,83,85]. Finally, some
mathematically sophisticated textbook treatments of spinors can be found in refs. [90-92].

The standard technique for computing scattering cross-sections with initial and final state
fermions involves squaring the quantum S-matrix amplitude, summing over the spin states and
then computing the traces of products of gamma matrices (in the four-component spinor for-
malism), or products of sigma matrices (in the two-component spinor formalism). We employ
this latter technique throughout this paper (with a translation to the four-component formalism
provided in an appendix). However, the computational effort rises rapidly as the number of
interfering diagrams increases. The standard techniques typically become impractical with four
or more particles in the final state. One approach to make such extensive calculations man-
ageable is the helicity amplitude technique. Here the scattering process is decomposed into the
scattering of helicity eigenstates. Then the individual amplitudes are computed analytically in
terms of Lorentz scalar invariants, i.e. a complex number that can be readily computed. It is

then a simple numerical task to sum all the contributing amplitudes and compute the square of

IFor typographical reasons, Penrose replaced the dotted indices with primed indices, a notation still employed
by most general relativists today.



the complex magnitude of the resulting sum. Such methods were first explored in refs. [93-96],
using four-component spinors (see also refs. [97-101]). Spinor techniques in the helicity for-
malism were also developed in ref. [102]. In fact, the natural spinor formalism for the helicity
amplitude techniques makes use of the two-component Weyl-van der Waerden spinors, which
we discuss in detail in this review. They were implemented in the helicity amplitude technique
in refs. [103-109]. Recently, the two-component formalism has been implemented in a computer
program for the numerical computation of amplitudes and cross-sections for event generators
multi-particle processes [110].

This review is outlined as follows. In Section 2, we present our conventions and notation
(with some additional discussion of our conventions in Appendix A). We also establish numerous
identities involving sigma matrices, epsilon symbols and two-component spinors. In Section 3,
we derive the basic properties of the quantized two-component fermion fields. For a generic
collection of N two-component fermion fields with identical conserved quantum numbers, the
corresponding mass matrix is an N x N complex symmetric matrix. To identify the corresponding
mass eigenstates, one must perform a fermion-mass diagonalization that differs from the usual
unitary similarity transformation of an hermitian matrix that is employed for a collection of
scalar fields. In Section 4, we derive the Feynman rules for two-component spinors and describe
how to write down amplitudes in our formalism. We demonstrate how to employ the two-
component formalism for both tree-level and loop-level processes. In Section 5, we establish
a naming convention for fermion and antifermion particle states and the corresponding fields.
This is important as it provides an unambiguous procedure for obtaining the amplitudes for a
given physical process, and for comparing these computations in the two-component and four-
component spinor formalisms. In Section 6 we provide an extensive number of examples of
computations using the two-component spinor formalism. This is the central part of our review.

We have relegated many details to a set of twelve appendices. In Appendix A, we summa-
rize our metric and sigma matrix conventions and indicate how to translate between conventions
with opposite metric signature. With our definition of the sigma matrices, one can switch easily
between the two conventions by computing one overall sign factor. In Appendix B, we provide
a comprehensive list of sigma matrix identities, and indicate which of these identities can be
generalized to d # 4 dimensions required for loop computations that employ dimensional regu-
larization. Explicit forms for the two-component spinor wave functions are given in Appendix C
(where we exhibit two of the most common phase conventions employed in the literature). The
mathematics of fermion mass diagonalization is discussed in Appendix D. In contrast to the uni-
tary similarity transformation of the scalar squared-mass matrix, fermion mass diagonalization
involves the Takagi diagonalization [111] of a complex symmetric matrix (for neutral fermions)
or the singular value decomposition of a complex matrix (for charged fermions). In Appendix E,

we review some of the basic facts of Lie groups and Lie algebras needed in the treatment of gauge



theories. The two-component fermion propagators (derived in Section 4 using canonical field
theory techniques) can also be obtained by path integral methods, as exhibited in Appendix F.

As most textbooks on quantum field theory and elementary particle physics employ the
four-component spinor formalism for fermions, we provide in Appendix G a dictionary that
allows one to translate between the two-component and four-component spinor techniques. We
use the two-component spinor methods developed in this review to establish a generalization
of the standard four-component spinor Feynman rules that incorporate Majorana fermions in a
natural way. In Appendix H, we develop a method for computing helicity amplitudes in terms
of Lorentz-invariant scalar quantities. This method, which makes use of the Bouchiat-Michel
formulae [112] (originally established in the four-component spinor formalism) is developed in
the language of two-component spinors. However, these methods are somewhat limited in scope
and must be generalized in the case of multi-particle final states. This was accomplished by
Hagiwara and Zeppenfeld (HZ) based on a two-component spinor treatment [105]. In Appendix I,
we provide a translation between the HZ formalism and the two-component spinor formalism of
this review. We also demonstrate that the spinor helicity method that is now commonly used
in obtaining compact expressions for helicity amplitudes of multi-particle processed has a very
simple development within the two-component spinor formalism. Finally, the two-component
spinor Feynman rules for the Standard Model, the seesaw-extended Standard Model (which
incorporates massive neutrinos), the minimal supersymmetric extension of the Standard Model

(MSSM), and the R-parity-violating extension of the MSSM are given in Appendices J, K and L.
2 Essential conventions, notations and two-component spinor
) p p
identities
We begin with a discussion of necessary conventions. The metric tensor is taken to be:?
Juv = g = diag(—l—l, -1,-1, _1) ) (2'1)

where p,v = 0,1,2,3 are spacetime vector indices. Contravariant four-vectors (e.g. positions
and momenta) are defined with raised indices, and covariant four-vectors (e.g. derivatives) with

lowered indices:

= (4 &), (2.2)
P =(E;p), (2.3)
a —>

2The published version of this paper employs the (+,—,—,—) Minkowski space metric. ~An otherwise

identical version, using the (—,4+,+,4) metric favored by one of the authors (SPM), may be found at
http://zippy.physics.niu.edu/spinors.html. It can also be constructed by changing a single macro at the
beginning of the KTEX source file [113], in an obvious way. You can tell which version you are presently reading
from eq. (2.1). See Appendix A for further details and rules for translating between metric conventions.



in units with ¢ = 1. The totally antisymmetric pseudo-tensor 7 is defined such that

More details on our conventions can be found in Appendix A.

The irreducible building blocks for spin-1/2 fermions are fields that transform either under
the left-handed (%, 0) or the right-handed (0, %) representation of the Lorentz group. Hermitian
conjugation interchanges these two representations. A Majorana fermion field can be constructed
from either representation; this is the spin-1/2 analogue of a real scalar field. A Dirac fermion
field combines two equal mass two-component fields into a reducible representation of the form
(%,0) @ (0, %), this is the spin-1/2 analogue of a complex scalar field. It is also possible to
use four-component notation to describe a Majorana fermion by imposing a reality condition
on the spinor in order to reduce the number of degrees of freedom in half. Details of this

construction are given in Appendix G.1. However, in this review, we shall focus primarily on

1
29

indices a, 3, ... = 1,2, and (0, %) spinors carry dotted indices &, 3, ... = 1,2.

two-component spinor notation for all fermions. In the following, (5,0) spinors carry undotted

We first provide a brief introduction to the Lorentz group and its two-dimensional spinor

representations. Under a Lorentz transformation, a contravariant four-vector x* transforms as
/
at — o't = A et (2.6)

where A € S0(3,1) satisfies A", g,,A”x = gyx. It then follows that the transformation of the

corresponding covariant four-vector x,, = g,,x" satisfies:
/
z, =z, A", . (2.7)

The most general proper orthochronous Lorentz transformation (which is continuously connected

to the identity), corresponding to a rotation by an angle 6 about an axis n [@ = #n] and a boost

vector ¢ = ®tanh™' 3 [where & = /|7 and 3 = |#]], is a 4 x 4 matrix given by:
A =exp (—%HPJSPU) = exp (—ig-g— zflﬁ) , (2.8)
where 07 = Leifkg,, (i =00 = —gVi §i = Leiiks, Ki= 8% = —S and
(Spo)t'v = (9" Gov — 95" gpv) - (2.9)

Here, the indices 7,5,k = 1,2,3 and €'?3 = +1.
It follows from egs. (2.8) and (2.9) that an infinitesimal orthochronous Lorentz transforma-
tion is given by A*, ~ 6 + 6#, (after noting that 6#, = —6,"). Moreover, the infinitesimal

—

boost parameter is { = dtanh™! g ~ fo = ﬁ, since f < 1 for an infinitesimal boost. Hence,



the actions of the infinitesimal boosts and rotations on the spacetime coordinates are

_ Fo& ~T+(0xI),
Rotations: (2.10)
ts t' ~t,

# i ~@+Ft,
Boosts: (2.11)

t— t'~t+3-&,
with exactly analogous transformations for any contravariant four-vector.
With respect to the Lorentz transformation A, a general n-component field ® transforms
according to a representation R of the Lorentz group as ®(z#) — ®'(2'#) = Mg(A) (zH),
where Mp(A) is the corresponding (finite) dg-dimensional matrix representation. Equivalently,

the functional form of the transformed field ® obeys
o' (ah) = Mp(A)®(A~]"2"), (212)

after using eq. (2.6). For proper orthochronous Lorentz transformations,

i —_ = —_ —
MR:exp <—§9;WJMV> :]ldedR—z’E)-J—z’ -K, (2.13)
where 14,4, is the dr x dr identity matrix and 6, parameterizes the Lorentz transformation
A [eq. (2.8)]. The six independent components of the matrix-valued antisymmetric tensor J*”

are the dr-dimensional generators of the Lorentz group and satisfy the commutation relations:
[J“V7 J)\n] _ i(g;m JV)\ + gu)\ JHR gu)\ JVR gun J“)‘) ] (2‘14)

We identify J and K as the generators of rotations parameterized by 6 and boosts parameterized
by C_': respectively, where

Jh= Lk Ki=J%, (2.15)

Here we focus on the simplest non-trivial irreducible representations of the Lorentz algebra.

These are the two-dimensional (inequivalent) representations: (%,0) and (0,%). In the (3,0)

representation, J = /2 and K= —i6 /2 in eq. (2.13), which yields

Ma g =M ~ gy —i0-8/2—C-/2, (2.16)
27

where & = (0!, 02, 03) are the Pauli matrices [cf. eq. (2.27)]. By definition M carries undotted
spinor indices, as indicated by M,?. A two-component (%,0) spinor is denoted by 1, and
transforms as ¢, — Maﬁwg, omitting the coordinate arguments of the fields, which are as in
eq. (2.12). In our conventions for the location of the spinor indices, we sum implicitly over a
repeated index pair in which one index is lowered and one index is raised.

In the (0, 1) representation, J=—-&*/2 and K = —i&*/2 in eq. (2.13), so that its repre-
sentation matrix is M*, the complex conjugate of eq. (2.16). By definition, the indices carried

10



by M* are dotted, as indicated by (M *)dﬁ . A two-component (0, %) spinor is denoted by w:;
and transforms as ¢L — (M *)d5¢;, again suppressing the coordinate arguments of the fields,
which are as in eq. (2.12). We distinguish between the undotted and dotted spinor index types
because they cannot be directly contracted with each other to form a Lorentz invariant quantity.

It follows that the (%,0) and (0, %) representations are related by hermitian conjugation.
That is, if ¢, is a (3,0) fermion, then (1)! transforms as a (0,1) fermion. This means that
we can, and will, describe all fermion degrees of freedom using only fields defined as left-handed
(%,O) fermions 1),, and their conjugates. In combining spinors to make Lorentz tensors [as in

eq. (2.38)], it is useful to regard 1/13 as a row vector, and 1), as a column vector, with:?

¥l = (wa)t. (2.17)

The Lorentz transformation property of ¢L then follows from (1q)" — (¥g)T (M T)B & [with coor-
dinate arguments of the fields again suppressed], where (M T)B o= (M *)dB reflects the definition
of the hermitian adjoint matrix as the complex conjugate transpose of the matrix. Again the
coordinate arguments of the fields have been suppressed, and are as in eq. (2.12).

In this review, we shall employ the dotted-index notation in association with the dagger
to denote hermitian conjugation, as specified in eq. (2.17). This is the notation for hermitian
conjugation of spinors found in most field theory textbooks (e.g., see refs. [65,88,114]). However,
it should be noted that many references in the supersymmetry literature (e.g., see refs. [68-87])
employ the bar notation made popular by Wess and Bagger [68] where 1), = ¢L = (o)l

Spinors labeled with one undotted or one dotted index are sometimes called spinors of
rank one [or more precisely, spinors of rank (1,0) or (0, 1), respectively]. One can also define
spinors of higher rank, which possess more than one spinor index, with Lorentz transformation
properties that depend on the number of undotted and dotted spinor indices [16, 19,20, 23, 27—
39,50, 52,60, 78,115]. In particular, for a spinor of rank (m,n) denoted by Salaz---amﬁ'lﬁ'zmﬁ'n’
each lowered undotted a-index transforms separately according to Ma; % in eq. (2.16) and each
lowered dotted S-index transforms according to (M*) ng L

There are two additional spin-1/2 irreducible representations of the Lorentz group, (M ~1)T
and (M~1)T, but these are equivalent representations to the (%, 0) and the (0, %) representations,
respectively. The spinors that transform under these representations have raised spinor indices,
¥ and ¥'®, with transformation laws ¢® — [(M~1)T]%% and 1% — [(M_l)T]‘j‘BwTB, respec-
tively (with coordinate arguments of the fields again suppressed). It is convenient to rewrite the
transformation law for the undotted spinor as ¢ — ¢? (M) 3. In combining spinors to make

Lorentz tensors [as in eq. (2.39)], it is useful to regard ¥® as a row vector, and 1'% as a column

®In the early literature that employed the van der Waerden spinor index notation (surveyed in Section 1), no
dagger was used in conjunction with the dotted index. The advantage to attaching the dagger to the dotted spinor
field is that it permits the development of a spinor-index-free notation for Lorentz-covariant spinor products [see
egs. (2.35)—(2.39) and the accompanying text].

11



vector, with:
Pie = (9T, (2.18)
The Lorentz transformation property of ¥¢ then follows from (1))t — [(M_l)T]‘j‘B(zﬁﬁ)T.
The spinor indices are raised and lowered with the two-index antisymmetric epsilon symbol
with non-zero components,4

612 = —621 — €21 = —€12 = 1, (2.19)

and the same set of sign conventions for the corresponding dotted spinor indices. In particular,
we formally define €% = (¢*)* and €ap = (€ap)*. Viewed as a 2 x 2 matrix, the epsilon symbol
with lowered undotted [dotted] indices is the inverse of the epsilon symbol with raised undotted

[dotted] indices. Thus, consistent with eqs. (2.17) and (2.18), one can write:*:5

Yo=cagt?, W =ePys, gl =0l =Pyl (2.20)

which respects Lorentz covariance due to the properties of M given in eqgs. (2.101) and (2.102).
The epsilon symbols € (e,53) and €5h (€45), first introduced in this context in ref. [1], are also
called the spinor metric tensors, as they raise (lower) the undotted and dotted spinor indices,
respectively. Note that in raising or lowering an index of a spinor quantity, adjacent spinor
indices are summed over when multiplied on the left by the appropriate epsilon symbol.

The epsilon symbols can also be used to raise or lower undotted or dotted indices of spinors

of higher rank. For example, for an object with two undotted indices it is natural to define
AT = eyo‘eéﬁAag, A= evaecggAaB. (2.21)

In the special case that A*® = ¢*x? is a product of rank-one spinors, eq. (2.21) is not just

natural but necessary, as it follows directly from eq. (2.20). However, in other cases there can be

4For related earlier work on the epsilon symbol and its properties, see refs. [16,17,19,116]. Various subsets of
the subsequent identities in this section involving commuting and anticommuting two-component spinors, as well
as the € symbol and the sigma matrices appear in many books and reviews (e.g., see refs. [18,68-83,85-88]) and
in papers (e.g., see refs. [103-109]).

5In the general relativity literature (see e.g., refs. [22,23,37,42,43,46,52,60,62,64]), the more common convention
for the epsilon symbol (also adopted in refs. [19,28,30,36,45,47,92,109]) is €’ = o5 with €' = —¢*! =1, and
similarly for the epsilon symbol with dotted spinor indices. In this convention, one writes 1 = ¢*# g as above,
but in contrast to eq. (2.20), o = 1/)6650” and similarly for the corresponding equations with dotted spinor
indices. That is, in raising [lowering] an index of a spinor quantity, adjacent spinor indices are summed over
when multiplied on the left [right] by the appropriate epsilon symbol. The various identities involving the epsilon
symbols given in this review must then be modified by a minus sign for every epsilon symbol with lowered spinor
indices. There are some benefits for this alternative convention; e.g., the minus signs appearing in eq. (2.22)
are absent. However, one must keep track of other minus signs that arise because enp is the negative of the
inverse of ¢*?. In this review, we have adopted the convention of eq. (2.19), which is consistent with most of the
supersymmetry literature.

5In refs. [50, 69], one finds yet another convention in which the spinor indices are raised and lowered by a
two-index antisymmetric quantity, Cop = —C*P = Cap = —C%P = (? 73)7 which play the role of the epsilon
symbols. As in footnote 5, Cnp is the negative inverse of C*? in which case ¥ = C“*ij)g whereas 1o = Q/Jﬁcga,
and similarly for the corresponding equations with dotted spinor indices. However, in this convention where C' is
pure imaginary, if 7% = (¥*)" as in eq. (2.18), then 1/1;; = —(1a)" in contrast to eq. (2.17). We choose not to
pursue the alternative epsilon symbol conventions of footnotes 5 or 6 in this review.
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a different sign associated (by convention) with raising and lowering spinor indices, because of
the antisymmetry of the epsilon symbols (in contrast to the symmetry of the spacetime metric
used to raise and lower spacetime indices). This sign convention can be defined independently
for distinct higher-rank spinors (even in the case where the higher-rank spinors possess the same
index structure). Indeed, as a consequence of our epsilon symbol conventions of eq. (2.19), the

epsilon symbols themselves satisfy:

675 = —67066656045 , €vs = —6.\/066556066 ) (222)

in contrast to eq. (2.21). The above results (and similar ones with dotted indices) show that
some care is required [33], since the extra overall minus signs of eq. (2.22) in comparison to
eq. (2.21) might otherwise have been unexpected [e.g., see egs. (2.40) and (2.41) below].” This
reflects an awkwardness imposed by the epsilon symbol conventions of eq. (2.19), rather than
an inconsistency. Practitioners of spinor algebra in the conventions used in this review should
be wary of this sign issue when using the epsilon symbols to explicitly raise or lower two or
more spinor indices of higher-rank spinors.® Fortunately, such manipulations are quite rare in
practical calculations.

We also introduce the two-index symmetric Kronecker delta symbol,
6l =05=1, 63 =03=0, (2.23)

and 55 = ((55)* Eq. (2.23) implies that the numerical values of the undotted and dotted
Kronecker delta symbols coincide. The epsilon symbols with undotted and with dotted indices

respectively satisfy:
cape’? = —670% + 8057, %#W:—Q%+ﬁ%, (2.24)
from which it follows that:

ape?’ = Pegy = 07, €, P = B¢ 26, = 5357 (2.25)

€aBEys T €ar€s3 + €aspy =0, €ap€ss T €avEip T €as€ay = 0. (2.26)

In the literature, eq. (2.26) is often referred to as the Schouten identities.?

"It would be perhaps more transparent to simply replace the symbol €ap With e;é, in which case ¢*” is used
to raise spinor indices and e;é is used to lower spinor indices (cf. ref. [38]). Although this convention avoids an
apparent conflict between egs. (2.21) and (2.22), it doubles the number of distinct epsilon symbols. We shall not
adopt such an approach in this review.

8In the alternative convention mentioned in footnote 5, this particular awkwardness is absent; the minus signs
in the analogue of eq. (2.22) do not occur, in which case the rules for raising and lowering the spinor indices in
egs. (2.21) and (2.22) are identical. More generally, in the convention of footnote 5, the indices of all higher-rank
spinors can be raised [lowered] via multiplication on the left [right] by the appropriate epsilon symbol, including
the epsilon symbols themselves, with no extra signs.

9The Schouten identities also follow from the observation that a rank-four spinor must vanish if it is antisym-
metric with respect to more than two undotted or dotted two-component spinor indices.
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To construct Lorentz invariant Lagrangians and observables, one needs to first combine
products of spinors to make objects that transform as Lorentz tensors. In particular, Lorentz

vectors are obtained by introducing the sigma matrices 0": 5 and 7" %% defined by [1,14,17,18]

1 0 1
0 1 1 0
0 — 1 0
ol= 72— | 7 oS = 5% = . (2.27)
1 0 0 -1

The sigma matrices are hermitian, and have been defined above with an upper (contravariant)
index. We denote the 2 x 2 identity matrix by lsx9 and the three-vector of Pauli matrices by

& = (o', 02, ). Hence, eq. (2.27) is equivalent to:
ot = (laxa; ), ot = (laxa; —6). (2.28)
We also define the corresponding quantities with lower (covariant) indices:
oy = guwo’ = (lax2; —7), G, = guwo’ = (lax2; &). (2.29)

The relations between o# and " are

ob. = eagedgﬁ“gﬁ , Hae = eaﬁedgagg , (2.30)
eaﬁagd = edsﬁusa, eé‘BJZB Y i (2.31)

Consider a spinor of rank (n,n) denoted by S, .~ & 5 5

plying S by Brax .. G Bren has the transformation properties of an nth rank contravariant

. The object obtained by multi-

Lorentz tensor [29,32,115]. For example, there is a one-to-one correspondence between each
bi-spinor Vaﬁ- and the associated Lorentz four-vector V* [1,17,19,20,28,29],'°

VE =15V g Vg =VFo,.5- (2.32)

In particular, if V# is a real four-vector then Vo5 is hermitian (and vice versa). To clarify this

last remark, consider the bi-spinor V_ 3 regarded as a 2 x 2 matrix. Then,!!+12

(V) ag = Vaa (Vap = (Vo)™ (VDas = (Vaa) = (V)3 - (2.33)

10Tn the general relativity literature [42,46,60,92], the more common normalization is V#* = %E“ﬁ“Va@ which
Z 5 are often called the Infeld-van der Waerden symbols.

' As stressed in ref. [19], taking the transpose of Vg interchanges its rows and columns without altering the
fact that the first spinor index is undotted and the second spinor index is dotted. Moreover, it is often useful to
further simplify the notation by defining V5 = (V,5)" [i-e., omitting the asterisk in (V*)sp]. In this notation,
an hermitian bi-spinor satisfies V5 = V.

12The reader is cautioned that some authors do not attach a significance to the relative placement of undotted
and dotted indices [16], and thus adopt a notational style for higher-rank spinors in which all undotted spinor
indices appear before the dotted indices (see, e.g., refs. [50,69]). In this latter convention, one would define
(V*)ga = (V,5)". However, we choose not to adopt this approach, as it is not particularly convenient for the

«@
matrix interpretation of a bi-spinor where the row index traditionally precedes the column index.

ylelds V, s = %V"UWB. In this context, the %J
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An hermitian bi-spinor satisfies V = VT, or equivalently V, i= (V™) fa
Rank-two spinors (with two undotted or with two dotted indices) can also be interpreted

as 2 x 2 matrices. In the case of the rank-two spinor W, 7, it is convenient to define:
W2 =wh,, (WH)a? = (WaP)*, WhHia = (WP = (W, (2.34)

Note that the matrix transposition of W,” interchanges the rows and columns of W without
altering the relative heights of the o and 3 indices. Similar results hold for W,z and Wb by
either lowering or raising the relevant spinor indices with the appropriate epsilon symbol.
When constructing Lorentz tensors from fermion fields, the heights of spinor indices must
be consistent in the sense that lowered indices must only be contracted with raised indices. As

a convention, descending contracted undotted indices and ascending contracted dotted indices,
“ and &%, (2.35)

can be suppressed. In all spinor products given in this paper, contracted indices always have

heights that conform to eq. (2.35). For example, in an index-free notation, we define:

&n = Ea, (2.36)
¢yt = ¢lpte, (2.37)
¢hatn = elgraby,, (2.38)
gont = %" BnTB. (2.39)

All the spinor-index-contracted products above have natural interpretations as products of ma-
trices and vectors by regarding 1, and 1'® as column vectors and 5£ and &% as row vectors of the
two-dimensional spinor space. However, the reader is cautioned that in the index-free notation
(with undotted and dotted indices suppressed), the undaggered and daggered spinors cannot be
uniquely identified as column or row vectors until their locations within the spinor product are
specified. Nevertheless, the proper identifications are straightforward, as any spinor on the left
end of a spinor product can be identified as a row vector and any spinor on the right end of a
spinor product can be identified as a column vector.

For an anticommuting two-component spinor v, the product ¥*¢? is antisymmetric with
respect to the interchange of the spinor indices o and 5. Hence, this product of spinors must be
proportional to €*?. Similar conclusions hold for the corresponding spinor products with raised

undotted indices and with lowered and raised dotted indices, respectively. Thus,

vt = =5 Py, Yaths = g€asty, (2.40)
ylayts = Ledbyltyf, il = —feulyl, (2.41)
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where 1) = ), and iyt = ¢LQN‘5‘ as in egs. (2.36) and (2.37). Note that the minus signs
above can be understood to be a consequence of the extra minus sign that arises when the indices
of the epsilon symbol are lowered or raised [cf. egs. (2.21) and (2.22)].

The behavior of the spinor products under hermitian conjugation (for quantum field oper-

ators) or complex conjugation (for classical fields) is as follows:
et =n'el,

gotnh)t = natel,
oyt = n'ate,

Eots” 77)T =nlgvorel,

2.42
2.43
2.44

(
(
(
( 2.45

(2.42)
(2.43)
(2.44)
(2.45)

where we have used the hermiticity properties, (o) = o# and (*)f = @*. More generally,

()t = '8¢, (€N = n%,el, (2.46)
where in each case ¥ stands for any sequence of alternating ¢ and @ matrices, and ¥, is obtained
from ¥ by reversing the order of all of the ¢ and @ matrices, since the sigma matrices are
hermitian. Eqgs. (2.42)—(2.46) are applicable both to anticommuting and to commuting spinors.

The properties of the two-component spinor fields under the discrete C, P and T transfor-
mations are elucidated in refs. [39,117]. The corresponding behaviors of the spinor products
under C, P and T are easily obtained (and are left as an exercise for the reader).

The following identities can be used to systematically simplify expressions involving prod-

ucts of ¢ and @ matrices:!?
UZdEﬁB _ 25a656d7 (2.47)
O'ZO-ZUMBB = 2€a5€dﬁ', (2.48)
E”‘j‘o‘ﬁﬁﬁ _ 9B aB 7 (2.49)
[0'F” + 0¥5"]," = 29" 6,7, (2:50)
[cVo” + 7 0“] = 29“V5a' (2.51)
'’ of = g" ol — g"Po” 4 g"Pot + i o, (2.52)
Fhole? = g"EP — g + VP — iV PRT, (2.53)

In the literature, one sometimes sees eqs. (2.48) and (2.49) rewritten using the identity € pecq =
0acOpd — 0addpe- However, as this latter result does not formally respect covariance with respect

to the dotted and undotted indices, we shall not employ it here.

13Since the Kronecker delta symbol is symmetric under the interchange of its two indices, naively there is nothing
gained in writing 6,” and 6”4, with the spinor indices staggered as shown, instead of 672 and 6(27 respectively.
Nevertheless, we often prefer to employ the former rather than the latter as it provides some insight into the
spinor index structure of the equation. For example, in eq. (2.50), « labels the row and j labels the column of
the product of sigma matrices. Neither ¢#3" nor ¢"g" is symmetric under the interchange of the (suppressed)
spinor indices (although the sum of the two is symmetric). By writing 6,° on the right-hand side of eq. (2.50),
one formally maintains the index structure of each of the separate terms of the equation.
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Computations of cross-sections and decay rates generally require traces of alternating prod-

ucts of o and @ matrices (e.g., see ref. [104]):

Trjo"5”] = Tr[g" "] = 2¢"", (2.54)
Tr[ohG"o’T"| = 2 (¢"" ¢"" — g"Pg"" + g""g"" + ie'"P") | (2.55)
Tr[g" oG 0" = 2 (g" g’ — g"’ g"" + g""g"P — ie"P") . (2.56)

Traces involving a larger even number of o and @ matrices can be systematically obtained from
eqs. (2.54)—(2.56) by repeated use of egs. (2.50) and (2.51) and the cyclic property of the trace.
Traces involving an odd number of ¢ and @ matrices cannot arise, since there is no way to
connect the spinor indices consistently.

In addition to manipulating expressions containing anticommuting fermion quantum fields,
we often must deal with products of commuting spinor wave functions that arise when evaluating
the Feynman rules. In the following expressions we denote the generic spinor by z;. In the
various identities listed below, an extra minus sign arises when interchanging the order of two

anticommuting fermion fields of a given spinor index height. It is convenient to introduce the

notation: . .
(1)t = { +1, commuting spinors, (257)
—1, anticommuting spinors.
The following identities hold for the z;:
2129 = —(—1) 2221, (2.58)
zIzg = —(—1)Az;z1, (2.59)
zla“zg = (—1)AZ$E“21, (2.60)
210M0 29 = —(—1)‘4220”6“21 , (2.61)
zIE“a”zg = —(—1)’%26“0”21 , (2.62)
ZI?MO'p?VZQ = (—1)Az20”5p0”z1, (2.63)

and so on.!* The hermiticity properties of the spinor products given in eqgs. (2.42)-(2.46) hold

for both commuting and anticommuting spinors, with no additional sign factor.
Two-component spinor products can often be simplified by using Fierz identities. Due to the

antisymmetry of the suppressed two-index epsilon symbol [or equivalently, using the Schouten

identities given in eq. (2.26)], the following identities are obtained:

—(Z1Z3)(Z4Z2) — (2124)(2223), (2.64)
SCENOEIRICENCEIR (2.65)

(2122)(2324)
()0 (2h2h)

Y1y particular, if z is a commuting spinor, then zz = 22" = 0, as emphasized in refs. [16,19].
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where we have used eqs. (2.58) and (2.59) to eliminate any residual factors of (—1)4. Similarly,

egs. (2.47)—(2.49) can be used to derive additional Fierz identities,

(210" 2) (237, 24) = —2(2124) (2020) (2.66)
(] 20) (2h724) = 2(2] 2]) (2420) (2.67)
(zlo’“z;)(z;gauzl) = 2(,21,23)(,21,2;). (2.68)

Having eliminated all factors of (—1)4, egs. (2.64)—(2.68) hold for both commuting and anti-
commuting spinors.

From the sigma matrices, one can construct the antisymmetrized products:

e s

(Uuu)aﬁ <Ug&/3u‘yﬁ _ JZ»‘YEM’B> ’ (2.69)

(@) =

5 (EWYYO{;B — Euoc’yo.gﬁ,> . (270)

‘
4
Equivalently, we can use egs. (2.50) and (2.51) to write:
("5 = g"6.° — 2i(c").", (2.71)
(5”0”)‘5‘6- = g””édﬁ- - 22’(6‘“’)‘5‘6. (2.72)

The components of o and " are easily evaluated:

oY =79 = %e”kak, oV = g0 = 50 =50 = %ia’. (2.73)
The matrices 0¥ and " satisfy self-duality relations,
o = —%z’e’“’p“am, gh’ = %z’e’“’p’iﬁpﬁ. (2.74)

The self-duality relations can be used to obtain the following two identities:

g ot — g"Pott 4 gHP et — z’e’“’“AU)‘p =0, (2.75)

G — gUPEI 4 ghPEVR 4 ie”V”AE)‘p =0. (2.76)

A number of useful properties and identities involving o and " can be derived. For

example, eq. (2.24) implies that:

(") = €are? (0"™),7, (E‘“’)dﬁ- = e‘j‘T.eB,.y(E“");YT-, (2.77)
o) = P (o), em(E‘“’)‘j‘B = eB&/(E‘“’)“@ , (2.78)
5(0")a® = €ar(e™)", O (2.79)

¥ The reader is cautioned that o** and 7*¥ are sometimes defined in the literature without the factor of 4 in
eqs. (2.69) and (2.70) (as in ref. [77]), or with an overall factor of i (as in ref. [71]) instead of 1i.
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Using eqgs. (2.47)—(2.53), the following identities can be obtained:

(O-Mu)aﬁ(o-lﬂj)'yq— = EQ’Y EBT + 5017—5«/6 - 25QT5,YB - 50{55,\{7— 5
@) = e €4 T 5% 5;75' = 20%; 5*’3 - 5d3 5,

oM olf = %z (g"Pot — g'Po” + it oy)
T = Li(¢PT — gMTY — i)
o’ = Li(g"5P — ¢V — idPT,)
ohe’P = %z (g"of — g'Po” + i o))
oV PR — _i (gupg;m o g,u,pgwi + Z-E,uupn) + %’L (gupo_;m + g,u/io_up o g,upo_un o gufzo_,up) ’
T GPE — _i (gupg;m o g,u,pgwi o Z-E,uupn) + %’L (gupﬁ;m + g,u/iﬁup o g“pE”“ o gw@?up) )

Egs. (2.87) and (2.88) and the antisymmetry of o#” and o yield the following trace formulae:

Tr o =Tr o =0,

[gp,pgun . g;mgup _ Z‘euupn] ,

(9" g"" — g""g"P + e PR

(2.89)
(2.90)
(2.91)

The properties of spinor products involving o*” and *¥ are easily derived. Under hermitian

conjugation (for quantum field operators) or complex conjugation (for classical fields),

(o)t = nlamvel,

(2.92)

due to the hermiticity relation, (o) = &"*. Next, we use eqs. (2.61) and (2.62) to obtain:

2104“/2’2 = (—1)A2’20"Lw21 s

zirﬁ””zg = (—1)‘4256’“’21r .

One can also derive additional Fierz identities, which follow from eqs. (2.80)—(2.82),

(2’10'”'/22)(230'”,,24) = —2(2’12’4)(2223) — (212’2)(2324) N
(z{7" ) (7 2]) = —2(2{2]) (=) — (={=]) (D),

(210" 2) (27 2)) = 0,

(2.95)
(2.96)
(2.97)

where we have again used egs. (2.58) and (2.59) to eliminate any residual factors of (—1)4. Thus,

egs. (2.95)—(2.97) hold for both commuting and anticommuting spinors. A more comprehensive

list of sigma matrix identities and their associated Fierz identities are given in Appendix B.1

(see also Appendix B of ref. [77]).

The o and " satisfy the commutation relations of the J" [cf. eq. (2.14)], and thus

can be identified as the generators of the Lorentz group in the (3,0) and (0, ) representations,
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1
27

JH = g while for the (0, ) representation with a raised dotted index (e.g. 1), JH =G,

respectively. That is, for the (5,0) representation with a lowered undotted index (e.g. q),
In particular, the infinitesimal forms for the 4 x 4 Lorentz transformation matrix A and the
corresponding matrices M and (M _I)T that transform the (%, 0) and (0, %) spinors, respectively,

are given by:

AP, ~ gty L (ewgw - eyﬁgﬁﬂb) , (2.98)
M =~ 1oy — 3ib,,0" (2.99)
(M1~ 1gy0 — 2i6,,5 . (2.100)

The inverses of these quantities are obtained (to first order in #) by replacing 6 — —6 in the
above formulae. Using egs. (2.77), (2.99) and (2.100), it follows that:

(M), =" MyPey (2.101)
(MY 5 = epg (MT)S 597 (2.102)

These results can be used to demonstrate the covariance (with respect to Lorentz transfor-
mations) of the spinor index raising and lowering properties of the epsilon symbols defined
in eq. (2.20). The infinitesimal forms given by eqs. (2.98)—(2.100) can also be used [with the
assistance of egs. (2.83)—(2.85)] to establish the following two results:

MTGIM = A", 5, (2.103)
M7t (M— T = AH, 0. (2.104)

Using the Lorentz transformation properties of the undotted and dotted two-component spinor
fields, egs. (2.103) and (2.104) can be used, respectively, to prove that the spinor products ity
and &otn! transform as Lorentz four-vectors.

As an example, consider a pure boost from the rest frame to a frame where p* = (Ep , P),
which corresponds to 6;; = 0 and ¢! = #° = —0%. We assume that the mass-shell condition
is satisfied, i.e. p® = Ez = (|52 + m?)!/2. The matrices M,” and [(M_l)T]dB that govern the
Lorentz transformations of spinor fields with a lowered undotted index and spinor fields with a
raised dotted index, respectively, are given by:

. Mzexp(—%f-&’)z %, for (%,O),
exp (—59“,,,]‘“’> = (2.105)

_ > o Do
(M 1)Jf:exp (%Ca) =4/ —, for (0,%),

where

E oy — &5
g = Eptm) o —G-p (2.106)

2(Ep +m)
fpm= Ept ) lzo+ &P (2.107)
2(Ep+m)
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These matrix square roots are defined to be the unique non-negative definite hermitian matri-
ces (i.e., with non-negative eigenvalues) whose squares are equal to the non-negative definite
hermitian matrices p-o and p-@, respectively.'6

According to eq. (2.105), the spinor index structure of /p-o and \/p-@ corresponds to that
of M,? and [(M‘l)T]‘j‘B, respectively. In this case, we can rewrite eqs. (2.106) and (2.107) as:

O )TV P mg
Via),” = [Vpoa),? = W Tt mhe (2.108)

2(Ep +m)
: . (p-79)0? . + md<
—1a — e! aB 8
Vpo| p=|Vpool| = ) 2.109
el =1 Is 2(Ep +m) (2.109)
since 0¥ = 3" = 1a42. Using eqgs. (2.52) and (2.53), one can easily verify that:

lvpa], Vel )t = (o), (2.110)
VP75 [VeE] T = 0T, (2.111)

where implicit factors of 3° and ¢ inside the square roots of eq. (2.110) have been suppressed.

Due to the fact that p-o and p-@ are hermitian, we could have defined their hermitian
matrix square roots by the hermitian conjugate of eq. (2.105). In this case, the spinor index
structure of \/p-o and /p-G would correspond to that of [(MT]% 5 and [M 1147, respectively.
That is, instead of egs. (2.108) and (2.109), we would now rewrite egs. (2.106) and (2.107) in

the following form:
Lo ‘j‘ﬁ(p'aﬁﬁ-) + még‘
2(Ep +m)

Vil = Vel =

, (2.112)

UOB(p-EBﬁ) +mél

[Vp7],=[Vo"p7] =" : (2.113)

2(Ep+m)

Using eqgs. (2.52) and (2.53), one can again confirm that:

Vo]t [Vee] s =@ po),, (2.114)
Vpal], V7] =("p7)a", (2.115)

where implicit factors of 7° and ¢ inside the square roots of eq. (2.114) have been suppressed.

The proper choice of the spinor index structure for \/p-o and \/p- can always be determined
for any covariant expression. That is, if we employ the spinor index-free notation (and suppress
the factors of ¢” and &), it will always be clear from the context which spinor index structure

for \/p-c and /p-@ is implicit.

®Note that p-o and p-& are non-negative matrices due to the implicit mass-shell condition satisfied by p*.
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As an example that will prove valuable later on, consider an arbitrary four-vector S*,

defined in a reference frame where p* = (E; p), whose rest frame value is S, i.e.

St =AM,S%, with A= 5 pipi : (2.116)
im0t e E )

Then, using eqs. (2.7), (2.104) and (2.105), it follows that:

Vp08-G\/p-oc=mSp7, (2.117)
1/p'65'0-1/p'_:mSR'O-- (2.118)

The spinor index structure of eqs. (2.117) and (2.118) is easily established:

[\/p-a]ﬁ.a, S.G [\/p-a]aﬁ = mSR'EBﬁ, (2.119)
[ p'E]BWS-O'»Yd[\/p'E]dB:mSR'O'ﬁB. (2.120)

Using egs. (2.108)—(2.116) and (2.52)—(2.53), one can directly verify the above results.

The two-component spinor formalism established in this section will be applied to the
quantum field theory of fermions in Minkowski space of one time and three space dimensions
in this review. We also direct the reader’s attention to Appendices G.1 and G.2, which provide
details of the correspondence between the two-component and four-component spinor notation.

For certain applications, the spinor formalism in four-dimensional Minkowski space is not
sufficient. For example, in order to obtain instanton solutions [118-120], it is necessary to for-
mulate quantum field theory in Euclidean space. One also needs the Euclidean space formalism
for a rigorous definition of the path integral [121,122]. The Green functions derived from the
Euclidean path integral can be related to the Green functions of the Minkowski space theory
by a Wick rotation [123]. In addition, to evaluate the loop-corrected Green functions of the
theory, it is often most convenient to apply a regularization scheme that involves dimensional
continuation away from d = 4 spacetime dimensions [124]. Thus, we also need to generalize the
spinor results of this section to d # 4.

The treatment of fermions in Euclidean space is subtle [125-127]. Here, we focus briefly
on the mathematics of fermions in d = 4 Euclidean dimensions, where the relevant space-
time symmetry group is SO(4) rather than SO(3,1). The two-dimensional representations of
SO(3,1)=SL(2,C), denoted in this section by (%,O) and (0, %), respectively, are complex repre-
sentations that are related by hermitian conjugation. In contrast, the two-dimensional represen-
tations of SO(4)=SU(2)xSU(2), also denoted by (%, 0) and (0, %), respectively,!” are independent

pseudo-real representations, i.e. not related by hermitian conjugation. A two-component spinor

"These SO(4) representations transform as a doublet under one of the SU(2) groups and as a singlet under the
other SU(2) group.
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notation can be formulated for fields that transform respectively under the (%,O) and (0, %)
representations of SO(4). Details can be found in refs. [119,128,129].

In Feynman diagram calculations, one can adopt the standard procedure for the Wick
rotation in order to evaluate the loop integrals in Euclidean space. We shall employ the standard
Euclidean metric 6*¥ in computing scalar products of four-vectors. Moreover, one can define
Euclidean sigma matrices, ok = (—i&, 0},) and o = (i&, o), where 0}, = 1 = Laxo. In
this convention, the Wick-rotated versions of egs. (2.50)—(2.56) are preserved [after making the
replacements g’ — 8 and i€7*0 — €7k with €'2 = €1934 = +1].'® Further details of our
Euclidean space conventions are provided at the end of Appendix A.

The generalization of the spinor results of this section to d # 4, useful for dimensional
continuation regularization schemes, is discussed in Appendix B.2. In particular, the identities
of Appendix B.1 used to derive Fierz identities [cf. eqs. (2.64)—(2.68) and (2.95)—(2.97)] and any
identities involving the four-dimensional Levi-Civita e-tensor are not valid unless p is a Lorentz
vector index in exactly four dimensions. In d # 4 dimensions, as used for loop amplitudes in
dimensional regularization and dimensional

In our treatment of two-component spinor identities in d # 4 dimensions given in Ap-
pendix B.2, we take the Lorentz vector indices to formally run over d values, whereas the undot-
ted and dotted spinor indices continue to take on two possible values. This is sufficient when used
as a regularization procedure for divergent integrals that arise in loop computations. However in
generic d-dimensional field theories (where d is a positive integer), where d is an integer greater
than 4, the two-component spinor formalism of this review is no longer applicable. Suitable
methods for treating spinors in diverse spacetime dimensions and signatures [90,91,130-142] are

briefly presented in Appendix G.3.

3 Properties of fermion fields

In this review, we refer to spin-1/2 particles as Majorana or Dirac fermions depending on the
nature of the global symmetry'® that governs the fermion Lagrangian and dictates the form of the
fermion mass terms. A Majorana fermion is a two-component massive field that is completely
neutral (i.e. a singlet with respect to the symmetry group) or transforms as a non-trivial real
representation of the symmetry group (cf. footnote 31). A Dirac fermion consists of a pair
of two-component massive fields that are oppositely charged with respect to a conserved O(2)

symmetry. As shown in Section 3.2, Dirac fermions arise when a multiplet of two-component

18In practical computations of one-loop matrix elements, one can carry out all the sigma matrix algebra in
Minkowski space before Wick-rotating to Euclidean space in order to perform the loop integrals.

19 A subgroup of the global symmetry group may be gauged (and hence promoted to a local symmetry). Degrees
of freedom not associated with the gauged subgroup are typically referred to as flavor degrees of freedom.
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fermions transforms as a complex or pseudo-real representation of the symmetry group.?’

The case of a massless fermion is special, as the absence of mass terms leads to an enhanced
global symmetry group. Each physical spin-1/2 zero-mass eigenstate is fundamentally a two-
component spinor. Thus, following the standard nomenclature used for massless neutrinos, it is

common to employ the term massless Weyl fermion to describe any massless spin-1/2 particle.?!

3.1 The two-component fermion field and spinor wave functions

We begin by describing the properties of a free neutral massive anticommuting spin-1/2 field,
denoted &4(z), which transforms as (3,0) under the Lorentz group. The field &, therefore

describes a Majorana fermion [3]. The free-field Lagrangian density is [16]:
£ =i€l510,¢ — tm(¢6 + €1¢T). (3.1.1)
On-shell, ¢ satisfies the free-field Dirac equation [1,2,14,143,144],
i 9,65 = me. (3.1.2)

Consequently after quantization, &, can be expanded in a Fourier series [143]:

dg_’ D, D. —ip-x = ip-x
Z/ 27)3/2(2E,)1/? [ma(p=3)a(p=3) Pty s)al (Bs)e® T, (3.1.3)

where E, = (|p]> + m?)'/2, and the creation and annihilation operators a' and a satisfy anti-

commutation relations:

{a(ﬁ, 8)7 aT(ﬁ/’ 5/)} = 53(ﬁ_ ﬁ/)éss’ 5 (3'1'4)
and all other anticommutators vanish. It follows that
*p - S\ ipx - o\ —ipx
o) = @' =X / ST E (PP 9)al B.9) 7 + (B s)al0)e 7] L (3.15)

We employ covariant normalization of the one-particle states, i.e., we act with one creation

operator on the vacuum with the following convention
P, s) = (27)**(2Ep)"?al (5, 5) |0) (3.1.6)
so that (B, s|p”, s') = (2m)*(2Ep)6°(F — p’)dss . Therefore,

(01 €a() [P, 5) = Ta (B, s)e ™™, Ol€l (@) |5, s) = yl(F, )™,  (3.1.7)
(P, 5| () |0) = ya(D, 5)e™™ (B, s| €L (2) [0) = ] (7, 5)e? . (3.1.8)

2Majorana and Dirac fermions can also be described in terms of four-component Majorana and Dirac spinor
fields, as in Appendix G. However, keep in mind that the terms Majorana spinor and Dirac spinor are defined
strictly in the context of the four-component spinor formalism as in Appendix G.1, or in the more general context
of a d-dimensional spacetime as in Appendix G.3.

2 Two-component fermions are often called Weyl fermions, due to their association with the two-dimensional
spinor representations of the Lorentz group introduced by Weyl in refs. [14, 15]. It is now common practice to
define a Weyl spinor as the left or right-handed projection of a four-component spinor [as in eq. (G.1.8)]. Of
course, there is a one-to-one correspondence between these two definitions.
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It should be emphasized that &,(x) is an anticommuting spinor field, whereas x, and y, are
commuting two-component spinor wave functions. The anticommuting properties of the fields
are carried by the creation and annihilation operators.

Applying eq. (3.1.2) to eq. (3.1.3), we find that the z, and y, satisfy momentum space

Dirac equations. These conditions can be written down in a number of equivalent ways:

(-7 ag = my™ . (p-0)opy'” = maa (3.1.9)
(p-a)anTB = —MYq , (p-7)%Pys = —mat® (3.1.10)
(o) 5 = —my;3 , y:;(p'ﬁ)‘j‘ﬁ = —ma® (3.1.11)
a;ji(p'ﬁ)dﬁ =my” | Y (o) s = mxTB . (3.1.12)

Using the identities [(p-0)(p-7)]a” = p? " and [(p-E)(p-a)]‘j‘B = p? (50"5-, one can check that

both z, and 7, must satisfy the mass-shell condition, p? = m?

(or equivalently, p° = E,). We
will later see that egs. (3.1.9)—(3.1.12) are often useful for simplifying matrix elements.

The quantum number s labels the spin or helicity of the spin-1/2 fermion. We shall examine
two approaches for constructing the spin-1/2 states. In the first approach, we consider the
particle in its rest frame and quantize the spin along a fixed axis specified by the unit vector
§ = (sinfcos ¢, sinfsin ¢, cosf) with polar angle # and azimuthal angle ¢ with respect to a
fixed z-axis.?? The corresponding spin states will be called fixed-axis spin states. The relevant

basis of two-component spinors Y are eigenstates of %&'-é, ie.,

N[ —
N[ —

G-8X, = SX,, s== (3.1.13)

Explicit forms for the two-component spinors x, and their properties are given in Appendix C.

The fixed-axis spin states described above are not very convenient for particles in relativistic
motion. Moreover, these states cannot be employed for massless particles since no rest frame
exists. Thus, a second approach is to consider helicity states and the corresponding basis of

two-component helicity spinors x, that are eigenstates of %&’-ﬁ, ie.,
36Dy, = Xy, A=+1. (3.1.14)

Here p is the unit vector in the direction of the three-momentum, with polar angle ¢ and
azimuthal angle ¢ with respect to a fixed z-axis. That is, the two-component helicity spinors
can be obtained from the fixed-axis spinors by replacing § by p and identifying 6 and ¢ as the
polar and azimuthal angles of p.

For fermions of mass m # 0, it is possible to define the spin four-vector S*, which is specified

in the rest frame by (0; §). The unit three-vector § corresponds to the axis of spin quantization

22In the literature, it is a common practice to choose § = 2. However in order to be somewhat more general,
we shall not assume this convention here.
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in the case of fixed-axis spin states. In an arbitrary reference frame, the spin four-vector satisfies
S-p=0and S-S = —1. After boosting from the rest frame to a frame in which p* = (E, p)
[cf. eq. (2.116)], one finds:

o @.A (ﬁé)[)’ 1.1
S <m’s+7m(E—|—m) . (3.1.15)

If necessary, we shall write S#(8) to emphasize the dependence of S* on 8.
The spin four-vector for helicity states is defined by taking § = p. Eq. (3.1.15) then
reduces to

S — % (51: Ep) . (3.1.16)

In the non-relativistic limit, the spin four-vector for helicity states is S* ~ (0; p), as expected.?
In the high energy limit (E > m), S* = p#/m + O(m/E). For a massless fermion, the spin
four-vector does not exist (as there is no rest frame). Nevertheless, one can obtain consistent
results by working with massive helicity states and taking the m — 0 limit at the end of the
computation. In this case, one can simply use S* = p*/m+ O(m/E); in practical computations
the final result will be well-defined in the zero mass limit. In contrast, for massive fermions at
rest, the helicity state does not exist without reference to some particular boost direction as
noted in footnote 23.

Using eqs. (2.117) and (2.118) with S% = (0; §), two important formulae are obtained:
Vp-0oS-T\/poc=mé-§, (3.1.17)
VpTS-0\/pT=-mé&3. (3.1.18)
These results can also be derived directly by employing the explicit form for the spin vector S*
[eq. (3.1.15)] and the results of egs. (2.106) and (2.107).

The two-component spinor wave functions x and y can now be given explicitly in terms of
the x, defined in eq. (C.1.11). First, we note that eq. (3.1.9) when evaluated in the rest frame
yields 71 = y™ and z = y2. That is, as column vectors, z,(p = 0) = y'*(p = 0) can be
expressed in general as some linear combination of the x, (s = :l:%) Hence, we may choose
ro(P = 0,5) = y'*(p = 0,s) = \/mxs, where the factor of \/m reflects the standard relativistic
normalization of the rest frame spin states. These wave functions can be boosted to an arbitrary

frame using eq. (2.105). The resulting undotted spinor wave functions are given by:

To(D,8) = /PO X (P, s) = —2sx'_\/p7, (3.1.19)

Yo (P, 5) = 25\/P-0 X_ v (P,s) = x]\Vp 7, (3.1.20)
and the dotted spinor wave functions are given by

2P, s) = —2s\/p T X_, 2 (@,5) = xI Vo, (3.1.21)

Y (P, s) = /o X, i@, s) =2sx! P, (3.1.22)

238 trictly speaking, p is not defined in the rest frame. In practice, helicity states are defined in some moving
frame with momentum p. The rest frame is achieved by boosting in the direction of —p.
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where /p-c and /p-G are defined either by egs. (2.108) and (2.109) or by egs. (2.112) and
(2.113), respectively (as mandated by the spinor index structure).?* Note that eqgs. (3.1.19)-
(3.1.22) imply that the x and y spinors are related:

y(F,s) = 2s2(p, —s). y'(B,s) = 25 (F, ). (3.1.23)

The phase choices in egs. (3.1.19)—(3.1.22) are consistent with those employed for four-
component spinor wave functions [see Appendix G]. We again emphasize that in eqgs. (3.1.19)—
(3.1.22), one may either choose x, to be an eigenstate of &-§, where the spin is measured in the
rest frame along the quantization axis 3, or choose x, to be an eigenstate of &-p (in this case
we shall write s = \), which yields the helicity spinor wave functions.

The following equations can now be derived:

(S7)24(5, 5) = 259'°(F. 5) . (5-0),59"(F.5) = —250a(F.5) , (3.1.24)
(S-J)QB-:ETB(ﬁ, s) = —2sys(P, s) , (S-E)‘iﬁyg(", s) = 2sxT‘5‘(ﬁ, s) , (3.1.25)
(B, 8)(S-0) 5 = —2sy}(B.5) | yh (B, s)(S-0)Y = 2527 (F,s) ,  (3.1.26)
=L (F.5)(S7) = 259° (5. 5) | Yo (B.5)(S-0) 5 = —2s(Bys) . (3.1.27)

For example, using eqs. (3.1.17) and (3.1.18) and the definitions above for x,(p, s) and y'%(5, s),

we find (suppressing spinor indices),
VD08 Gx(p,s) =+/p-cST\D0oXx, =mF-8Xx, =25mY,. (3.1.28)
Multiplying both sides of eq. (3.1.28) by \/p-7 and noting that \/p-7./p-6 = m, we end up with
ST x(P,s) = 25\/p-7 x, = 25y (P, 5) . (3.1.29)

All the results of egs. (3.1.24)—(3.1.27) can be derived in this manner.
The consistency of egs. (3.1.24)—(3.1.27) can also be checked as follows. First, each of these

equations yields
(5-0)aa(S-7)% = -7, (S-7)(S-0) s = —53, (3.1.30)

after noting that 4s> = 1 (for s = +1). From egs. (2.50) and (2.51) it follows that S-S = —1,

as required. Second, if one applies

(p-oS-T+S-0p7)” =2p-568,°, (3.1.31)
(p-55-0+5-5p-0)d5- :2p-55‘j‘ﬁ-, (3.1.32)

to egs. (3.1.9)—(3.1.12) and egs. (3.1.24)—(3.1.27), it follows that p-S = 0.

24 Explicit forms for two-component spinor wave functions have been exhibited a number of times in the litera-
ture. For example, see refs. [104,105] and Appendix I.1.
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It is useful to combine the results of egs. (3.1.9)—(3.1.12) and egs. (3.1.24)—(3.1.27) as follows:

(P — 2smS") T3 w5(p,s) =0, (pp — 2sm5u)agﬁ.xm( p,s) =0, (3.1.33)
(" + 28mS“)Ez‘By5(ﬁ, s)=0, (pu + ZSmSH)O-ZByTB( p,s) =0,  (3.1.34)
(P, S)JZB(pH —2smS,) =0, JEL(ﬁ, S)Efjﬁ(p“ —2smS*) =0, (3.1.35)
y* (P, s)a”B(p“ +2smS,) =0, y:;(ﬁ, s)Egﬁ(p“ +2smS*) =0. (3.1.36)

replacing s with A and S#(8) [eq. (3.1.15)] with S*(p) [eq. (3.1.16)].

The above results are applicable only for massive fermions (where the spin four-vector S*
exists). We may treat the case of massless fermions directly by employing helicity spinors in
egs. (3.1.19)—(3.1.22). Putting F = |p] and m = 0, we easily obtain:

2a(FN) = V2E (3 = )N xy, 2 (7 \) = V2E (3 = )X, (3.1.37)
Ya(PiN) = V2E (3 +X)x_y ¥ (BN = V2E (3 + 2y, (3.1.38)

or equivalently,
2N = V2E (3 = N x_y, 2L (7N = V2B (& = 2)xh, (3.1.39)
Y (BN = V2E (3 + ) x, yl (@) = V2E (L +0x' . (3.1.40)

It follows that:
(3 +A)z(PA) =0, (3 +N) ' (BN =0, (3.1.41)
(2 =N y@ N =0, (2 =Ny N =0 (3.1.42)

The significance of egs. (3.1.41) and (3.1.42) is clear; for massless fermions, only one helicity
component of x and y is non-zero. Applying this result to neutrinos, we find that massless
neutrinos are left-handed (A = —1/2), while antineutrinos are right-handed (A = +1/2).

Egs. (3.1.41) and (3.1.42) can also be derived by carefully taking the m — 0 limit of
egs. (3.1.33) and (3.1.34) applied to the helicity wave functions z(p, A) and y(p, A) [i.e., replacing
s with A]. We then replace mS* with p#, which is the leading term in the limit of E > m.
Using the results of egs. (3.1.9) and (3.1.10) and dividing out by an overall factor of m (before
finally taking the m — 0 limit) reproduces egs. (3.1.41) and (3.1.42).

Having defined explicit forms for the two-component spinor wave functions, we can now
write down the spin projection matrices. Noting that %(1 +256-8)xy = %(1 +458")xs = 055X

(since s, s’ = £3), one can write:

XXl =3 (1+256-8)> xoxl =5 (1+256-3) (3.1.43)

S
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where at the second step, we have employed the completeness relation given in eq. (C.1.21).

Making use of eq. (3.1.17) for &-3, it follows that

2
X xXh =13 (1 + ES«/—p-US-E p~0> : (3.1.44)
Hence, with both spinor indices in the lowered position,
z(p,s)zT (P, s) = /po szi Vpo
2s
— 45 |1+ 2 s ayia| i
2
m
=1[p-o—2smS-a] . (3.1.45)

In the final step above, we simplified the product of three dot products by noting that p-S = 0
implies that S-@ p-oc = —p-@ S-0. The other spin projection formulae for massive fermions can

be similarly derived. The complete set of such formulae is given below:2

Lo(P, 8)x ;( 8) = 5(pu — 25mS)ot s, (3.1.46)
Y@, )7 (B, s) = L + 25mSH)TSP (3.1.47)
Zo (P, s)yﬁ(ﬁ, s) = % (m&aﬁ — 23[S-ap-6]a6) , (3.1.48)
de(ﬁa 8):17;(15: s) = % <m5‘j‘5 + 28[5-5]9-0]‘5‘5) . (3.1.49)

By taking the hermitian conjugate of the above results, one obtains an equivalent set of formulae,

2149, 5)2° (B, 5) = (P — 2smS*)7,” (3.1.50)
Ya(B, )y} (B s) = 3(pu + 2smS)o" (3.1.51)
Yo (B, 5)2° (B, 5) = —§ (mdo” + 25[S-0p-7la") | (3.1.52)
B )yl (B ) = =5 (md%; — 25[5-7p0]? ) | (3.1.53)

For the case of massless spin-1/2 fermions, we must use helicity spinor wave functions. The
corresponding massless projection operators can be obtained directly from the explicit forms for

the two-component spinor wave functions given in egs. (3.1.37)—(3.1.40):

raB BN = (3 Vo, aHENLEN) = (5 Npr®, (3154
y @AY (BN = (5 + Np-a*?, YalB NS (BN) = (5 +Np-0,g,  (3.1.55)
2By’ (B,A) = 0, Yo (B, NP (F,0) = 0, (3.1.56)
Y1 (B, Nl (B, )) =0, 21BNyl (5,) = 0. (3.1.57)

25Similar formulae for the products of two-component spinor wave functions are given in ref. [104].
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As a check, one can verify that the above results follow from eqs. (3.1.46)—(3.1.53), by replacing
s with A, setting mS* = p*, and taking the m — 0 limit at the end of the computation.
Having listed the projection operators for definite spin projection or helicity, we may now
sum over spins to derive the spin sum identities. These arise when computing squared matrix
elements for unpolarized scattering and decay. There are only four basic identities, but for
convenience we list each of them with the two-index height permutations that can occur in
squared amplitudes by following the rules given in this paper. The results can be derived by
inspection of the spin projection operators, since summing over s = :l:% simply removes all terms

linear in the spin four-vector S*.

> wals)al(Bis) = poy;, S ot (B, 5)aP (B 5) = pP,  (3.158)
> v B (Bs) =p T, > B 5yl (B,s) =po,y,  (3.159)
i 2o (P, 8)y’ (B, 5) = mda” Zsya(ﬁ, $)zP (P, s) = —mda?,  (3.1.60)
Z?Jm(ﬁ, S)xg(ﬁ, s) = mé‘j‘ﬁ-, Za:T‘j‘(ﬁ, s)y;(ﬁ, s) = —médg. (3.1.61)

These results are applicable both to spin sums and helicity sums, and hold for both massive and
massless spin-1/2 fermions.

One can generalize the above massive and massless projection operators by considering
products of two-component spinor wave functions, where the spin or helicity of each spinor can

be different. These are the Bouchiat-Michel formulae [112], which are derived in Appendix H.3.

3.2 Fermion mass diagonalization in a general theory

Consider a collection of free anticommuting two-component spin-1/2 fields, éai(x), which trans-

1

form as (5,0) fields under the Lorentz group. Here, « is the spinor index, and i labels the

distinct fields of the collection. The free-field Lagrangian is given by (e.g., see ref. [5]):
£ = i€l 0,6 — SMYEE; — M€ ET (3.2.1)

where
M;j = (M"7)*, (3.2.2)

Note that M is a complex symmetric matrix, since the product of anticommuting two-component
fields satisfies éléj = éjfl [with the spinor contraction rule according to eq. (2.35)].

In eq. (3.2.1), we have employed the U(N)-covariant tensor calculus [44, 145] for “flavor-
tensors” labeled by the flavor indices ¢ and j. Each left-handed (%,0) fermion always has an
index with the opposite height of the corresponding right-handed (0, %) fermion. Raised indices

can only be contracted with lowered indices and vice versa. Flipping the heights of all flavor
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indices of an object corresponds to complex conjugation, as in eq. (3.2.2). In particular, we

generalize eq. (2.17) as follows: ¢

Yl = (W) (3.2.3)

If M = 0, then the free-field Lagrangian is invariant under a global U(NN) symmetry. That is,

for a unitary matrix U, with matrix elements U;/, and its hermitian conjugate defined by:
Ohd = (U =075, (3.2.4)
with UF(UT)7 = 55 , the massless free-field Lagrangian is invariant under the transformations:
& — UJEj, g — U1 (3.2.5)

For M # 0, eq. (3.2.1) remains formally invariant under the global U(N)-symmetry if M acts
as a spurion field [146] with the appropriate tensorial transformation law, M% — U U7, M.,

Expressions consisting of flavor-vectors and second-rank flavor-tensors have natural inter-
pretations as products of vectors and matrices. As a result, the flavor indices can be suppressed,
and the resulting expressions can be written in an index-free matrix notation. To accomplish
this, one must first assign a particular flavor index structure to the matrices that will appear in
the index-free expression. For example, given the second-rank flavor-tensors introduced above,
we define the matrix elements of M to be M% and the matrix elements of U to be U;7. Note
that (U");7 has the same flavor-index structure as U.27

As a simple example, in an index-free notation eq. (3.2.5) reads: é — U é and éT — éTU f,

A slightly more complicated example is exhibited below:
UL MM = (U, M* = (U M)* (3.2.6)

where we have used (UT)T = U* in obtaining the final result. That is, in matrix notation with
suppressed indices, U, M** corresponds to the matrix U*M. Thus, in an index-free notation,
the tensorial transformation law for the spurion field M is given by M —s U*MUT.

We can diagonalize the mass matrix M and rewrite the Lagrangian in terms of mass eigen-

states &,; and (real non-negative) masses m;. To do this, we introduce a unitary matrix €,

& =0k, (3.2.7)

26In the case at hand, we have more specifically chosen all of the left-handed fermions to have lowered flavor
indices, which implies that all of the right-handed fermions have raised flavor indices. However, in cases where
a subset of left-handed fermions transform according to some representation R of a (global) symmetry and a
different subset of left-handed fermions transform according to the conjugate representation R*, it is often more
convenient to employ a raised flavor index for the latter subset of left-handed fields.

2TThe reader should not be tempted to substitute U for U in eq. (3.2.4), as the resulting flavor-index structure
for U and U' would then disagree with the original flavor-index assignments.
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and demand that M¥ QiijZ = myoHt (no sum over k), where the my, are real and non-negative.

Equivalently, in matrix notation with suppressed indices, é = Q¢ and?®
QTM Q = m = diag(my, ma, ...). (3.2.8)

This is the Takagi diagonalization [111,147] of an arbitrary complex symmetric matrix, which
is discussed in more detail in Appendix D.2. To compute the values of the diagonal elements
of m, note that

QTMTMQ = m?. (3.2.9)

Indeed MTM is hermitian and thus it can be diagonalized by a unitary matrix. Hence, the
elements of the diagonal matrix m are the non-negative square roots of the corresponding
eigenvalues of MTM. However, in cases where MTM has degenerate eigenvalues, eq. (3.2.9)
cannot be employed to determine the unitary matrix 2 that satisfies eq. (3.2.8). A more general
technique for determining {2 that works in all cases is given in Appendix D.2.

In terms of the mass eigenstates,
£ = ietigro, e — Imi(&& + €hiety (3.2.10)

where the sum over ¢ is implicit. If the m; # 0 are non-degenerate, then the corresponding field
&; describes a neutral Majorana fermion consisting of two on-shell real degrees of freedom. The
case of mass degeneracies will be treated explicitly below. If m; = 0, then we shall denote the
corresponding field &; as a massless Weyl fermion [15].

Each £,; can now be expanded in a Fourier series, exactly as in eq. (3.1.3):

d3ﬁ — — —ip~x — T — ip~;1;
éaz('x) = Z/ (27T)3/2(2E )1/2 ':Ua(p7 S)ai(p7 S)e + ya(p7 s)ai (p7 S)e ] ’ (3211)
s ip

where Ei, = (|p]? + m?)'/2, and the creation and annihilation operators, aj and a; satisfy

anticommutation relations:

{a;(P,5),al(B",5')} = 0° (5 — B")dawdis (3.2.12)

We employ covariant normalization of the one-particle states, i.e., we act with one creation

operator on the vacuum with the following convention
B, 5) = (27)*/2(2Eip)al (P, 5) |0) (3.2.13)

so that <ﬁ: i) S |ﬁ/7j7 S/> = (27T)3(2Elp)53(ﬁ_ ﬁ/)éijéss’-

28In general, the m; are not the eigenvalues of M. Rather, they are the singular values of the matrix M, which
are defined to be the non-negative square roots of the eigenvalues of M fM. See Appendix D for further details.
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In the case of two mass-degenerate massive fermion fields, m; = mo # 0, eq. (3.2.10)
possesses a global internal O(2) flavor symmetry, & — 0,7¢; (i = 1,2), where OTO = 1gys.

Corresponding to this symmetry is a conserved hermitian Noether current:
JH =i(eMare, — £1%51¢), (3.2.14)

with a corresponding conserved charge, @ = [ J' Od3z. In the & & basis, the Noether current is

off-diagonal. However, it is convenient to define a new basis of fields:

XE%(&-H&)’ 775%

With respect to the x—n basis, the Noether current is diagonal:

(&1 —i&2). (3.2.15)

JH = X1ty — niahy. (3.2.16)

That is, the fermions y and 7 are eigenstates of the charge operator () with corresponding
eigenvalues £1. In terms of the fermion fields of definite charge, the free-field fermion Lagrangian

[eq. (3.2.10) with 4 = 1,2 and m; = mo = m] is given by [16]:?°
& = ix15"0,x + in'ad,m — m(xn + x"nT). (3.2.17)
On-shell, x and n satisfy the free-field Dirac equations:
it Oux — mn’ =0, iot0,n — mx' =0. (3.2.18)

In the y—n basis, the global internal SO(2) symmetry (which is continuously connected to the
identity) is realized as the U(1) symmetry x — ¢®x and 7 — e, where 6 is the rotation
angle that defines the SO(2) rotation matrix.

Together, y and 7' constitute a single Dirac fermion. We can then write:

3.2 , .
Xa(z) = Z/ (277)3/(21(5Ep)1/2 [ma(ﬁ, s)a(p, s)e”" P T 4 yo (B, s)b (P, s)e””'x] , (3.2.19)

3.2 , :
Na(T) = Z/ (277)3/(21(5Ep)1/2 [ma(ﬁ, $)D(P, 8)e" P 4 yo (P, s)a’ (P, s)e’p'x] , (3.2.20)

where E, = (|p]> + mz)l/ 2 the creation and annihilation operators, af, b, a and b satisfy

anticommutation relations:

{a(@.5),a' (5", 8")} = {b(D. 5),0"(B",s')} = 6°(F — B")dssr (3.2.21)

29 Although the fermion mass matrix is not diagonal in the x—n basis, this is not an obstacle to the subsequent
analysis, as one only needs a diagonal squared-mass matrix, MM, to ensure that the denominators of propagators
are diagonal. Eq. (3.2.15) provides the explicit Takagi diagonalization of the Dirac fermion matrix (9}). See
Appendix D.3 for the mathematical interpretation of this special case.

33



and all other anticommutators vanish. We now must distinguish between two types of one-

particle states, which we can call fermion (F) and antifermion (F):
7,5 F) = (21)*2(2Ep)"?al (5, ) 10) | |7, s:F) = (2m)°2(2Ep) ' b (5,9) |0) . (3.2.22)

Note that both n(x) and x'(z) can create |p,s; F) from the vacuum, while 5(z) and x(z) can

create | D, s;F). The one-particle wave functions are given by:

3.2.23
3.2.24
3.2.25

I 0 nl(@) B s F) = gl (B s)e
eip'x, <F,ﬁ,3‘XL(w)‘0> :xT. (ﬁ,s) pr
Ok () |75 F) =yl (B, s)e

(
(
, (
err, (F:p, s nl(z) 0) = zl (B, s)e™ ™, (

)
)
)
3.2.26)

and the eight other single-particle matrix elements vanish.

More generally, consider a collection of free anticommuting charged Dirac fermions, which
can be represented by pairs of two-component fields Xa;(z), 7% (x). These fields transform in
(possibly reducible) representations of the unbroken symmetry group that are conjugates of each
other. This accounts for the opposite flavor index heights of ¥; and 7’ [cf. footnote 26]. The
free-field Lagrangian is given by

L = ix1T 0N + T O — M yxay — MR (3.2.27)
where M is an arbitrary complex matrix with matrix elements M® j» and

M = (M%)*. (3.2.28)

If M = 0, then the free-field Lagrangian is invariant under a global U(/N)xU(NN) symmetry.
That is, for a pair of unitary matrices Uy, and Ug, with matrix elements given respectively by

(UL)# and (Ug)‘;, and the corresponding hermitian conjugates defined by:
U);" = U] = UL, (UL = [(Ur))* = (UR), (3.2.29)
the massless free-field Lagrangian is invariant under the transformations:
— (U)%;, X — )T, q— R, A — (Ur)IAL. (3.2.30)

For M # 0, eq. (3.2.27) remains formally invariant under the U(N)xU(N) symmetry if M acts as
a spurion field [146] with the appropriate tensorial transformation law, M?; — (UL)'x(Ug);*M*,
(or equivalently, in an index-free matrix notation with suppressed flavor indices, M — U; M U}T%).

In order to diagonalize the mass matrix, we introduce the mass eigenstates x; and n' and

unitary matrices L and R, with matrix elements given respectively by L;* and R, such that
o 1k i pi k
Xi = Li" Xk, 0= Ryn”, (3.2.31)
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and demand that M ijLikRj ¢ = mkdf (no sum over k), where the my, are real and non-negative.

Equivalently, in matrix notation with suppressed indices, x = Ly, 7 = Rn and
LTMR = m = diag(m1,ma,...), (3.2.32)

with the m; real and non-negative (cf. footnote 28). The singular value decomposition of linear
algebra, discussed more fully in Appendix D.1, states that for any complex matrix M, unitary

matrices L and R exist such that eq. (3.2.32) is satisfied. It then follows that:
LT (MMY)L* = RI(MTM)R = m?. (3.2.33)

That is, since MM and MTM are both hermitian, they can be diagonalized by unitary matrices.
The diagonal elements of m are therefore the non-negative square roots of the corresponding

eigenvalues of M M7 (or equivalently, MTM). In terms of the mass eigenstates,

¥ = iXTiE“auxz' + inj?“@uni - mi(xmi + X“nj) . (3.2.34)

0 my;
m; 0

The mass matrix now consists of 2 x 2 blocks ( ) along the diagonal. More importantly,
the squared-mass matrix is diagonal with doubly degenerate entries m? that will appear in the
denominators of the propagators of the theory. For m; # 0, each ;1 pair describes a charged
Dirac fermion consisting of four on-shell real degrees of freedom.>® In addition, eq. (3.2.34)
yields an even number of massless Weyl fermions.

Given an arbitrary collection of two-component left-handed (%, 0) fermions, the distinction
between Majorana and Dirac fermions depends on whether the Lagrangian is invariant under a
global (or local) continuous symmetry group G, and the corresponding multiplet structure of the
fermion fields [148]. If no such continuous symmetry exist, then the fermion mass eigenstates
will consist of Majorana fermions. If the Lagrangian is invariant under a symmetry group G,
then the collection of two-component fermions will break up into a sum of multiplets that
transform irreducibly under GG. As described in Appendix E, a representation R can be either
a real, pseudo-real, or complex representation of G. If a multiplet transforms under a real
representation of G, then the corresponding fermion mass eigenstates are Majorana fermions.?! If
a multiplet transforms under a complex representation of (¢, then the corresponding fermion mass
eigenstates are Dirac fermions. In particular [as noted above eq. (3.2.27)], if the y, transform

under the representation R, then the 1’ transform under the conjugate representation R*.

390f course, one could always choose instead to treat the Dirac fermions in a non-charge-eigenstate basis
with a fully diagonalized mass matrix, as in eq. (3.2.10). Inverting eq. (3.2.15) for each Dirac fermion yields
E2i1 = (i + nl)/\/i and & = i(n; — X’)/\/i However, it is rarely, if ever, convenient to do so; practical
calculations only require that the squared-mass matrix MTM is diagonal, and it is of course more convenient to
employ fields that carry well-defined charges.

31This is a slight generalization of the more restrictive definition that requires Majorana fermions to transform
trivially under the group G. Gluinos, which transform under the (real) adjoint representation of the color SU(3)
group, are Majorana fermions according to our more general definition.
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The case where a multiplet of two-component left-handed fermions transform under a
pseudo-real representation of G has not been explicitly treated above. The simplest exam-
ple of this kind is a model of 2n multiplets (or “favors”) of two-component SU(2)-doublet?
fermions, 1[12-,1 (where i = 1,2,...,2n labels the flavor index and a labels the SU(2) doublet
index). The free-field Lagrangian is given by:

L = i)l9F 1), — L (Mijea%mq[)jb + h.c.> , (3.2.35)

where €% is the antisymmetric SU(2)-invariant tensor, defined such that €' = —€?! = +1. As
e“bzﬁml/;jb is antisymmetric under the interchange of flavor indices ¢ and j, it follows that M is
a complex antisymmetric matrix. To identify the fermion mass eigenstates 14, we introduce a

unitary matrix U (with matrix elements Uij) such that zﬁm =U; 1jq and demand that:

T _ — 3 0 m 0 mog 0 my
= v =aae{(0 ) (0 ) (0

where IN is written in block-diagonal form consisting of 2 x 2 matrix blocks appearing along the
diagonal, and the m; are real and non-negative. Eq. (3.2.36) corresponds to the reduction of a
complex antisymmetric matrix to its real normal form [149], which is discussed in more detail

in Appendix D.4. In order to compute the my, we first note that
UtMTMU = diag(m?, m2, m3, m3, ..., m2, m2). (3.2.37)

Hence, the m; are the non-negative square roots of the corresponding eigenvalues of M tM.
Since the dimension of the doublet representation of SU(2) provides an additional degeneracy
factor of 2, eq. (3.2.37) implies that the mass spectrum consists of 2n pairs of mass-degenerate

two-component fermions, which are equivalent to 2n Dirac fermions. In particular,
2n n
2 =3 W T~ (mie“bzp%_l,mi,b n h.c.) . (3.2.38)
i=1 i=1
In the general case of a pseudo-real representation R (of dimension dg), the SU(2)-invariant

e-tensor is replaced by a more general dp x dp unitary antisymmetric matrix, C' [defined in

eq. (E.1.9)]. Thus, the analysis above can be repeated virtually unchanged. By defining
Xia = V2i-1,a 0 = C%Py; 4, i=1,2,...,n; a=12,....dg, (3.2.39)

with an implicit sum over the repeated index b, the resulting Lagrangian given by

n
L =3 i xia + i), " 0 — m; (xiani“ + x““@) , (3.2.40)
i=1

32The doublet representation of SU(2) is pseudo-real.
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describes a free field theory of ndr Dirac fermions [cf. eq. (3.2.34)]. Therefore, if a multiplet of
two-component left-handed fermions transforms under a pseudo-real representation of G, then
the corresponding fermion mass eigenstates are Dirac fermions [148]. If eq. (3.2.35) contains
an odd number of pseudo-real fermion multiplets, then the (antisymmetric) mass matrix M is
odd-dimensional and thus has an odd number of zero eigenvalues [according to eq. (D.4.1)]. But
as dr must be even, it follows that the pseudo-real fermion multiplet contains an even number
of massless Weyl fermions.

In conclusion, the mass diagonalization procedure of an arbitrary field theory of fermions
yields (in general) a set of massless Weyl fermions, a set of massive neutral Majorana fermions
[as in eq. (3.2.10)], and a set of massive charged Dirac fermions [as in eq. (3.2.34)]. The Feynman
rules for these mass eigenstate two-component fermion fields are given in Section 4.

For completeness, we review the squared-mass matrix diagonalization procedure for scalar
fields. First, consider a collection of free commuting real spin-0 fields, @;(z), where the flavor

index 4 labels the distinct scalar fields of the collection. The free-field Lagrangian is given by33

&L = 50,10 — 5M5i; (3.2.41)

)

where M? is a real symmetric matrix. We diagonalize the scalar squared-mass matrix by
introducing mass eigenstates ¢; and the orthogonal matrix ) such that ¢; = Q;jp;, with

Misziijg =m0k (no sum over k). In matrix form,

QTM?*Q = m? = diag(m?,m3,...), (3.2.42)

where the squared-mass eigenvalues mi are real.>* This is the standard diagonalization problem

for a real symmetric matrix.
Next, consider a collection of free commuting complex spin-0 fields, @Z(x) For complex
fields, we follow the conventions for flavor indices enunciated below eq. (3.2.2) [e.g. & = (&;)1].

The free-field Lagrangian is given by
Z = 0,00 D, — (M?)' ;0,87 (3.2.43)

where M? is an hermitian matrix [i.e., (M?)"; = (M?);" in the notation of eq. (3.2.29)].
We diagonalize the scalar squared-mass matrix by introducing mass eigenstates ®; and the
unitary matrix W such that ®; = W;*®,, (and &' = Wi, ®F), with (M2, WikWIy = m25% (no

sum over k). In matrix form,
WIM?W = m? = diag(m?,m3,...). (3.2.44)

where the squared-mass eigenvalues m} are real (cf. footnote 34). This is the standard diago-

nalization problem for an hermitian matrix.

33GQince the scalar fields are real, there is no need to distinguish between raised and lowered flavor indices.
31Tf the vacuum corresponds to a local minimum (or flat direction) of the scalar potential, then the squared-mass
eigenvalues of M? are real and non-negative.

37



4 Feynman rules with two-component spinors

In order to systematically perform perturbative calculations using two-component spinors, we
present the basic Feynman rules. The Feynman rules for the Standard Model (and its see-
saw extension) and the MSSM (including possible R-parity-violating interactions) are given in
Appendices J, K and L. Feynman rules for two-component spinors have also been treated in
refs. [49,106,109].

4.1 External fermion and boson rules

Consider a general theory, for which we may assume that the mass matrix for fermions has been
diagonalized as discussed in Section 3.2. The rules for assigning two-component external state

spinors are then as follows:

e For an initial state (incoming) left-handed (3, 0) fermion: z
e For an initial state (incoming) right-handed (0, %) fermion: !
e Tor a final state (outgoing) left-handed (3, 0) fermion: !

e Tor a final state (outgoing) right-handed (0, 3) fermion: y

where we have suppressed the momentum and spin arguments of the spinor wave functions.

These rules are summarized in the mnemonic diagram of Fig. 4.1.1.

L (3,0) fermion

x g;T

Initial State Final State

R (0, %) fermion

Figure 4.1.1: The external wave function spinors should be assigned as indicated here, for
initial state and final state left-handed (3,0) and right-handed (0, 1) fermions.

In general, the two-component external state fermion wave functions are distinguished by
their Lorentz group transformation properties, rather than by their particle or antiparticle status
as in four-component Feynman rules. This helps to explain why two-component notation is

especially convenient for (i) theories with Majorana particles, in which there is no fundamental
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distinction between particles and antiparticles, and (ii) theories like the Standard Model and
MSSM in which the left and right-handed fermions transform under different representations of
the gauge group and (iii) problems with polarized particle beams.

In contrast to four-component Feynman rules (given in Appendix G.5), the direction of
the arrows do not correspond to the flow of charge or fermion number. The two-component
Feynman rules for external fermion lines simply correspond to the formulae for the one-particle
wave functions exhibited in egs. (3.1.7) and (3.1.8) [with the convention that |p,s) is an initial
state fermion and (P, s| is a final state fermion]. In particular, the arrows indicate the spinor
index structure, with fields of undotted indices flowing into any vertex and fields of dotted
indices flowing out of any vertex.

The rules above apply to any mass eigenstate two-component fermion external wave func-
tions. It is noteworthy that the same rules apply for the two-component fermions governed by
the Lagrangians of eq. (3.2.10) [Majorana] and eqgs. (3.2.34) or (3.2.40) [Dirac].

The corresponding rules for external boson lines are well-known (see, e.g ref. [114]).

e For an initial state (incoming) or final state (outgoing) spin-0 boson : 1
e For an initial state (incoming) spin-1 boson of momentum k and helicity A : ek, N
e For a final state (outgoing) spin-1 boson of momentum k and helicity A : 6“(E , A

The explicit form of the helicity £1 (massless or massive) spin-1 polarization vector e is given

in eq. (I.2.41). The helicity zero massive spin-1 polarization vector is given in eq. (1.2.43).

4.2 Propagators

Next we turn to the subject of fermion propagators for two-component fermions. A derivation of
the two-component fermion propagators using path integral techniques is given in Appendix F.
Here, we will follow the more elementary approach typically given in an initial textbook treat-
ment of quantum field theory.

Fermion propagators are the Fourier transforms of the free-field vacuum expectation values
of time-ordered products of two fermion fields. They are obtained by inserting the free-field
expansion of the two-component fermion field and evaluating the spin sums using the formulae

given in egs. (3.1.58) and (3.1.61). For the case of a single neutral two-component fermion field
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Figure 4.2.1: Feynman rules for propagator lines of a neutral two-component fermion with
mass m. (For simplicity, the +ie terms in the denominators are omitted in all propagator rules.)

&(z) of mass m, egs. (3.2.11) and (3.2.12) yield [49, 106,108,109, 143, 150]:
i _ ‘ 5 )2t (5 5) — ‘ .
(0] T€a(2)&5(y) 0)pr = 2 mZ Tt e 28: Ta(P, s)a (P, s) = o N LAY (4.2.1)
1

p-7* | (4.2.2)

f6 1\ B v (P, )y (B s) = 57—
(0] T (2)€% (y) 10)py pZ_mQH.eES:y (B, 8)y"(Prs) = e

fé (et _ ¢ to (5 Vol (5 s) — ¢ &
(0] T¢ (x)ﬁﬁ-(y)|0>FT—p2_m2+Z.e§s:y (B.5)7y(B.s) = 5y md%s, (4.23)

(O] Tea@E’ 1) 10)pr = ———— " 20l 8)y" (5. 5) L maS, (42.4)

p? —m? +ie T PP —m?tie

where FT indicates the Fourier transform from position to momentum space.?®> These results
have a clear diagrammatic representation, as shown in Fig. 4.2.1. Note that the direction of the
momentum flow p* here is determined by the creation operator that appears in the evaluation
of the free-field propagator. Arrows on fermion lines always run away from dotted indices at a
vertex and toward undotted indices at a vertex.

There are clearly two types of fermion propagators. The first type preserves the direction of
arrows, so it has one dotted and one undotted index. For this type of propagator, it is convenient
to establish a convention where p# in the diagram is defined to be the momentum flowing in the
direction of the arrow on the fermion propagator. With this convention, the two rules above for
propagators of the first type can be summarized by one rule, as shown in Fig. 4.2.2. Here the

choice of the o or the & version of the rule is uniquely determined by the height of the indices

35The Fourier transform of a translationally invariant function f(z,y) = f(z — y) is given by

~

4 ) =N )
faw) = [ G fore ™o whee  Fo) = [t e

In the notation of the text above, f(z,y)pr = f(p)-
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Figure 4.2.2: This rule summarizes the results of both Figs. 4.2.1(a) and (b) for a neutral
two-component fermion with mass m.

on the vertex to which the propagator is connected.?® These heights should always be chosen
so that they are contracted as in eq. (2.35). It should be noted that in diagrams (a) and (b)
of Fig. 4.2.1 as drawn, the indices on the ¢ and @ read from right to left. In particular, the
Feynman rules for the propagator can be employed with the spinor indices suppressed provided
that the arrow-preserving propagator lines are traversed in the direction parallel [antiparallel]
to the arrowed line segment for the & [o] version of the rule, respectively.

The second type of propagator shown in diagrams (c) and (d) of Fig. 4.2.1 does not preserve
the direction of arrows, and corresponds to an odd number of mass insertions. The indices on 6 )
and 6,” are staggered as shown to indicate that & and a are to be contracted with expressions
to the left, while ﬁ and (§ are to be contracted with expressions to the right, in accord with
eq. (2.35).37

ARG CEPENE-

—im&aﬁ —imédB

Figure 4.2.3: Fermion mass insertions (indicated by the crosses) can be treated as a type of
interaction vertex, using the Feynman rules shown here.

Starting with massless fermion propagators, one can also derive the massive fermion propa-
gators by employing mass insertions as interaction vertices, as shown in Fig. 4.2.3. By summing
up an infinite chain of such mass insertions between massless fermion propagators, one can
reproduce the massive fermion propagators of both types.

The above results for the propagator of a Majorana fermion can be generalized to a mul-
tiplet of mass eigenstate Majorana fermions, £,,(x) [such as a color octet of gluinos], which
transforms as a real representation R of a (gauge or flavor) group G (where a = 1,2,...,dp for
a representation of dimension dg). In this case, the Feynman graphs given in Figs. 4.2.1-4.2.3
are modified simply by specifying a group index a and b at either end of the propagator line. The

corresponding Feynman rules then includes an additional Kronecker delta factor in the group

36The second form of the rule in Fig. 4.2.2 arises when one flips diagram (b) of Fig. 4.2.1 around by a 180°
rotation (about an axis perpendicular to the plane of the diagram), and then relabels p — —p, & — ﬂ and 8 — a.

3TAs in Fig. 4.2.2, alternative and equivalent versions of the rules corresponding to diagrams (c) and (d) of
Fig. 4.2.1 can be given for which the indices on the Kronecker deltas are staggered as 674 and 03“. These versions
correspond to flipping the two respective diagrams by 180° and relabeling the indices & — B and 8 — a.
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indices. In particular, if we associate the index a with the spinor indices «, & and the index b
with the spinor indices 3, 3, then the rules exhibited in Fig. 4.2.1(a) and (b) would include the

following Kronecker delta factors:
(a) &, (b) 4y, (4.2.5)
and the factors of m in the rules exhibited in Fig. 4.2.1(c) and (d) would be replaced by

(¢) 02mesY = mao®, (d) 6meqdd = maday (4.2.6)

(with no sum over the repeated index a), where m°? and m.q = m®

are diagonal matrices with
real non-negative diagonal elements m.. Here, we have introduced the separate symbol m.4 in
order to maintain the convention that two repeated group indices are summed when one index
is raised and one index is lowered. Of course, if the Lagrangian is invariant under the symmetry
group G, then a multiplet of Majorana fermions corresponding to an irreducible representation
R has a common mass m = m,,.

It is convenient to treat separately the case of charged massive fermions. Consider a charged
Dirac fermion of mass m, which is described by a pair of two-component fields x(x) and n(z)
[cf. eq. (3.2.17)]. Using the free-field expansions [egs. (3.2.19) and (3.2.20)] and the spin sums

[egs. (3.1.58)—(3.1.61)], the two-component free-field propagators are obtained:

7

Ol X ) O)er = O T@ ) O)er = 050 (427
O X @) O = O TH @) O = 7™, (428)
O TXal)(0) O = O| TN @) O = s md,?, (429)
01 TX @} () O = OITH @ ) Opr = mots. (4210

For all other combinations of fermion bilinears, the corresponding two-point functions vanish.
These results again have a simple diagrammatic representation, as shown in Fig. 4.2.4. Note that
for Dirac fermions, the propagators with opposing arrows (proportional to a mass) necessarily
change the identity (x or 1) of the two-component fermion, while the single-arrow propagators
are diagonal in the fields. In processes involving such a charged fermion, one must of course
distinguish between the y and 7 fields.

The above results for the propagator of a Dirac fermion can be generalized to a multiplet of
mass eigenstate Dirac fermions, x,;, 772, which transform under a (gauge or flavor) group G. In
this case, the Feynman graphs given in Fig. 4.2.4 are modified simply by specifying a group index
i and j at either end of the propagator line. The corresponding Feynman rules then include an

additional Kronecker delta factor in the group indices. In particular, if we associate the group
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Figure 4.2.4: Feynman rules for propagator lines of a pair of charged two-component fermions
with a Dirac mass m. As in Fig. 4.2.2, the direction of the momentum is taken to flow from the
dotted to the undotted index in diagrams (a) and (b).

index i with the spinor indices «, ¢& and the index j with the spinor indices 3, B, then the rules

exhibited in Fig. 4.2.4(a) and (b) would include the following Kronecker delta factors:

(a) o7 (b) &

2

(4.2.11)
and the factors of m in the rules exhibited in Fig. 4.2.4(c) and (d) would be replaced by

(c) 6fmg"6) = m;o! (d) opm* 8% = m;oh (4.2.12)

where mt,, and m,;" = m*

n are diagonal matrices with real non-negative diagonal elements my,
and there is no sum over the repeated index i. (Here, we have introduced the separate symbol
my™ in order to maintain the convention that two repeated group indices are summed when one
index is raised and one index is lowered.) As before, if the Lagrangian is invariant under the
symmetry group G, then an irreducible multiplet of Dirac fermions has a common mass m = m;.

For completeness, we exhibit in Fig. 4.2.5 the Feynman rules for the propagators of the
(neutral or charged) scalar boson and gauge boson in the R, gauge, with gauge parameter & [151].

7

p2 _ m2
—1 pt'p” b
A VAVAVAVAVAV, " gt (1) | se
L, v, b p2 o m2 g ( g)pQ _ §m2

Figure 4.2.5: Feynman rules for the (neutral or charged) scalar and gauge boson propagators,
in the R¢ gauge, where p# is the propagating four-momentum. In the gauge boson propagator,
& = 1 defines the ’t Hooft-Feynman gauge, £ = 0 defines the Landau gauge, and £ — oo defines
the unitary gauge. For the propagation of a non-abelian gauge boson, one must also specify the
adjoint representation indices a, b.
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4.3 Fermion interactions with bosons

We next discuss the interaction vertices for fermions with bosons. Renormalizable Lorentz-
invariant interactions involving fermions must consist of bilinears in the fermion fields, which
transform as a Lorentz scalar or vector, coupled to the appropriate bosonic scalar or vector field
to make an overall Lorentz scalar quantity.

Let us write all of the two-component left-handed (%, 0) fermions of the theory as T/A)i, where
i runs over all of the gauge group representation and flavor degrees of freedom. In general, the
(%, 0)-fermion fields 1[12 consist of Majorana fermions f,-, and Dirac fermion pairs x; and 7’ after
mass terms (both explicit and coming from spontaneous symmetry breaking) are taken into
account. Likewise, consider a multiplet of scalar fields <;31, where I runs over all of the gauge
group representation and flavor degrees of freedom. In general, the scalar fields QZBI consist of

real scalar fields ¢; and pairs of complex scalar fields d; and d! = (<i> 7). In matrix form,

(4.3.1)

<

Il

oA

RS

Il
(SIS O

7
By dividing up the fermions into Majorana and Dirac fermions and the spin-zero fields into real
and complex scalars, we are assuming implicitly that some of the indices I and ¢ correspond to

states of a definite (global) U(1)-charge (denoted in the following by ¢; and ¢;, respectively).
The most general set of Yukawa interactions of the scalar fields with a pair of fermion fields

is then given by:

L = =3V T Gy — 316" PV (4.3.2)
where Yljk = (YI Y k)* We have suppressed the spinor indices here; the product of two-component
spinors is always performed according to the index convention indicated in eq. (2.35). The

Yukawa Lagrangian [eq. (4.3.2)] must be invariant under:

§—&,  Xi—e%, o g g, b e, B el
(4.3.3)
where the ¢; are the U(1)-charges of the corresponding Dirac fermions and the ¢; are the U(1)-

charges of the corresponding complex scalars. Consequently, the form of the Y13k is constrained:

YUk =0, unless g7+ ¢ +q:=0. (4.3.4)

Of course, any other conserved symmetries will impose additional selection rules on the Yukawa
couplings Y17%.

The hatted fields are the interaction eigenstate fields. However, in general the mass eigen-
states can be different, as discussed in Section 3.2. The computation of matrix elements for

physical processes is more conveniently done in terms of the propagating mass eigenstate fields.
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Figure 4.3.1: Feynman rules for Yukawa couplings of scalars to two-component fermions in
a general field theory. The choice of which rule to use depends on how the vertex connects to
the rest of the amplitude. When indices are suppressed, the spinor index part is always just
proportional to the identity matrix.

The mass eigenstate basis v is related to the interaction eigenstate basis 1) by a unitary rotation

U;? on the flavor indices. In matrix form:

fi Qij 0 0 fj
b=|x, | =Uv=|0 L7 0 X5 | (4.3.5)
7’ 0 0 Ry)\WW

where €, L, and R are constructed as described previously in Section 3.2 [see egs. (3.2.8) and
(3.2.32)]. Likewise, the mass eigenstate basis ¢ is related to the interaction eigenstate basis ¢

by a unitary rotation V7’ on the flavor indices. In matrix form,

95[ QIJ 0 0 P
p=|®,|=ve=| 0 W o o, |, (4.3.6)
ol 0 o wi;) \&/

where W ; = (W;7)*, and Q and W are constructed according to eqs. (3.2.42) and (3.2.44).

Thus, we may rewrite eq. (4.3.2) in terms of mass eigenstate fields:
L = —3Y P orign — g Vg wV et (4.3.7)
where
Yk = v, U, Uy (4.3.8)

Note that eq. (4.3.4) implies that Y17k = (0 unless q; + ¢j +qr = 0. The corresponding Feynman
rules that arise from the Yukawa interaction Lagrangian are shown in Fig. 4.3.1. If the scalar
¢ is complex, then one can associate an arrow with the flow of analyticity, which would point
into the vertex in (a) and would point out of the vertex in (b). That is, the arrow on the scalar

line keeps track of the height of the scalar flavor index entering or leaving the vertex.
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In Fig. 4.3.1, two versions are given for each Feynman rule. The choice of which rule to use
is dictated by the height of the indices on the fermion lines that connect to the vertex. These
heights should always be chosen so that they are contracted as in eq. (2.35). However, when all
spinor indices are suppressed, the scalar-fermion-fermion rules will have an identical appearance
for both cases, since they are just proportional to the identity matrix of the 2 x 2 spinor space.

To provide a more concrete example of the above results, consider a real neutral scalar field
¢ and a (possibly) complex charged scalar field ® (with U(1)-charge g4) that interact with a
multiplet of Majorana fermions &; and Dirac fermion pairs x; and 7/ (with U(1)-charges qj and
—qj, respectively). We assume that all fields are given in the mass eigenstate basis. The Yukawa

interaction Lagrangian is given by:

L = —5(NIGE + A€W )D — i ® + i x ] @
—[(k1) &m0 + (K2)i € XM ® — [(k2)Y&ix; + (’fl)ijfﬂn}']qﬂ ; (4.3.9)

where ) is a complex symmetric matrix, and &, x; and ke are complex matrices such that ;=0
unless g = ¢; — ¢; and (k1)"; = (k2)ij = 0 unless qq = g; [flavor index conventions are specified
in egs. (3.2.2) and (3.2.28)]. The corresponding Feynman rules of Fig. 4.3.1(a) are obtained by
identifying Y79 = A k%, (k1)'; and (k2)¥ for the undotted fermion vertices ¢&;&;, ®x;n/, P&’
and (IDT&X]-, respectively.®® The corresponding Feynman rules of Fig. 4.3.1(b) for the dotted
fermion vertices are governed by the complex-conjugated Yukawa couplings, Y7,i, = (Y1ikyx,
The renormalizable interactions of vector bosons with fermions and scalars arise from gauge
interactions. These interaction terms of the Lagrangian derive from the respective kinetic energy

terms of the fermions and scalars when the derivative is promoted to the covariant derivative:
(Dp)i’ = 670, + iga AL(T) (4.3.10)

where the index a labels the real (interaction eigenstate) vector bosons A% and is summed over.
The index a runs over the adjoint representation of the gauge group,® and the (T'%);/ are
hermitian representation matrices of the generators of the Lie algebra of the gauge group acting
on the left-handed fermions (for further details, see Appendix E). For a U(1) gauge group, the
T® are replaced by real numbers corresponding to the U(1) charges of the left-handed (3,0)
fermions. There is a separate coupling g, for each simple group or U(1) factor of the gauge

group G.19

3 For the ®T¢;x; vertex, we should reverse the direction of the arrow on the scalar line in Fig. 4.3.1(a) [and
likewise for the corresponding hermitian-conjugated vertex of Fig. 4.3.1(b)], in which case all arrows on the charged
scalar and fermion lines would represent the direction of flow of the conserved U(1)-charge.

39Gince the adjoint representation is a real representation, the height of the adjoint index a is not significant.
The choice of a subscript or superscript adjoint index is based solely on typographical considerations.

40That is, the generators T'® separate out into distinct classes, each of which is associated with a simple group
or one of the U(1) factors contained in the direct product that defines G. In particular, g, = g5 if T'* and T are
in the same class. If G is simple, then g, = g for all a.
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In the gauge-interaction basis for the left-handed (%, 0) two-component fermions the corre-

sponding interaction Lagrangian is given by
Lot = —ga ALY T, (T) 75 . (4.3.11)

In the case of spontaneously broken gauge theories, one must diagonalize the vector boson
squared-mass matrix. The form of eq. (4.3.11) still applies where A}, are gauge boson fields
of definite mass, although in this case for a fixed value of a, g,7* [which multiplies Aj in
eq. (4.3.11)] is some linear combination of the original g,T'* of the unbroken theory. That is,
the hermitian matrix gauge field (4,);7 = AZ(T“)ZJ appearing in eq. (4.3.11) can always be
re-expressed in terms of the physical mass eigenstate gauge boson fields.

If an unbroken U(1) (global or local) symmetry exists, then the physical gauge bosons will
be eigenstates of the conserved U(1)-charge.*! If the U(1) symmetry group is orthogonal to the
gauge group under which the A% transform, then all the gauge bosons are neutral with respect to
the U(1)-charge. For example, in the case of the interaction of a gluon with a pair of Majorana
fermion gluinos, the gluon is a gauge boson that transforms under the SU(3) color group, which
is orthogonal to the conserved U(1)gy. That is, gluinos are color octet, electrically neutral
fermions. In contrast, in the case of the interaction of a Z° with pair of Majorana neutralinos,
U(1)gm is not orthogonal to the electroweak SU(2)xU(1) gauge group. Nevertheless, the Z°-
gauge boson interactions of the neutralinos are allowed as they conserve electric charge.

To obtain the desired Feynman rule, we rewrite eq. (4.3.11) in terms of mass eigenstate

fermion fields. The resulting interaction Lagrangian can be rewritten as
L = — AL T, (G (4.3.13)
where the A% are the mass eigenstate gauge fields (of definite U(1)-charge, if relevant), and
(G = gaU*i(T*)" U (4.3.14)

or in matrix form, G* = ¢, U'T®U (no sum over a). For values of a corresponding to the
neutral gauge fields, the G* are hermitian matrices. The corresponding Feynman rule is shown
in Fig. 4.3.2.

41 In terms of the physical gauge boson fields, A} T* consists of a sum over real neutral gauge fields multiplied
by hermitian generators, and complex charged gauge fields multiplied by non-hermitian generators. For example,
in the electroweak Standard Model, G=SU(2)xU(1) with gauge bosons and generators W, and T* = 37 for
SU(2) and B,, and Y for U(1), where the 7® are the usual Pauli matrices. After diagonalizing the gauge boson

squared-mass matrix [151]:
GWET® + ¢'B,Y = L (WTH + W, T7) + —L— (T® — Qsin® 0w) Z, + eQA, (4.3.12)
® N s cos Oy
where Q = T3 +Y is the generator of the unbroken U(1)gwM, T =7' + iTz, and e = gsin Oy = g' cos Oy . The
massive gauge boson charge-eigenstate fields of the broken theory consist of a charged massive gauge boson pair,

wt = (W1 F iW2)/\/§7 a neutral massive gauge boson, Z = W?3cos 6w — Bsinfy, and the massless photon,
A= W3sinOw + B cosbw.
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Figure 4.3.2: The Feynman rules for two-component fermion interactions with gauge bosons.
The choice of which rule to use depends on how the vertex connects to the rest of the amplitude.
The G* are defined in eq. (4.3.14). The index a runs over both neutral and charged (mass
eigenstate) gauge bosons, consistent with charge conservation at the vertex.

The above treatment of the gauge interactions of (two-component) fermions is general.
Nevertheless, it is useful to consider separately three cases where the gauge bosons couple to
a pair of Majorana fermions, a pair of Dirac fermions, and a fermion pair consisting of one
Majorana and one Dirac fermion.

First, consider the gauge interactions of neutral Majorana fermions. The Majorana fermions
consist of left-handed (%, 0) interaction eigenstate fermions &; that transform under a real rep-
resentation of the gauge group. After converting from the interaction eigenstates & to the mass
eigenstates &; using eq. (3.2.7), the Lagrangian for the gauge interactions of Majorana fermions
is given by:

Loy = —ALETTHG) g (4.3.15)

where the A}, are neutral (real) mass eigenstate gauge fields, and
(G")i = ga "3 (T*)" U (4.3.16)

or in matrix form, G% = g,QT?Q (no sum over a). Note that the G® are hermitian matrices.
The corresponding Feynman rule takes the same form as the generalized rule shown in Fig. 4.3.2,
with a restricted to values corresponding to the neutral mass eigenstate gauge bosons.

Next, consider the gauge interactions of charged Dirac fermions. The Dirac fermions consist
of pairs of left-handed (%, 0) interaction eigenstate fermions y; and #° that transform as conjugate
representations of the gauge group (hence the opposite flavor index heights). The fermion mass
matrix couples y and 7 type fields as in eq. (3.2.27). In the coupling to the interaction eigenstate
gauge fields, if the (T'%);7 are matrix elements of the hermitian representation matrices of the
generators acting on the Y;, then the #’ transform in the complex conjugate representation with
the corresponding generator matrices —(T%)* = —(T%)T, i.e. with matrix elements —(T);".

Hence, the Lagrangian for the gauge interactions of Dirac fermions can be written in the form:
Lint = =9 ALK T (T X + 9a AL 7, (T) 157 (4.3.17)

We now rewrite eq. (4.3.17) in terms of mass eigenstate fermion fields using eq. (3.2.31), and

express the hermitian matrix gauge field A* = ALT® in terms of mass eigenstate gauge fields
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Figure 4.3.3: The Feynman rules for the interaction of a gauge boson and a pair of Dirac
fermions (each formed by y and 7 of the appropriate flavor index). The fermion lines are labeled
by the corresponding two-component left-handed (%, 0) fermion fields. The matrices G} and G%
depend on the group generators for the representation carried by the y; according to egs. (4.3.19)
and (4.3.20). The index a runs over both neutral and charged (mass eigenstate) gauge bosons,
consistent with charge conservation at the vertex.

(of definite U(1)-charge, if relevant). The resulting interaction Lagrangian is then given by:
ot = = Al [5G X — 0l 7GR (4.3.18)
where A, G9 and A, G, are hermitian matrix-valued gauge fields, with:

(G%)ij = gaLki(Ta)kmLmj 5 (4.3.19)
(GR);" = gaR™5(T*)m" Ry (4.3.20)

In matrix form, eqs. (4.3.19) and (4.3.20) read: G4 = g,L'T°L and G% = g, R'T*R (no sum
over a). For values of a corresponding to the neutral gauge fields, G¢ and G¢, are hermitian
matrices. The corresponding Feynman rules for the gauge interactions of Dirac fermions are
shown in Fig. 4.3.3. Note that y; with its arrow pointing out of the vertex and 7’ with its arrow
pointing into the vertex represent the same Dirac fermion.

Finally, consider the interaction of a charged vector boson W (with U(1)-charge ¢y;,) with
a fermion pair consisting of one Majorana and one Dirac fermion. As before, we denote the
Majorana fermion by & and the Dirac fermion pair by x; and 7/ (with U(1)-charges qj and
—qj, respectively). All fields are assumed to be in the mass eigenstate basis. The interaction

Lagrangian is given by:%?
Lot = —Wul(Gr); XVe" & — (Ga)iy&Ta 0] = WG i €15y — (Gz)ijﬁjﬁué’i] , (43.21)

where G and Gy are arbitrary complex matrices, with (G1)'; = [(G1)7]* and (G2)" = [(G2);]*,
such that (G1);* = (G2)i; = 0 unless gy, = ¢;. The interactions of eq. (4.3.21) yield the Feynman

“2The sign in front of G is conventionally chosen to match the sign of the term proportional to G% in eq. (4.3.18).
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Figure 4.3.4: The Feynman rules for the interactions of a charged vector boson (with U(1)-
charge qy;) with a fermion pair consisting of one Majorana fermion §; and one Dirac fermion
formed by x; and 7’/ (with corresponding U(1)-charges g; and —¢;). The fermion lines are labeled
by the corresponding two-component left-handed (%, 0) fermion fields. The matrix couplings G
and G are defined in eq. (4.3.21). Note that (G1);' = (G2)i; = 0 unless gy, = ¢;. The arrows
indicate the direction of flow of the U(1)-charges of the fermion and boson fields.

rules exhibited in Fig. 4.3.4. Note that rules (¢) and (d) are the complex conjugates of rules
(a) and (b), respectively, corresponding to a reversal of the flow of the U(1)-charge through the
interaction vertex.

In Figs. 4.3.2-4.3.4, two versions are given for each of the boson-fermion-fermion Feynman
rules. The correct version to use depends in a unique way on the heights of indices used to
connect each fermion line to the rest of the diagram. For example, the way of writing the
vector-fermion-fermion interaction rule depends on whether we used wTiﬁ“wj, or its equivalent
form —¢j0“¢Ti7 in eq. (4.3.11). Note the different heights of the undotted and dotted spinor
indices that adorn ¢* and @*. The choice of which rule to use is thus dictated by the height of
the indices on the lines that connect to the vertex. These heights should always be chosen so
that they are contracted as in eq. (2.35).

The application of the rules of this subsection will be exhibited in Section 4.5. Many

additional examples involving Standard Model and MSSM processes can be found in Section 6.

4.4 General structure and rules for Feynman graphs

When computing an amplitude for a given process, all possible diagrams should be drawn that
conform with the rules given in Sections 4.1-4.3 for external wave functions, propagators, and
interactions, respectively. Starting from any external wave function spinor (or from any vertex
on a fermion loop), factors corresponding to each propagator and vertex should be written down
from left to right, following the line until it ends at another external state wave function (or at

the original point on the fermion loop). If one starts a fermion line at an x or y external state
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spinor, it should have a raised undotted index in accord with eq. (2.35). Or, if one starts with
an 2! or y', it should have a lowered dotted spinor index. Then, all spinor indices should always
be contracted as in eq. (2.35). If one ends with an x or y external state spinor, it will have a
lowered undotted index, while if one ends with an z or y! spinor, it will have a raised dotted
index. For arrow-preserving fermion propagators and gauge vertices, the preceding determines
whether the ¢ or & rule should be used.

With only a little practice, one can write down amplitudes immediately with all spinor

indices suppressed. In particular, the following must be satisfied:

e For any scattering matrix amplitude, factors of 0 and & must alternate. If one or  (4.4.1)
more factors of o and/or @ are present, then x and y must be followed [preceded]
by a ¢ [7], and ' and y' must be followed [preceded] by a @ [o].
These requirements automatically dictate whether the o or & version of the rule for arrow-
preserving fermion propagators and gauge vertices are employed in any tree-level Feynman
diagram. In loop diagrams, we must add one further requirement that governs the order of the

o and @ factors as one traverses around the loop.

e Arrow-preserving propagator lines must be traversed in a direction parallel [anti- (4.4.2)
parallel] to the arrowed line segment for the & [¢] version of the propagator rule.*3

For fermion lines that are not closed loops, this last requirement is realized automatically
provided that the requirements of eq. (4.4.1) are satisfied. However, for closed fermion loops, one
must use the correct fermion propagator corresponding to the direction around the loop one has
chosen to follow in writing down the spinor trace with suppressed indices. For example, having
employed a o [7] rule at one vertex attached to the loop, one must then traverse the loop from
that vertex point in a direction parallel [antiparallel] to the arrow-preserving propagator lines
in the loop. Indeed, this rule is crucial for obtaining the correct sign for the triangle anomaly
calculation in Section 6.26.

Symmetry factors for identical particles are implemented in the usual way. Fermi-Dirac

statistics are implemented by the following rules:
e Each closed fermion loop gets a factor of —1.

e A relative minus sign is imposed between terms contributing to a given amplitude whenever
the ordering of external state spinors (written left-to-right in a formula) differs by an odd

permutation.

Amplitudes generated according to these rules will contain objects of the form:

a = 21229 (4.4.3)

43This rule is simply a consequence of the order of the spinor indices in Fig. 4.2.2, as noted in Section 4.2.
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where z; and 2y are each commuting external spinor wave functions z, z', y, or y', and ¥ is a
sequence of alternating ¢ and & matrices. The complex conjugate of this quantity is obtained

by applying the results of eqs. (2.42)-(2.46), and is given by*!
a* = zgzrzif (4.4.4)

where Y, is obtained from 3 by reversing the order of all the o and & matrices, and using the same
rule for suppressed spinor indices. [Notice that this rule for taking complex conjugates has the
same form as for anticommuting spinors; cf. eqs. (2.42)—(2.46).] We emphasize that in principle,
it does not matter in what direction a diagram is traversed while applying the rules. However,
for each diagram one must include a sign that depends on the ordering of the external fermions.
This sign can be fixed by first choosing some canonical ordering of the external fermions. Then
for any graph that contributes to the process of interest, the corresponding sign is positive
(negative) if the ordering of external fermions is an even (odd) permutation with respect to the
canonical ordering. If one chooses a different canonical ordering, then the resulting amplitude
changes by an overall phase (is unchanged) if this ordering is an odd (even) permutation of the
original canonical ordering.*> This is consistent with the fact that the S-matrix element is only
defined up to an overall sign, which is not physically observable.*

Note that different graphs contributing to the same process will often have different external
state wave function spinors, with different arrow directions, for the same external fermion.
Furthermore, there are no arbitrary choices to be made for arrow directions, as there are in some
four-component Feynman rules for Majorana fermions (as discussed in Appendix G.) Instead,

one must add together all Feynman graphs that obey the rules.

4.5 Basic examples of writing down diagrams and amplitudes

Some simple examples will help clarify the rules of Section 4.4. In the tree-level Feynman graphs
of this subsection, we label all two-component fermion lines by their corresponding left-handed
(%,0) fields. (We shall propose a slightly different labeling convention in Section 5.) A larger

number of examples, drawn from practical calculations, are given in Section 6.

4 For Lorentz-scalar quantities of the form given by eq. (4.4.3), there is no distinction between complex conju-
gation and hermitian conjugation.

45For a process with exactly two external fermions, it is convenient to apply the Feynman rules by starting from
the same fermion external state in all diagrams. That way, all terms in the amplitude have the same canonical
ordering of fermions and there are no additional minus signs between diagrams. However, if there are four or more
external fermions, it often happens that there is no way to choose the same ordering of external state spinors for
all graphs when the amplitude is written down. Then the relative signs between different graphs must be chosen
according to the relative sign of the permutation of the corresponding external fermion spinors. This guarantees
that the total amplitude is antisymmetric under the interchange of any pair of external fermions.

% The S-matrix element is related to the invariant matrix element M; by Spi = 07, + (21)*6™W (py — pi) iMyi,
where py (p;) is the total four-momentum of the final (initial) state. If f # ¢ (i.e. the final and initial states are
distinct), then d¢; = 0 in which case the invariant matrix element is only defined up to an overall (unphysical)
sign. However, if f = ¢, the most convenient choice for the canonical ordering of external fermions is the one that
yields (f|¢) = dy; (with no extra minus sign), which then fixes the absolute sign of the invariant matrix element.
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4.5.1 Scalar boson decay to fermion pairs

Let us first consider a theory with a multiplet of uncharged, massive (%, 0) fermions &;, and a

real scalar ¢, with interaction

Lot = —% (Ve + AyeTie ) o, (45.1)
where \;; = (AY)* and A\ = M’ Consider the decay ¢ — & (P}, 51)&;(P2, s2) [for a fixed choice
of i and j], where by &;(p, s) we mean the one particle state given by eq. (3.2.13).

£ (p2,52) &i(p2, s2)

éi(pl,sl) gi(plvsl)

Figure 4.5.1: The two tree-level Feynman diagrams contributing to the decay of a neutral
scalar into a pair of Majorana fermions.

Two diagrams contribute to this process, as shown in Fig. 4.5.1. The matrix element is:
iM =y (B, 1) (=N 867 )y(Fa, 52) + 21 (B, 51)a(—iXij0% 5)at (B, 5)"
= —iXTy (B, 51)y (D, 52) — ihijat (B, 51)a! (B, 52) (4.5.2)

The second line could be written down directly by recalling that the sum over suppressed spinor
indices is taken according to eq. (2.35). Note that if we reverse the ordering for the external
fermions, the overall sign of the amplitude changes sign. This is easily checked, since for the
commuting spinor wave functions (x and y), the spinor products in eq. (4.5.2) change sign when
the order is reversed [see egs. (2.58) and (2.59)]. This overall sign is not significant and depends
on the order used in constructing the two particle state. One could even make the choice of

starting the first diagram from fermion 1, and the second diagram from fermion 2:
ZM = _Z)\Z]y(ﬁh Sl)y(ﬁ27 32) - (_1)ZAZJ‘TT(ﬁ27 32)xT(ﬁ17 31) . (453)

Here, the first term establishes the canonical ordering of fermions (12), and the contribution from
the second diagram therefore includes the relative minus sign in parentheses. Indeed, eqs. (4.5.2)
and (4.5.3) are equal. In the computation of the total decay rate for the case of i = j, one must
multiply the integral over the total phase space by 1/2 to account for the identical particles.
Next, we consider a theory of a massive neutral scalar boson that couples to a multiplet of
Dirac fermions. We denote the corresponding two-component fields by x; and 7. For simplicity,
we take all the U(1)-charges of the x; to be equal (and opposite to the charges of the ‘). The

corresponding U(1)-invariant interaction is:
Lot = —(W'xi + KX)o, (4.5.4)
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Xj (P2, 52) 7 (p2, 52)

n'(p1,s1) xi(p1, 1)

Figure 4.5.2: The two tree-level Feynman diagrams contributing to the decay of a neutral
scalar into a pair of Dirac fermions. The y;—n* and Xjfnj pairs, each with oppositely directed
arrows, comprise Dirac fermion states with flavor indices 7 and j, respectively.

where x;7 = (k';)*. Consider the decay ¢ — fi(Py,s1)f? (P, s2) [for a fixed choice of i and j],
where by f (P, s) and f(p, s) we mean the one particle states given by eq. (3.2.22). Two diagrams
contribute to this process, as shown in Fig. 4.5.2. Note that the outgoing fermion lines are

distinguished by their U(1)-charges. The matrix element is then given by
iM = —ir iy(B1, 1)y (P2, 52) — ik’ 2" (1, 51) 2T (B, 52) (4.5.5)

The matrix element for ¢ — f;(p}, s1)f?(Pa, s2) is identical to that of ¢ — & (P}, 51)&;(Pa, s2)
after replacing A with /{ij. However for fixed i = j, the rate for scalar boson decay to f;f°
is twice that of &;&; due to the final state identical particles in the latter case, as noted above.
One also arrives at the same conclusion if one treats a single Dirac fermion as a pair of mass-
degenerate two-component fields & and & [cf. eq. (3.2.15)]. Due to the U(1)-symmetry, the
scalar Yukawa interactions are diagonal in the £;—&s basis, so the rate for scalar decay into the

Dirac fermion pair is equal to the incoherent sum of the rate for decay into £1&; and £9&o.

4.5.2 Fermion pair annihilation into a scalar boson

It is also instructive to consider the corresponding 2 — 1 scattering (annihilation) processes
E(Py, 51)E(Pa, 52) — ¢ and f(P, 51)f (P2, s2) — ¢, respectively. The corresponding amplitudes
are given by eqs. (4.5.2) and (4.5.5) with y — 2 and 2T — y' (for simplicity, we neglect flavor).
In the computation of the cross-sections, there is no extra factor required to account for the case
of identical particles in the initial state. That is, the cross-section for f(5y,s1)f (D2, s2) — ¢ is
equal to the cross-section for (P, s1)&(Pa, s2) — ¢ after replacing A with &.

This may at first seem puzzling given that a Dirac fermion can be represented by a pair
of mass-degenerate two-component fields xy; and y2. But, recall the standard procedure for the
calculation of decay rates and cross-sections in field theory—average over unobserved degrees of
freedom of the initial state and sum over unobserved degrees of freedom of the final state. This
mantra is well-known for dealing with spin and color degrees of freedom, but it is also applicable
to degrees of freedom associated with global internal symmetries. Thus, the cross-section for the

annihilation of a Dirac fermion pair into a neutral scalar boson can be obtained by computing the
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average of the cross-sections for &1 (P, s1)&1 (P2, s2) — ¢ and & (P, $1)E2(P2, S2) — ¢. Since the
annihilation cross-sections for £1&; and £2&5 are equal, we confirm the annihilation cross-section
for the Dirac fermion pair obtained above in the x—n basis. Since the latter is conceptually
simpler, subsequent computations involving Dirac fermions will be performed in the xy—n basis.

The annihilation rate of fermions enters in the analysis of the event flux due to the anni-
hilation of dark matter in the halo of our galaxy. Let us compare the rates in the case that
the dark matter is either a Majorana or a Dirac fermion. Suppose the annihilation involves two
fermions whose number densities are ni and no respectively. Then the observer on Earth who
integrates along the line of sight to the annihilation events that are detected sees a flux of events

proportional to [152]
dNevents

dAdt

where v, is the relative velocity of the annihilating initial state particles, oan, is the annihilation

~ /n1n2 <Uannvrol> de, (456)

cross-section and (---) refers to a thermal average [153] over the velocity distribution of dark
matter particles in the halo. We now compare the case of the annihilation of a single species of
Majorana particles and the annihilation of a Dirac fermion-antifermion pair (assumed to have
the same mass and couplings). We assume that the number density of Dirac fermions and
antifermions and the corresponding number density of Majorana fermions are all the same (and
denoted by n). Above, we showed that oy, is the same for the annihilation of a single species of
Majorana and Dirac fermions. For the Dirac case, niny = n?. For the Majorana case, because
the Majorana fermions are identical particles, given N initial state fermions in a volume V', there
are N(N — 1)/2 possible scatterings. In the thermodynamic limit where N, V' — oo at fixed
n = N/V, we conclude that nyng = %nz for a single species of annihilating Majorana fermions.*”
Hence the event flux rate for the annihilation of a Dirac fermion-antifermion pair is double that
of a single species of Majorana fermions.*® The extra factor of 1/2 can also be understood by
noting that in the case of annihilating dark matter particles (in the large N limit), all possible
scattering axes occur and are implicitly integrated over. But, integrating over 4m steradians
double counts the annihilation of identical particles (in the same way it does in the computation
of the decay rate of a scalar into identical fermions discussed above). Hence, one must include
a factor of % in this case by replacing niny = n? by %nz in eq. (4.5.6).

The relic abundance of primordial dark matter particles in the universe is inversely propor-
tional to (Ganntrel) [155]. By similar arguments to the ones just presented, it follows that the
relic abundance of a single species of Majorana fermions would be twice that of a single species

of Dirac fermions.

4"The factor of 1 /2, which has been erroneously omitted in many papers in the literature, was correctly employed
and explained in ref. [154].

48This is also consistent with the interpretation of a Dirac fermion as a pair of mass-degenerate Majorana
fermions.
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4.5.3 Vector boson decay into fermion pairs

Consider next the decay of a massive neutral vector boson A, into a pair of Majorana fermions,

A, — &P, 51)€(Py, s2), following from the interaction,
Lint = —GijAufTiEufj, (4.5.7)

where GG is an hermitian coupling matrix. The two diagrams shown in Fig. 4.5.3 contribute.

éi(pl,sl) Ei(phsl)

&(p2, s2) &;(p2, 52)

Figure 4.5.3: The two tree-level Feynman diagrams contributing to the decay of a massive
neutral vector boson A, into a pair of Majorana fermions.

We start from the fermion with momentum p; and spin vector s; and end at the fermion
with momentum py and spin vector sg, using the rules of Fig. 4.3.2. The resulting amplitude

for the decay is
iM=et [_iGiij(ﬁlv Sl)ﬁuy(ﬁ% s2) + iGjiy(ﬁ1a Sl)auﬂ(ﬁza 32)] ) (4.5.8)

where " is the vector boson polarization vector. We have used the F-version of the vector-
fermion-fermion rule [see Fig. 4.3.2] for the first diagram of Fig. 4.5.3 and the o-version for the
second diagram of Fig. 4.5.3, as dictated by the implicit spinor indices, which we have suppressed.
However, we could have chosen to evaluate the second diagram of Fig. 4.5.3 using the &-version
of the vector-fermion-fermion rule by starting from the fermion with momentum py and spin

vector so. In that case, the term iG;'y (5, s1)0,x" (5, s2) in eq. (4.5.8) is replaced by
(=[G et (B, s2)7,y (D7, 51)] - (4.5.9)

In eq. (4.5.9), the factor of —iG;" arises from the use of the G-version of the vector-fermion-
fermion rule, and the overall factor of —1 appears because the order of the fermion wave functions
has been reversed; i.e. (21) is an odd permutation of (12). This is in accord with the ordering
rule stated at the end of Section 4.4. Thus, the resulting amplitude for the decay of the vector

boson into the pair of Majorana fermions now takes the form:
iM = et | —iGI (P, 1)T .y (Da, 52) + G 2T (D, $2)T .y (D7, 31)] , (4.5.10)

which coincides with eq. (4.5.8) after using yo*a! = 215!y [cf. eq. (2.60) with commuting
spinors]. Eq. (4.5.10) explicitly exhibits the property that the amplitude is antisymmetric under
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the interchange of the two external identical fermions. Again, the absolute sign of the total

amplitude is not significant and depends on the choice of ordering of the outgoing states.
Next, we consider the decay of a massive neutral vector boson into a pair of Dirac fermions.

Each Dirac fermion is described by the two-component fields x, and n', which possess equal and

opposite U(1)-charges, respectively. The corresponding interaction Lagrangian is given by:

Lot = —AM[(G) XV T — (GRr) niTun’ ], (4.5.11)

i
where G, and G are hermitian. There are two contributing graphs, as shown in Fig. 4.5.4.
Xi(p1,81) n'(p1, 51)

Ay Ay

X (P2, 52) 7’ (p2, s2)

Figure 4.5.4: The two tree-level Feynman diagrams contributing to the decay of a massive
neutral vector boson A, into a pair of Dirac fermions. The x;—n* and x;—’ pairs, each with
oppositely directed arrows, comprise Dirac fermion states with flavor indices 7 and 7, respectively.

To evaluate the amplitude, we start with the fermion of momentum p; and spin vector sq,
and end at the fermion with momentum ps and spin vector sy. Note that the outgoing y; with
the arrow pointing outward from the vertex and the outgoing 7° with the arrow pointing inward
to the vertex both correspond to the same outgoing Dirac fermion. The amplitude for the decay

is given by:
iM = [—i(GL) 2! (Br. 517, (o, 52) = 1(GR) Y (B s1)oa! (B 52)]
= [—i(GL) 2 (B, 50Ty (B 52) — i(GR)Po! (B 52Ty (Bros0)| - (45.12)

As in the case of the decay to a pair of Majorana fermions, we have exhibited a second form
for the amplitude in eq. (4.5.12) in which the F-version of the vertex Feynman rule has been
employed in both diagrams. Of course, the resulting amplitude must be the same in each method
(up to a possible overall sign of the total amplitude that is not determined).

The computation of the amplitude for the decay of a charged vector boson to a fermion
pair consisting of one Majorana fermion and one Dirac fermion, due to the interactions given in

eq. (4.3.21), is straightforward and will not be given explicitly here.

4.5.4 Two-body scattering of a boson and a neutral fermion

The next level of complexity consists of diagrams that involve fermion propagators. In the
examples that follow in this and in the next subsection, we shall ignore the flavor index and

consider scattering processes that involve a single flavor of Majorana or Dirac fermion. For our

o7



N e N e
N 7 N

N k - N k -
N 7 N 7
<l |-
/ ) \\ / ]

N 7 N 7
N 7 N 7
N 7 N 7
N 7 N 7
N 7 N 7

Figure 4.5.5: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
scalar and a Majorana fermion. There are four more diagrams, obtained from these by crossing
the initial and final scalar lines.

first example of this type, consider the tree-level matrix element for the scattering of a neutral
scalar and a two-component neutral massive fermion (¢ — ¢¢), with the interaction Lagrangian
given above in eq. (4.5.1). Using the corresponding Feynman rules, there are eight contributing
diagrams. Four are depicted in Fig. 4.5.5; there are another four diagrams (not shown) where
the initial and final state scalars are crossed (i.e., the initial state scalar is attached to the same
vertex as the final state fermion).
We shall write down the amplitudes for the four diagrams shown in Fig. 4.5.5, starting with
the final state fermion line and moving toward the initial state fermion line. Then,
i

2_ 2
k mg

iM= {(—M)(—M*) (! (B, 52) 7k 2B, 51) + y(Bo, 52) 0k y! (B, 1)

+mg [(—i)\)2y(ﬁ2, $2)z(P, 51) + (—iA*) 2t (B, 52)y" (51, 31)] } + (crossed) ,(4.5.13)

where k* is the sum of the two incoming (or outgoing) four-momenta, (p1, s1) are the momentum
and spin four-vectors of the incoming fermion, and (p2, s2) are those of the outgoing fermion.
The notation “(crossed)” refers to the contribution to the amplitude from diagrams which have
the initial and final scalars interchanged. Note that we could have evaluated the diagrams above
by starting with the initial vertex and moving toward the final vertex. It is easy to check that
the resulting amplitude is the negative of the one obtained in eq. (4.5.13); the overall sign change
simply corresponds to swapping the order of the two fermions and has no physical consequence.
The overall minus sign is a consequence of egs. (2.58)—(2.60) and the minus sign difference
between the two ways of evaluating the propagator that preserves the arrow direction.

Next, we compute the tree-level matrix element for the scattering of a neutral vector boson
and a neutral massive two-component fermion £ with the interaction Lagrangian of eq. (4.5.7).

Again there are eight diagrams: the four diagrams depicted in Fig. 4.5.6 plus another four (not
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Figure 4.5.6: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
vector boson and a Majorana fermion. There are four more diagrams, obtained from these by
crossing the initial and final scalar lines.

shown) where the initial and final state vector bosons are crossed.

Starting with the final state fermion line and moving toward the initial state, we obtain

iM= m{(—ZG)ziﬂT(I’z, 52) 0-&y o-ko-gg x(py,s1) + (ZG)zy(P% 52) 0-&, O"k’ff'ﬁyT(Pb 51)
A

H(—iG)iG)me |y(Fay52) 05721 2(B1,51) + 2l (B, 2) -2 02, 4} (B 1) }
+(crossed) , (4.5.14)

where €, and ¢, are the initial and final vector boson polarization four-vectors, respectively. As
before, k* is the sum of the two incoming (or outgoing) four-momenta, (p1,s1) and (pa, s2) are
the momentum and spin four-vectors of the incoming and outgoing fermions, respectively, and
“(crossed)” indicates the terms from diagrams in which the initial and final vector bosons are
interchanged. Alternatively, if one starts with an initial state fermion and moves toward the final
state, the resulting amplitude is the negative of the one obtained in eq. (4.5.14), as expected.
The computation of the amplitude for the scattering of a charged scalar or vector boson

and a Majorana fermion is straightforward and will not be given explicitly here.

4.5.5 Two-body scattering of a boson and a charged fermion

We first consider the scattering of a Dirac fermion with a neutral scalar. We denote the Dirac
mass of the fermion by mp. The left-handed fields x and 7 have opposite charges (which we
take to be @ = +1 and —1 respectively), and interact with the scalar ¢ according to

Ly = —0lrxn + kX', (4.5.15)

where k is a coupling parameter. Then, for the elastic scattering of the () = +1 fermion and a

scalar, the diagrams of Fig. 4.5.7 contribute at tree level plus another four diagrams (not shown)
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Figure 4.5.7: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
scalar and a charged fermion. There are four more diagrams, obtained from these by crossing
the initial and final scalar lines.

where the initial and final state scalars are crossed. Now, these diagrams match precisely those
of Fig. 4.5.5. Thus, applying the Feynman rules yields the same matrix element, eq. (4.5.13),
previously obtained for the scattering of a neutral scalar and neutral two-component fermion,
with the replacement of A with x and m¢ with mp.

We next examine the scattering of a Dirac fermion and a charged scalar, where both the
scalar and fermion have the same absolute value of the charge. As above, we denote the charged
@ = £1 fermion by the pair of two-component fermions x and 7 and the (intermediate state)
neutral two-component fermion by . The charged ) = £1 scalar is represented by the complex

scalar field ® and its hermitian conjugate. The interaction Lagrangian takes the form:
Lhue = —@[r1né + w3} €T — DT [rax€ + winTel. (4.5.16)

Consider the scattering of an initial boson-fermion state into its charge-conjugated final state via
the exchange of a neutral fermion. The relevant diagrams are shown in Fig. 4.5.8 plus the cor-
responding diagrams with the initial and final scalars crossed. We define the four-momentum k
to be the sum of the two initial state four-momenta as shown in Fig. 4.5.8. The derivation of
the amplitude is similar to the ones given previously, and we end up with

—1

M = | Kivalel By, 2) 7k, 1) + () 7 (o)
3

g [By(B, 52)a(By, 91) + (5% (B, s2)y (B, 1) } + (crossed) . (4.5.17)

The scattering of a charged fermion and a neutral spin-1 vector boson can be similarly
treated. For example, consider the amplitude for the elastic scattering of a charged fermion of
mass mp and a neutral vector boson. Again taking the interactions as given in eq. (4.5.11),

the relevant diagrams are those shown in Fig. 4.5.9, plus four diagrams (not shown) obtained
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Figure 4.5.8: Tree-level Feynman diagrams contributing to the scattering of an initial charged
scalar and a charged fermion into its charge-conjugated final state. The unlabeled intermediate
state is a neutral fermion. There are four more diagrams, obtained from these by crossing the
initial and final scalar lines.

Figure 4.5.9: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
vector boson and a Dirac fermion. There are four more diagrams, obtained from these by
crossing the initial and final vector lines.

from these by crossing the initial and final state vector bosons. Applying the Feynman rules of

Fig. 4.3.3, one obtains the following matrix element:

IM = W{G%ﬂ(m,@) G-ey,0-kT-e 2(Py,51) + G%y(pz,sz)cr-s2 a-k‘a-elyT(pl,sl)
—mp

+mpGrGr [y(ﬁz, s82) 0576 (P, 51) + 21 (Py, 52) Tey006 Y (P, 31)] } + (crossed) ,
(4.5.18)

and the assignments of momenta and spins are as before.
The computation of the amplitude for the scattering of a charged fermion and a charged

vector boson is straightforward and will not be given explicitly here.
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4.5.6 Two-body fermion—fermion scattering

Finally, let us work out an example with four external state fermions. Consider the case of
elastic scattering of two identical Majorana fermions due to scalar exchange, governed by the
interaction of eq. (4.5.1). The diagrams for scattering initial fermions labeled 1,2 into final state

fermions labeled 3,4 are shown in Fig. 4.5.10.

ey e Dkt ek

1 3 3 1 3 3
L e — T > — T > o e
I I I I
| | | |
2 ! 4 2 ! 4 2 ! 4 2 ! 4

1 1 1 1

Figure 4.5.10: Tree-level Feynman diagrams contributing to the elastic scattering of identical
Majorana fermions via scalar exchange in the s-channel (top row), t-channel (middle row), and
u-channel (bottom row).

The resulting invariant matrix element is:

iM = (1) {1z wys) + (O ld) el + AP [rma) e + olh o]}
¢
+t __;2 {)\2(y3:1:1)(y4x2) + (A*)%E%ﬂ)(:nly%) + A2 [(:sgy{)(ng + (y3;p1)(ley£)]}
@
) I ) () + (V) () ()

u — md)
HAR [y s2) + (maen) (@l } (4.5.19)

where z; = x(P},s:), ¥i = y(P;,si), Mg is the mass of the exchanged scalar, s = (p1 + p2)?,
t = (p1 — p3)? and u = (p; — ps4)?. We have chosen the canonical ordering of external fermions
to be 3142 (corresponding to the t-channel contribution). For elastic scattering, this choice of
canonical ordering guarantees that if no scattering occurs then the S-matrix is just equal to the
unit operator with no extraneous minus sign (cf. footnote 46). The relative minus signs between

the t-channel diagram and the s and u-channel diagrams [shown in parentheses in eq. (4.5.19)]
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are obtained by observing that both 1234 and 4132 are both odd permutations of 3142. Note
that we would have obtained the same relative signs for the u-channel diagrams had we crossed
the initial state fermion lines instead of the final state fermion lines.

Eq. (4.5.19) can be factorized with respect to the scalar line:

iM = 5 (O\zrae + X ylyd) ysys + N afzh) + —— Owsar + X aly]) Owazs + N alyd)
5 —my t— mg
+u s (Ayaz1 + A*:EZyI)(Aygazg + A*:Ei.}g%) . (4.5.20)
e

This is a common feature of Feynman graphs with a virtual boson. This example also illustrates
that in contrast to the four-component fermion formalism, the two-component fermion Feyn-
man rules typically yield many more diagrams, but the contribution of each of the diagrams is

correspondingly simpler.

4.5.7 Non-relativistic potential due to scalar or pseudoscalar exchange

Consider two distinguishable fermions, and a scalar-fermion-fermion Yukawa interaction given
by eq. (4.3.9). We can compute the force law that the fermions experience due to exchange of
a spinless boson. That is, we shall derive the Yukawa potential as a function of the separation
distance of the two fermions in the static limit.

To carry out this computation, we compute the invariant matrix element for two-body
fermion-fermion elastic scattering in the non-relativistic limit. The relevant diagrams are shown
in Fig. 4.5.10. As our two fermions are distinguishable, only the ¢-channel graphs (shown in the
middle row of Fig. 4.5.10) are relevant. As a result, the matrix element for the elastic scattering

of two Majorana fermions is given by the ¢-channel contribution of eq. (4.5.20),

7
iM= 5
m¢—t

(Aysz1 + /\*azgyi)(/\ng + /\*aziy;) : (4.5.21)

The choice of the overall sign is fixed by the canonical ordering of the external fermions.*? Al-
though the two fermions are distinguishable, we have assumed for simplicity that their (complex)
Yukawa coupling strengths are the same and given by A. For the scattering of two distinguishable
Dirac fermions, the resulting expression for the scattering amplitude is identical to eq. (4.5.21),
with A replaced by the appropriate complex Yukawa coupling k.

We denote the masses of the distinguishable fermions by m; and ms. In the non-relativistic

limit, p; =~ (mq; P1) and p3 =~ (m1; P3), so that

mg —t =~ |p1 — pa|> +mj = |q1> +mj, (4.5.22)

19 As noted in Section 4.5.6, the canonical ordering of the external fermions in two-body elastic scattering is
determined by the requirement that (f|i) = +1 for f =i (cf. footnote 46).
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where
q=pPs—P1=P2—Pa (4.5.23)
is the momentum-transfer three-vector. Two separate cases will be considered.

In the first case, A is a real coupling. This corresponds to the exchange of a JF¢ = 0t+
scalar. Using the non-relativistic forms of egs. (C.2.16) and (C.2.22) for the spinor bilinears, it
is only necessary to keep the leading term. We then find:
4i| A|Pmyma

iM= -5~
g1 +m

Os1530s254 » (4.5.24)

in agreement with eq. (4.123) of ref. [114].

In the second case, A is purely imaginary, and we will write A = i|A| (the overall sign is
not significant). This corresponds to the exchange of a J'¢ = 0~F pseudoscalar. Again, we
use the non-relativistic forms of egs. (C.2.16) and (C.2.22) for the spinor bilinears. However,
in this case the leading term cancels and we must retain the O(|p]/m) terms appearing in the
non-relativistic limit of the spinor bilinears. In this case, we find

i o
g2 + mi (q-3%75,,) (Q'3b7'§452) . (4.5.25)

M=
We choose the spin quantization axis to lie along the z-direction. That is, according to eq. (C.1.27),
we choose
(81,82, 8%) =(&,9,2), (4.5.26)
in which case one can rewrite eq. (4.5.25) in the more traditional way,
iIA?

M=o ——5
@1 +mj

(6'63331) (6'53432) ) (4’5’27)

where & = &7 +§72+ 273 are the usual spin-1/2 Pauli matrices.”®. Thus, pseudoscalar exchange
yields a spin-dependent force law.

The non-relativistic potential that arises from the ¢-channel scalar or pseudoscalar exchange
is obtained by comparing the relativistic scattering amplitude M with the Born approximation
for scattering off a potential V(&) in non-relativistic quantum mechanics. Taking into account
the difference between the conventions for the normalization of relativistic and non-relativistic

single-particle states, one finds that the static potential is given by [156]

o 1 d3q i &
V@) = / oy M@ (4.5.28)

in a convention where the invariant amplitude is defined as in footnote 46. Inserting the scatter-
ing amplitude for scalar (S) exchange, one obtains the well-known attractive spin-independent

Yukawa potential
’)\’2
—— €

V(IE)S - 4rr

T Oy 5505584 5 (4.5.29)

50The subscripted spin labels on & should be interpreted in the same way as outlined in footnote 95.

64



where r = |&|. For the case of pseudoscalar (PS) exchange, one can easily evaluate the integral
in eq. (4.5.28) by writing ¢;qze'?® = —V; V%, The end result is [157]:

V@ = PG G
PS ™ 16mmymy - 2% sz r
’)‘Pmi [ 4 e MeT
= - 6(3) o _*s' s1° _*s s
16mmime 3m2 (@) + T Ts3s1" T sas2
L @
1 1 1] [3(Fsysy &) (Fsysn &) . e Mo’
e T e 3] [ % M
(4.5.30)
where we have used [158]:
1 4 o Bmiwi — 1265
VNj <;> = —?52']' 5(3)(:10) + 7jr5 L (4.5.31)

4.6 Self-energy functions and pole masses for two-component fermions

In this section, we discuss the self-energy functions for fermions in two-component notation,
taking into account the possibilities of loop-induced mixing and absorptive parts corresponding
to decays to intermediate states. This formalism is useful in the computation of loop-corrected
physical pole masses.

Consider a theory with left-handed fermion degrees of freedom ; labeled by an index
i1=1,2,...,N. Associated with each 1[12 is a right-handed fermion 1[1“, where the flavor labels are
treated as described below eq. (3.2.2). The theory is assumed to contain arbitrary interactions,
which we will not need to refer to explicitly. As discussed in Section 3.2, we diagonalize the
fermion mass matrix and identify the fermion mass eigenstates 1; as indicated in eq. (4.3.5).
In general, the mass eigenstates consist of Majorana fermions & (k = 1,... N — 2n) and Dirac

fermion pairs x, and 1, (£ = 1,...,n).5" With respect to this basis, the symmetric N x N tree-

0 m[)

level fermion mass matrix, m%, is made up of diagonal elements m;, and 2 x 2 blocks ( me 0

along the diagonal, where the m;, and my are real and non-negative. Since m® is real, the height
of the flavor indices is not significant. Nevertheless, it is useful to define m;; = m% in order to
maintain the convention that two repeated flavor indices are summed when one index is raised

ki — mikmkj = mfc?f is a diagonal matrix.

and the other is lowered.’? Note that m;;m
The full, loop-corrected Feynman propagators with four-momentum p* are defined by the

Fourier transforms of vacuum expectation values of time-ordered products of bilinears of the

5Tn order to have a unified description, we shall take the flavor index of all left-handed fields (including 73 ) in
the lowered position in this subsection, in contrast to the convention adopted in Sections 3.2 and 4.3.

52We will soon be suppressing the indices, so it is convenient to employ the bar on m;; to indicate its lowered
index structure.
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fully interacting two-component fermion fields [cf. footnote 35]. Following eqs. (4.2.1)-(4.2.4),

we define:
(O] Tai ()0} (1) [0)pr = ip-0,5C7 (5), (4.6.1)
(0] T ()5 (y) [0} pr = ip- 7" (CT) i(s), (4.6.2)
(O] 91 (@)$ ! () [0)py = i6° 3 DY (s), (4.6.3)
(0] T4ai(2)4] (9) [0)pr = i0a” Dij(s) (4.6.4)
where s = p? and
CchHi;=c,". (4.6.5)

One can derive eq. (4.6.2) from eq. (4.6.1) by first writing

W @) (y) = =" Py ()l (@), (4.6.6)

where the minus sign arises due to the anticommutativity of the fields, and then using eq. (2.30);
the interchange of xz and y (after FT) simply changes p* to —p*.

In general, D and D are complex symmetric matrices, and D = D*. The matrix C
satisfies the hermiticity condition [CT]* = C. Here, we have introduced the star symbol to
mean that a quantity Q* is obtained from @ by taking the complex conjugate of all Lagrangian
parameters appearing in its calculation, but not taking the complex conjugates of Euclideanized
loop integral functions, whose imaginary (absorptive) parts correspond to fermion decay widths
to multi-particle intermediate states. That is, the dispersive part of C' is hermitian and the
absorptive part of C is anti-hermitian.

The diagrammatic representations of the full propagators are displayed in Fig. 4.6.1, where
C,;7, DY and ﬁij defined above are each N x N matrix functions. Note that the second diagram
of Fig. 4.6.1, when flipped by 180° about the axis that bisects the diagram, is equivalent to the
first diagram of Fig. 4.6.1 (with p — —p, a — 8, § — & and i <> j). In analogy with Fig. 4.2.2,

p p
-« -«

a B & B a B a B
— - —— > —— - — >
i J i J i J 1 J

Z’p.o-aﬁ- Cij Z'p.gdﬁ (CT)ij ’L'(sdﬁ' DY z‘éaﬁ Eij

Figure 4.6.1: The full, loop-corrected propagators for two-component fermions are associated
with functions C(p?);? [and its matrix transpose], D(p*)¥, and D(p?);;, as shown. The shaded
boxes represent the sum of all connected Feynman diagrams, with external legs included. The
four-momentum p flows from right to left.
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a B | . |
—<— < ipoCJ o —ipa’(CT),

7 J

Figure 4.6.2: The first two diagrammatic rules of Fig. 4.6.1 can be summarized by a single
diagram. Here, the choice of the o or @ version of the rule is uniquely determined by the height
of the spinor indices on the vertex to which the full loop-corrected propagator is connected
(cf. Fig. 4.2.2 and the accompanying text)

one could replace the first two diagrammatic rules of Fig. 4.6.1 with a single rule shown in
Fig. 4.6.2, where we have used eq. (4.6.5) to rewrite the second version of the rule in terms of
C'T. Indeed, by using the 7-version of the rule shown in Fig. 4.6.2 and flipping the corresponding
diagram by 180° as described above, one reproduces the rule of the second diagram of Fig. 4.6.1.
In what follows, we prefer to keep the first two rules of Fig. 4.6.1 as separate entities. This
will permit us to conveniently assemble the four diagrams of Fig. 4.6.1 into a 2 x 2 block matrix
of two-component propagators [cf. eq. (G.5.2)]. In addition, by choosing the momentum flow in
the two-component propagators from right to left, the left-to-right orderings of the spinor labels
of the diagrams coincide with the ordering of spinor indices that appear in the corresponding
algebraic representations. Thus, we can multiply diagrams together and interpret them as the
product of the respective algebraic quantities taken from left to right in the normal fashion.

Given the tree-level propagators of Fig. 4.2.1, the full propagator functions are given by:

Cij = 5ij/(8 —m?) —+ ... (4.6.7)
DYV =mi /(s —m?) + .. (4.6.8)
Dij :m”/(s—mf)—i— , (469)

with no sum on ¢ in each case. They are functions of the external momentum invariant s and
of the masses and couplings of the theory. Inserting the leading terms [eqs. (4.6.7)—(4.6.9)]
into Fig. 4.6.1 and organizing the result in a 2 x 2 block matrix of two-component propagators
reproduces the usual four-component fermion tree-level propagator given in eq. (G.5.2).

The computation of the full propagators can be organized, as usual in quantum field theory,
in terms of one-particle irreducible (1PI) self-energy functions. These are formally defined to be
the sum of Feynman diagrams to all orders in perturbation theory (with the corresponding tree-
level graph ezcluded) that contribute to the 1PI two-point Green function. Diagrammatically,
the 1PI self-energy functions are defined in Fig. 4.6.3. As in the case of the full loop-corrected
propagators, [ET]* = = and Q = Q*, where the star symbol was defined in the paragraph
following eq. (4.6.6), and (ET)!; = E,°.

We illustrate the computation of the full propagator by considering first the following dia-
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—ip-oiPE,J —ip'JaB(ET)ij —i6,° QY _Mdgﬁij

Figure 4.6.3: The self-energy functions for two-component fermions are associated with func-
tions E(s);/ [and its matrix transpose], (s)¥, and §(s);;, as shown. The shaded circles repre-
sent the sum of all one-particle irreducible, connected Feynman diagrams, and the external legs
are amputated. The four-momentum p flows from right to left.

grammatic identity (with momentum p flowing from right to left):

a B a B
— - L < '
i J ] J
a o B « ) B
+ —<— ——
1 k 4 J 1 k 4 J
« 0 ) B « 0 ) B
+ ESSRE <
i k Y4 J 7 k / J

(4.6.10)

Similar diagrammatic identities can be constructed for the three other full loop-corrected prop-

agators of Fig. 4.6.1. The resulting four equations can be neatly summarized by:
F=T+TSF, (4.6.11)

where F' is the matrix of full loop-corrected propagators, T is the matrix of tree-level propagators

and S is the matrix of self-energy functions. Expressing eq. (4.6.11) in terms of diagrams,

= -
ﬂ» +D+ e S 0 1 «—Q+ «—Q—» ﬂ» +D+
(4.6.12)

which, when expanded out, yields eq. (4.6.10) and the corresponding identities for the three
other full loop-corrected propagators of Fig. 4.6.1. Note that we have chosen the labeling and
momentum flow in Figs. 4.6.1 and 4.6.3 such that the spinor and flavor labels of the diagrams

appear in the appropriate left-to-right order to permit the interpretation of eq. (4.6.12) as a
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matrix equation. To solve for F',>> we multiply eq. (4.6.11) on the left by 7~! and on the right
by F~! to obtain T-' = F~1 + 5. Thus, F = [T~! — S]~!. In pictures:

-1

= - . (4.6.13)

We evaluate the tree-level propagator matrix and its inverse using eqs. (4.6.7)—(4.6.9), keep-

ing in mind that the direction of momentum flow is from right to left:

i S B ' . 8.J
- - 1 175 0y p-o_s0;
= . o o (4.6.14)
- §—my ip'EaB o'y imY 5“6'
—1
> imijéaﬁ —Z'p'O'aﬁ'(;ij
= o I (4.6.15)
- - —ip'ﬁaﬁéi] z‘ﬁijéaﬁ-

where we follow the index structure defined in Figs. 4.6.1 and 4.6.3. Inserting eq. (4.6.15) into
eq. (4.6.13), one obtains a 4N x 4N matrix equation for the full propagator functions:

-1

iD ip-o C i(m+ Q) —ip-c(1-2T)
<._T , )Z(,_ _ - ) , (4.6.16)
ip-aC iD —ip-7 (1 —E) i(m+ )

where 1 is the N x N identity matrix. The right hand side of eq. (4.6.16) can be evaluated by

employing the following identity for the inverse of a block-partitioned matrix [159]:

P QYT _((P-QSTIR)T (R=SQIP)!
<R S) B <(Q—PR-15)—1 (S_Rp—lQ)—1>7 (4.6.17)

under the assumption that all inverses appearing in eq. (4.6.17) exist. Applying this result to
eq. (4.6.16), we obtain

Cl'=s51-E)-m+Q)1-EN) m+Q), (4.6.18)
Dl'=s1-8)m+Q) 1 -2")-m+9Q), (4.6.19)
D' =s1-8")m+9)1-8) - (m+9Q). (4.6.20)

Note that eq. (4.6.20) is consistent with eq. (4.6.19) as E* = ET.

53 Alternatively, one can solve eq. (4.6.12) by iteration and summing the resulting geometric series. This yields:

F=T+TS(T+TS(T+TS(---))=T+TST+TSTST +...=T[1+ ST+ (ST)* +..
=TN-ST] ' =@ Y 'i-s1'=[Q-sT)r ' =[r"-95",

which is equivalent to eq. (4.6.13).
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The pole mass can be found most easily by considering the rest frame of the (off-shell)
fermion, in which the space components of p* vanish. This reduces the spinor index dependence
to a triviality. Setting p* = (1/s; 0), we search for values of s where the inverse of the full
propagator has a zero eigenvalue. This is equivalent to setting the determinant of the inverse of
the full propagator to zero. Here we shall use the well-known formula for the determinant of a

block-partitioned matrix [159]:
P Q
det rog)= det P det (S — RP7'Q). (4.6.21)

The end result is that the poles of the full propagator (which are in general complex),

Spole,j = M7 — i Mj, (4.6.22)

are formally the solutions to the non-linear equation®*

det [s1—(1-EN) '(m+Q)1-E)"'(m+Q)] =0. (4.6.23)

Some care is required in using eq. (4.6.23), since the pole squared mass always has a non-
positive imaginary part, while the loop integrals used to find the self-energy functions are complex
functions of a real variable s that is given an infinitesimal positive imaginary part. Therefore,
eq. (4.6.23) should be solved iteratively by first expanding the self-energy function matrices Z, €2
and Q in a series in s about either m? +12e or M Jz +te. The complex quantities syl j, Wwhich can
be identified as the complex pole squared masses, are renormalization group and gauge invariant
physical observables. Examples are given in Sections 6.24 and 6.25.

The results of this section can be applied to an arbitrary collection of fermions (both
Majorana or Dirac). However, it is convenient to treat separately the case where all fermions
are Dirac fermions (consisting of pairs of two-component fields x; and 7). As discussed in
Section 3.2, the Dirac fermion mass eigenstates are defined in eq. (3.2.31) and are determined
by the singular value decomposition of the Dirac fermion mass matrix. With respect to the mass
basis, we denote the diagonal Dirac fermion mass matrix by M%¥. The elements of this matrix
are real and non-negative. Nevertheless, it will be convenient as before to define M;; = M 4 to
maintain covariance when manipulating tensors with flavor indices.

At tree level, there are four propagators for each pair of y and 7 fields as shown in Fig. 4.2.4.
The corresponding full, loop-corrected propagators are shown in Fig. 4.6.4. The naming and
sign conventions employed for the full, loop-corrected Dirac fermion propagator functions in
Fig. 4.6.4 derives from the corresponding functions used in the more traditional four-component

treatment presented in Appendix G [cf. eq. (G.7.2)].

®The determinant of the inverse of the full propagator [the inverse of eq. (4.6.16)] is equal to eq. (4.6.23)
multiplied by det [—(1—E)(1—Z")]. We assume that the latter does not vanish. This must be true perturbatively
since the eigenvalues of E are one-loop (or higher) quantities, which one assumes cannot be as large as 1.
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Figure 4.6.4: The full, loop-corrected propagators for Dirac fermions, represented by pairs
of two-component (oppositely charged) fermion fields y; and 7;, are associated with functions
Sr(s)i?, ST(s)';, Sp(s)¥, and S}(s)ij, as shown. The shaded boxes represent the sum of
all connected Feynman diagrams, with external legs included. The four-momentum p and the
charge of x flow from right to left.

In general, the complex matrices Sg and Sy, satisfy hermiticity conditions [SE]* = Sr and
[Sz]* = S, whereas the complex matrices Sp and Sp are related by Sp = b, where the
star symbol is defined in the paragraph below eq. (4.6.6). In contrast to the general case of an
arbitrary collection of fermions treated earlier, Sg and S, are unrelated and Sp is a complex
matrix (not necessarily symmetric).

Instead of working in a x—n basis for the two-component Dirac fermion fields, one can
Takagi-diagonalize the fermion mass matrix. In the new -basis, the loop-corrected propagators
of Fig. 4.6.1 are applicable. It is easy to check that the number of independent functions is the
same in both methods for treating Dirac fermions. In particular, the loop-corrected propagator

functions in the 1)-basis are given in terms of the corresponding functions in the y—n basis by:%

T =T
C = (SOR 50L> , D- ( SOD SOD> , D— <§0D SOD) . (4.6.24)

We similarly introduce the 1PI self-energy matrix functions for the Dirac fermions in the
x—n basis, where the corresponding self-energy functions are defined in Fig. 4.6.5. As before, the
naming and sign conventions employed for the Dirac fermion self-energy functions above derives
from the corresponding functions used in the more traditional four-component treatment of
Appendix G [cf. eq. (G.7.3)].

Once again, the complex matrices 3 and X g satisfy hermiticity conditions [ZI]* =237
and [2-1'—2]* = X R, whereas the complex matrices ¥p and Xp are related by Tp = X5,
where the star symbol is defined in the paragraph below eq. (4.6.6). Likewise, 3y, and X g are
unrelated and X p is a complex matrix (not necessarily symmetric). The self-energy functions

in the ¢-basis are given in terms of the corresponding functions in the y—7 basis by:?

X, 0 0 X _ 0 =7
== , Q= D Q=|_ D | . 4.6.25
< 0 2R> <2D 0 ) <2D 0 ( )

%The simple forms of C in eq. (4.6.24) and E in eq. (4.6.25) motivate our definitions of Sr and g with the
transpose as indicated in Figs. 4.6.4 and 4.6.5, respectively.
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Figure 4.6.5: The self-energy functions for two-component Dirac fermions, represented by pairs
of two-component (oppositely charged) fermion fields y; and n;, are associated with functions
2L(s)i?, £h(s)j, Ep(s)¥, and ] (s);, as shown. The shaded circles represent the sum of
all one-particle irreducible, connected Feynman diagrams, and the external legs are amputated.
The four-momentum p flows from right to left.

In the case of Dirac fermions fields, eq. (4.6.13) still holds in the x—n basis, which yields:
-1

< igg, ip-o SR> _ ( i(M + Xp) —ip-o (1 — 212)) (4.6.26)

ipc ST iSp —ipg(1-%r) i(M+3Ip)

Using eq. (4.6.17), it follows that:
Sy ' =s(1-%g) - (M +Zp)(1-21) (M +32}), (4.6.27)
Spl=s1-%) - (M+Ep)(1-5F) (M +Ep), (4.6.28)
Sp ' =s(1-%p)(M +3p) ' (1-3]) - (M +5), (4.6.29)
Syl =s1-S)(M+3p)'1-3g) - (M+X]) (4.6.30)

Note that eq. (4.6.30) is consistent with eq. (4.6.29) as 37 p = Z.I':’R.
The pole mass is now easily computed using the technique previously outlined. In particular,

eq. (4.6.23) becomes:
det [s1— (1-3}) ' (M +Xp)(1-%,) ' (M+Xf)] =0, (4.6.31)

which determines the complex pole squared masses, spole, of the corresponding Dirac fermions.
Again, the self-energy functions should be expanded in a series in s about a point with an
infinitesimal positive imaginary part.

Finally, we examine the special case of a parity-conserving vectorlike theory of Dirac
fermions (such as QED or QCD). In this case, the following relations hold among the loop-

corrected propagator functions and self-energy functions, respectively:?6
Sr’ = (S]);, Sp = (S}, (4.6.32)
2 = (ZR)', p" = (Zp)ij- (4.6.33)
By imposing eq. (4.6.33) on egs. (4.6.27)—(4.6.30) and recalling that M;; = M it is straight-
forward to verify that eq. (4.6.32) is satisfied.

%These relations are derived using four-component spinor methods in Appendix G [cf. egs. (G.7.10) and
(G.7.11)).
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5 Conventions for fermion and antifermion names and fields

In this section, we establish conventions for labeling Feynman diagrams that contain two-
component fermion fields of the Standard Model (SM) and its minimal supersymmetric extension
(MSSM). In the case of Majorana fermions, there is a one-to-one correspondence between the
particle names and the undaggered (3,0) [left-handed] fields. In contrast, for Dirac fermions
there are always two distinct two-component fields that correspond to each particle name. For
a quark or lepton generically denoted by f, we employ the two-component undaggered (%,0)
[left-handed] fields f and f (where the bar is part of the field name and does not refer to com-
plex conjugation of any kind). This is illustrated in Table 5.1, which lists the SM and MSSM
fermion particle names together with the corresponding two-component fields. For each particle,
we list the two-component field with the same quantum numbers, i.e., the field that contains
the annihilation operator for that one-particle state (which creates the one-particle state when
acting to the left on the vacuum (0]).

There is an option of labeling fermion lines in Feynman diagrams by particle names or by
field names; each choice has advantages and disadvantages.®” In all of the examples that follow,
we have chosen to eliminate the possibility of ambiguity as follows. We always label fermion lines
with two-component fields (rather than particle names), and adopt the following conventions:

e In the Feynman rules for interaction vertices, the external lines are always labeled by the
undaggered (%, 0) [left-handed] field, regardless of whether the corresponding arrow is pointed in
or out of the vertex. Two-component fermion lines with arrows pointing away from the vertex
correspond to dotted indices, and two-component fermion lines with arrows pointing toward the
vertex always correspond to undotted indices. This also applies to Feynman diagrams where
the roles of the initial state and the final state are ambiguous (such as self-energy diagrams).

e Internal fermion lines in Feynman diagrams are also always labeled by the undaggered
(%, 0) [left-handed] field(s). Internal fermion lines containing a propagator with opposing arrows
can carry two labels (e.g., see Fig. 4.5.7).

e Initial state external fermion lines (which always have physical three-momenta pointing
into the vertex) in Feynman diagrams for complete processes are labeled by the corresponding
undaggered (3,0) [left-handed] field if the arrow is into the vertex, and by the daggered (0, 1)
[right-handed] field if the arrow is away from the vertex.

e Final state external fermion lines (which always have physical three-momenta pointing
out of the vertex) in Feynman diagrams for complete processes are labeled by the corresponding
daggered (0, %) [right-handed] field if the arrow is into the vertex, and by the undaggered (%, 0)

[left-handed] field if the arrow is away from the vertex.

5TUnfortunately, the notation for fermion names can be ambiguous because some of the symbols used also
appear as names for one of the two-component fermion fields. In practice, it should be clear from the context
which set of names are being employed.
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Table 5.1: Fermion and antifermion names and two-component fields in the Standard Model
and the MSSM. In the listing of two-component fields, the first is an undaggered (%,O) [left-
handed] field and the second is a daggered (0,3) [right-handed] field. The bars on the two-
component (antifermion) fields are part of their names, and do not denote some form of complex
conjugation. (In this table, neutrinos are considered to be exactly massless and the left-handed
antineutrino 7 is absent from the spectrum.)

Fermion name Two-component fields
¢~ (lepton) 0,0
¢t (anti-lepton) 0,0t
v (neutrino) v, —
v (antineutrino) —
q (quark) q,q"
q (anti-quark) g, q'
f (quark or lepton) I, ff
f (anti-quark or anti-lepton) f,ff
N; (neutralino) Y, X?T
éf (chargino) X; XZ-_T
52_ (anti-chargino) X; X;FT
g (gluino) g, 9

The rules for labeling external Dirac fermions are summarized in Fig. 5.1. These labeling
conventions differ slightly from the ones employed in Section 4.5, where all internal and external
initial state and final state fermion lines were labeled by the corresponding undaggered (%,0)
left-handed fields. In this latter convention, the conserved quantities (charges, lepton numbers,
baryon numbers, etc.) of the labeled fields follow the direction of the arrow that adorns the
corresponding fermion line in the diagram. In contrast, in the convention of Fig. 5.1, the
field labels used for external fermion lines always correspond to the physical particle, and the
corresponding conserved quantities of the labeled fields follow the direction of the particle three-
momentum. As an example, for either initial or final states, the two-component fields e and
e’ both represent a negatively charged electron, conventionally denoted by e~, whereas both &
and ef represent a positively charged positron, conventionally denoted by e* (cf. Table 5.1).

The application of our labeling conventions to processes involving Majorana fermions is

completely straightforward. For example, the conventions for employing the neutralino states
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Initial state e™:

Initial state et:

6o

Final state e™:

Final state e™:

I
o

Figure 5.1: The two-component field labeling conventions for external Dirac fermion lines in a
Feynman diagram for a physical process. The top row corresponds to an initial state electron,
the second row to an initial state positron, the third row to a final state electron, and the fourth
row to a final state positron. The labels above each line are the two-component field names.
The corresponding conventions for a massless neutrino are obtained by deleting the diagrams
with € or €, and changing e and e to v and v1, respectively.

Initial state ]VZ

X0 C
C X0

Figure 5.2: The two-component field labeling conventions for external Majorana fermion lines
in a Feynman diagram for a physical process. The top row corresponds to an initial state
neutralino, and the second row to a final state neutralino. The labels above each line are the
two-component field names. (The neutralino is its own antiparticle.)

g
o

Final state ]\72

i

as external particles are summarized in Fig. 5.2.

As a simple example, consider Bhabha scattering (e~e™ — e~ e™) [160]. We require the two-
component Feynman rules for the QED coupling of electrons and positrons to the photon, which
are exhibited in Fig. 5.3. Consider the s-channel tree-level Feynman diagrams that contribute
to the invariant amplitude for e”e™ — e~et. If we were to label the external fermion lines

according to the corresponding particle names (which does not conform to the conventions
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(a) ieoy”  or —ieo,4
e
e

(b) —ieﬁfjﬁ or €084
e

Figure 5.3: The two-component Feynman rules for the QED vertex. Following the conventions
outlined in Section 5, we label these rules with the (3,0) [left-handed] fields e and e, which
comprise the Dirac electron. Note that (). = —1, and the electromagnetic coupling constant e
(not to be confused with the two-component electron field that is denoted by the same letter)
is conventionally defined such that e > 0 [cf. Fig. J.1.2].

6>W<e
e et et
e>W<e
et et

Figure 5.4: Tree-level s-channel Feynman diagrams for e~e™ — e~ e, with the external lines
labeled according to the particle names. The initial state is on the left, and the final state is on
the right. Thus, the physical momentum flow of the external particles, as well as the flow of the
labeled charges, are indicated by the arrows adjacent to the corresponding fermion lines in the
upper left diagram.

introduced above), the result is shown in Fig. 5.4. One can find the identity of the external two-
component fermion fields by carefully observing the direction of the arrow of each fermion line.
For contrast, the same diagrams, relabeled with two-component fields following the conventions
established in this section (cf. Fig. 5.1), are shown in Fig. 5.5. An explicit computation of the

invariant amplitude is given in Section 6.3.
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e e el e
ef ef € ef

Figure 5.5: Tree-level s-channel Feynman diagrams for ete™ — ete™. These diagrams are the
same as in Fig. 5.4, but with the external lines relabeled by the two-component fermion fields
according to the conventions of Fig. 5.1.

6 Practical examples from the Standard Model and its super-
symmetric extension

In this section we will present some examples to illustrate the use of the rules presented in this
paper. These examples are chosen from the Standard Model [161] and the MSSM [6-10], in
order to provide an unambiguous point of reference. In all cases, the fermion lines in Feynman
diagrams are labeled by two-component field names, rather than the particle names, as explained

in Section 5.

6.1 Top quark decay: t — bW+

We begin by calculating the decay width of a top quark into a bottom quark and W vector
boson. For simplicity, we treat this as a one-generation problem and ignore Cabibbo-Kobayashi-
Maskawa (CKM) [162] mixing among the three quark generations [see eq. (J.1.16) and the
surrounding text]. Let the four-momenta and helicities of these particle be (pg, A¢), (kp, Ap) and

(ky s A\w), respectively. Then p? = m?2, k = m? and k:%v =m?2, and

w
2y kyy = mi —mj +miy, (6.1.1)
2p¢-ky = m? +mi —miy (6.1.2)
2kyy-ky = mi —mi —miy, . (6.1.3)

Because only left-handed top quarks couple to the W boson, the only Feynman diagram for
t — bW™ is the one shown in Fig. 6.1.1. The corresponding amplitude can be read off of the

Feynman rule of Fig. J.1.2 in Appendix J. Here the initial state top quark is a two-component

7



W (kw, Aw)
t(pta )‘t)
b(kp, A\p)

Figure 6.1.1: The Feynman diagram for t — bW ™ at tree level.

field t going into the vertex and the final state bottom quark is created by a two-component

field bf. Therefore the amplitude is given by:

iM = —z‘%s;xjﬁ“xt, (6.1.4)

where EZ = Eu(lﬁw,)\w)* is the polarization vector of the W™, and xz = xT(Eb,)\b) and x; =
x(Py, \¢) are the external state wave function factors for the bottom and top quark. Squaring

this amplitude using eq. (2.44) yields:

2
IM[* = 2 enen(@lThsy) ()77 m). (6.1.5)

Next, we can average over the top quark spin polarizations using eq. (3.1.58):

= Z IM|? = syznba pr-oaiay. (6.1.6)
Summing over the bottom quark spin polarizations in the same way yields a trace over spinor
indices:

= Z M = e,&0 Tr[d"pr-0 7 ky 0]
)\tv)\b

2
- % “ey (DIRY + KDY — 9" pi-ky — 1" Dok | (6.1.7)
where we have used eq. (2.56). Finally we can sum over the W polarizations according to:
ZEZE,, = —Guw + (k‘W)M(kW),,/m%/V . (6.1.8)
The end result is:

5 Z IM|? = s [pe- K + 2(pe-Fyy ) (- k‘W)/m ]. (6.1.9)

SplnS

After performing the phase space integration, one obtains:

1 1
+ 1/2 2 oy [ 1 Z 2
spins
D)
g
lTr—— Al/z(m?,m%v,mg) [(m? + 2m%,v)(m? — m%v) + mg(m%,v — 2mf) + mﬁ] ,(6.1.10)
wh
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where the kinematical triangle function A'/2 is defined by [163]:
Nz, y, 2) = 22 +y? + 2% — 2zy — 202 — 2y2. (6.1.11)

In the approximation mj < my;,, m, one ends up with the well-known result [164]

2 2 2\ 2
ot —owt) =L <2+ o > ( - m—V2V> : (6.1.12)

64m miy, m;

which exhibits the Nambu-Goldstone enhancement factor (m%/m%v) for the longitudinal W

contribution compared to the two transverse W contributions [164].

6.2 Z° vector boson decay: Z° — ff

Consider the partial decay width of the Z° boson into a Standard Model fermion-antifermion
pair. As in the generic example of Fig. 4.5.4, there are two contributing Feynman diagrams,
shown in Fig. 6.2.1. In diagram (a), the fermion particle f in the final state is created by a
two-component field f in the Feynman rule, and the antifermion particle f by a two-component
field fT. In diagram (b), the fermion particle f in the final state is created by a two-component
field f, and the antifermion particle f by a two-component field fT. Denote the initial Z° four-

momentum and helicity (p, A7) and the final state fermion (f) and antifermion (f) momentum

and helicities (kf, Af) and (k;f, A f), respectively. Then, k:]% = k)% = mff and p? = m2Z, and
1
kyky = gmy —mj, (6.2.1)
pk:f:pk:f:%mzz (6.2.2)

According to the rules of Fig. J.1.2, the matrix elements for the two Feynman graphs are:

iMg = —z’ci(T{ —s%VQf)su:c}aﬂyf—, (6.2.3)
w
2
My = z'gc—WQf euyfa“azT—, (6.2.4)
w

where z; = $(Ei,Ai) and y; = y(Ei,Ai), fori=f,f, and €, = ¢,(p, \z).

f(kg Ar) FH(ks Ap)
Z%p, A7) Z%p, A7)

fTkf Af) FlkzAf)
(a) (b)
Figure 6.2.1: The Feynman diagrams for Z° decay into a fermion-antifermion pair. Fermion
lines are labeled according to the two-component fermion field labeling convention established
in Section 5.
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Using the Bouchiat-Michel formulae developed in Appendix H.3, one can explicitly evaluate
M, and My as a function of the final state fermion helicities. The result of this computation
is given in eqgs. (H.3.40) and (H.3.41). If the final state helicities are not measured, then it is
simpler to square the amplitude and sum over the final state spins.

It is convenient to define:

af = T?)f - QfSI%V s bf = _Qf812/V . (6.2.5)
Then the squared matrix element for the decay is, using eqgs. (2.43) and (2.44),
g2
IM|? = —Wsue (afx}ﬁ"yf%—bfyfa”x}) <afy}:0' zp+brrgoty }) (6.2.6)

Summing over the antifermion helicity using egs. (3.1.58)—(3.1.61) gives:

2
Z\MP _EME (afx 7"'kf 0T xf—l-bfyfa koo y}
Af ‘w
—mfafbfx}iua”y} — mfafbfny“E”xf) . (627)

Next, we sum over the fermion helicity:

2
Z IM|? = —sue <a3:Tr[E”kf.JEVk:f-a] + b%Tr[a#kf.Eng;f.g]

ApAf
—m%afbfTr[E“J”] - m%afbfTr[a"E”]) . (6.2.8)
Averaging over the Z° polarization using
1 s 1 Pup
Az

and applying egs. (2.54)—(2.56), one gets:

1 2 9 2 2 2 2
g Z ’M’ = @ [(af + bf) (Qkf'kf+4kf-pkf-p/mz) + 12afbfmf]
spins
—E [(aF + b3)(m2, — m%) + 6asbym7] (6.2.10)
= 32, W HOp)mz = mip) & Gagbymyl 2.
where we have used egs. (6.2.1) and (6.2.2). After the standard phase space integration, we
obtain the well-known result for the partial width of the Z°:

f a2\ M2
D ) = g (%ﬁ) 5 ImP

spins

2 2

m m

f f

- —mz) Jr6afbf—mz

1/2
_ chg2mZ (1 4m?)
Z z

(afc + bfc) (1

Here we have also included a factor of N/ (equal to 1 for leptons and 3 for quarks) for the sum

] . (6.2.11)

over colors. Since the Z° is a color singlet, the color factor is simply equal to the dimension of

the color representation of the outgoing fermions.
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6.3 Bhabha scattering: e"et — e~eT

In our next example, we consider the computation of Bhabha scattering in QED (that is, we
consider photon exchange but neglect Z%exchange) [160]. Bhabha scattering has also been
computed using two-component spinors in [104]. We denote the initial state electron and positron
momenta and helicities by (p1, A1) and (p2, A2) and the final state electron and positron momenta
and helicities by (ps, A3) and (p4, A1), respectively. Neglecting the electron mass, we have in

terms of the usual Mandelstam variables s, ¢, u:

P1-D2 = P3-Da = 35, (6.3.1)
p1-p3 = Pp2-ps = —3t, (6.3.2)
p1-Pa = p2-p3s = —3u, (6.3.3)
and p? = 0 for i = 1,...,4. There are eight distinct Feynman diagrams. First, there are four

s-channel diagrams, as shown in Fig. 5.5 with amplitudes that follow from the Feynman rules

of Fig. 5.3 (more generally, see Fig. J.1.2 in Appendix J):

N el . s i g . i
IMg = . (—iex10,yy)(teyzopay) + (—iey 0 ,22)(ieyso,y)
+(—ie xlauyg)(ie azgﬁ,,y@ + (—te yIEng)(ie azgﬁ,,y@ , (6.3.4)

where x; = (P, ;) and y; = y(Pi, Ai), for ¢ = 1,4. The photon propagator in Feynman gauge
is —ig" /(p1 + p2)? = —ig"/s. Here, we have chosen to write the external fermion spinors in
the order 1,2,3,4. This dictates in each term the use of either the & or ¢ forms of the Feynman
rules of Fig. 5.3. One can group the terms of eq. (6.3.4) together more compactly:

iMg = e <

—ighv

> <$10“y£ + yiﬁuxg) <ygo*,,:ztj1 + $£5Vy4> . (6.3.5)

There are also four t-channel diagrams, as shown in Fig. 6.3.1. The corresponding ampli-
tudes for these four diagrams can be written:
—ighv
t

iMy = (—1)e2 < ) <:E10“:17;E + yi?uyg) <:E20,,l‘1 + ygﬁyy4> . (6.3.6)

Here, the overall factor of (—1) comes from Fermi-Dirac statistics, since the external fermion
wave functions are written in an odd permutation (1,3,2,4) of the original order (1,2,3,4)
established by the first term in eq. (6.3.4).

Fierzing each term using eqgs. (2.66)—(2.68), and using eqgs. (2.58) and (2.59), the total

amplitude can be written as:

M= Mot My =26 o)) + Sl o) + (5 + 7 ) Glel) )
+(5+7) ) - el - o] (637
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ef el ef el
> > < <
e e eT eT

Figure 6.3.1: Tree-level t-channel Feynman diagrams for e"e™ — e~e™, with the external
lines labeled according to the two-component field names. The momentum flow of the external
particles is from left to right.

Squaring this amplitude and summing over spins, all of the cross terms will vanish in the
me — 0 limit. This is because each cross term will have an z or an z for some electron or
positron combined with a y or a y' for the same particle, and the corresponding spin sum is
proportional to m,. [see egs. (3.1.60) and (3.1.61)]. Hence, summing over final state spins and
averaging over initial state spins, the end result contains only the sum of the squares of the six

terms in eq. (6.3.7):

I mE=et Y {éRmmM@@@hMumwuﬂdmmmmwmd@ﬂ

spins A1,A2,A3, 4

+ ( > y1x£)($4yl)(x293)(y§x£) + (mm)(ylwi)(ylwé)(:csyz)]
1
2

+ [@wﬂ@&b@&bwﬂw+wﬂ£xmmxwmxﬂ£ﬂ}. (6.3.8)

Here we have used eq. (2.42) to get the complex square of the fermion bilinears. Performing

these spin sums using egs. (3.1.58) and (3.1.59) and using the trace identities eq. (B.2.5):

2
D2 p4P1 D3 DP1°D2P3'Pa 1 1
1 Z IM* =8e [ + 2 + <g + Z) pl'p4p2'p3}

spms

_ 5 [tQ +8_2+ <“ . %)2} , (6.3.9)

Thus, the differential cross-section for Bhabha scattering is given by:

do 1 9 2ra? 12 §2 uo U2
dt ~ 167s? Z M) =3 [;Jr 2 (§+ ;) : (6.3.10)

splns

This agrees with the result given in problem 5.2 of ref. [114].

82



6.4 Polarized muon decay

So far we have only treated cases where the initial state fermion spins are averaged and the
final state spins are summed. In the case of the polarized decay of a particle or polarized
scattering we must project out the appropriate polarization of the particles in the spin sums.
This is achieved by replacing the spin sums given in egs. (3.1.58)—(3.1.61) by the corresponding
polarized spin projections eqs. (3.1.33)—(3.1.36). As an example, we consider the decay of a
polarized muon. Polarized muon decay has also been computed using two-component spinors in

ref. [104], however with an effective four-fermion interaction.

Vi (ku,s Av,)

/L(p7 S) e(ke7)\e)

V‘I (k1767 A176)

Figure 6.4.1: Feynman diagram for electroweak muon decay.

In Fig. 6.4.1, we show the single leading order Feynman diagram for muon decay, including
the definition of the momenta. We denote the mass of the muon by m,,, and neglect the electron
mass. We shall measure the spin of the muon in its rest frame with respect to a fixed z-axis.
Assume that the muon at rest is polarized such that its spin component along the 2-direction
is s = —i—%.

The decay amplitude is given by®®

iM = <_7i§>2 (a;lﬁpxu> (a;laype> (%i: T) , (6.4.1)

where Dy = (p — k,,u)2 — m%v is the denominator of the W-boson propagator. In eq. (6.4.1),

z, =x(P,s = %) for the spin-polarized initial state muon, and :E,T,u = :E(E,,w Av)s z) = xT(Ee, Ae),

and y5, = y(kp,, Ay, ). Squaring the amplitude using eq. (2.44), we obtain

4
IM|? = ﬁ (xiuﬁpxu) (mLETa;,,M> (azlﬁpyge) (y;ﬁﬂ;e) . (6.4.2)
w

Summing over the neutrino and electron spins using egs. (3.1.58)—(3.1.59), and using eq. (3.1.46)

for the muon spin (with s = %) yields:

4
Z IM|? = 92 Trlk,, - 05" (p-oc —m,S-0)c"| Trlke-0 T kp, -0 T
Avy Ae Az, 8Dy, '
_ 2"

= DIZ/V ke-ku, ko, - (p —muS), (6.4.3)

58 Throughout this subsection p and v are particle labels. Hence, we employ p and 7 as Lorentz vector indices.
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where S* in an arbitrary frame is given by eq. (3.1.15) [with § = 2]. To obtain the second
line we have used the trace identity eq. (2.55) twice; note that the resulting terms linear in the
antisymmetric tensor do not contribute, but the term quadratic in the antisymmetric tensor
does.

The differential decay amplitude is now given by

1 Bk, B3k, B3k,
dl = —|MJ? - =

2 16t (p - e — My = My, 4.4
2777,” (277)32Ee (277)32E,76 (27T)32E1/M( 7T) ) (p k k 2 k u)’ (6 )

where E;, i = e, 7,1, are the energies of the final state particles in the muon rest frame. In
the following we shall neglect both the electron mass and the momentum in the W-propagator
compared to the W-boson mass, so DI%V — mév. We can now use the following identity to

integrate over the neutrino momenta [165]

/ d3Epe d?’EW (27()454( ke —k )kﬁ R — L( 2 PT 4 9gP 7—) (645)
(27)32E,, (21)32E,, q — koo = kv, )kp Ry, = ge—(a79™ +247), 4.

where ¢ = p — k.. It follows that

94 2 d?’Ee
Al = ————— [¢* ke-(p — muS) + 2q-ke q-(p — m,.S)]

- -, 6.4.6
153674 m,mi, L. (6.4.6)

In the muon rest frame, k. = E.(1;cos¢sinf,sin¢sinf, cosf) and S = (0;0,0,1), so that
¢* = m, — 2E;my, and ke-(p — myS) = myEc(1 + cos0) and q-k, = m, E, and q-(p — m,S) =
my(my, — Ee — E. cosf). Noting that the maximum energy of the electron is m, /2 (when the

neutrino and antineutrino both recoil in the opposite direction), we obtain

dr gtmz [l ) AE, AE,
d(cos ) ~ 7681 m dEcEe |3~ m T m cosf
w Jo m m
4.5
g My (1-1
=2 (1-1lcost), (6.4.7)
3'2127r3m%/v 3

in agreement with ref. [165]. Introducing the Fermi constant, Gr = v/2¢%/(8m%,), we can

rewrite eq. (6.4.7) as:
dr _ Gimy
d(cosf)  384m3

Integrating over cos 6 reproduces the well-known total muon decay width,

(1—3cosd) . (6.4.8)

_ G%mi
19273

(6.4.9)

6.5 Neutral MSSM Higgs boson decays ¢° — ff, for ¢° = h°, H°, A°

In this subsection, we consider the decays of the neutral Higgs scalar bosons ¢ = h°, H?, and A°

of the MSSM into Standard Model fermion-antifermion pairs. The relevant tree-level Feynman
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f(p1, A1) f1(p2, A2)

(a) f (P2, 22) (b) fT (p17 A1)

Figure 6.5.1: The Feynman diagrams for the decays ¢° — ff, where ¢° = h0, HY A° are
the neutral Higgs scalar bosons of the MSSM, and f is a Standard Model quark or lepton, and

f is the corresponding antiparticle. We have labeled the external fermions according to the
two-component field names.

diagrams are shown in Fig. 6.5.1. The final state fermion is assigned four-momentum p; and
polarization A1, and the antifermion is assigned four-momentum p, and polarization \o. We will
first work out the case that f is a charge —1/3 quark or a charged lepton, and later note the
simple change needed for charge +2/3 quarks. The Feynman rules of Fig. K.1.1 of Appendix K
tell us that the amplitudes are:

i
V2

, {
ZMb = _ﬁ Yf k?d¢0 Y1y2 . (6.5.2)

Here Yy is the Yukawa coupling of the fermion, kg4 is the Higgs mixing parameter from

iMg = ——= Y} k0 2)al, (6.5.1)

eq. (K.1.8), and the external wave functions are denoted x1 = z(p|, \1), y1 = y(P;, A1) for
the fermion and z9 = x(P5, \2), y2 = y(Ps, A2) for the antifermion. Squaring the total ampli-
tude iM = iM, + M, using eq. (2.42) results in:

1 %
IMJ? = §|Yf|2 [|kd¢0|2(y1y2 ybyl + alal womy) + (k‘d¢0)2$1$; byt + (kago) 2192 £E2:L"1] . (6.5.3)

Summing over the final state antifermion spin using eqs. (3.1.58)—(3.1.61) gives:
1 _ x
Z IM? = §|Yf|2 [|kd¢0|2(y1p2'ffyi + 2lpyTry) — (kd¢0)2mfxiyi - (k:d¢o)2mfy1x1] . (6.5.4)
A2
Summing over the fermion spins in the same way yields:

1 *
>~ 1M = S5 { ko P(Trlpo- o1 3] + Trlpa Tp1-0]) — 2kig0)*m? — 2(kago)?m? |
A1,A2

= ]Yf\z {2\kd¢o\2p1-p2 — 2Re[(l€d¢0)2]m?¢'}
= |12 {ykdd)o\?(mg,o —2m?) — 2Re[(kd¢o)2]m§} , (6.5.5)

where we have used the trace identity eq. (2.54) to obtain the second equality. The corresponding

expression for charge +2/3 quarks can be obtained by simply replacing kg40 with k,40. The total
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decay rates now follow from integration over phase space [166]

_ NS 1/2
0 _ ¢ 2 2 2
T(¢° — fF) = T (1 —4mf/m¢o> 3 MmP. (6.5.6)
A1,A2
The factor of N = 3 for quarks and 1 for leptons comes from the sum over colors.
Results for special cases are obtained by putting in the relevant values for the couplings
and the mixing parameters from egs. (K.1.7) and (K.1.8). In particular, for the CP-even Higgs

bosons h® and H°, kqgo and kg0 are real, so one obtains:

I'(h° — bb) = % 7 sin®amyo (1 — 4m§/m,2lo)3/2, (6.5.7)
(Y — cc) = 16% Y2 cosamyo (1— 4m§/m§0)3/2, (6.5.8)
T — r77) = 16% V2 sin®ampo (1 — 4m2 /m2)** | (6.5.9)
T(H® = tf) = 16% 2 sin2amyo (1 — 4m2/m20)* (6.5.10)
L(H° — bb) = % 2 cos? amppo (1- 4m§/m%{0)3/2, (6.5.11)

etc., which check with the expressions in Appendix C of ref. [167]. For the CP-odd Higgs boson

AV the mixing parameters k, 40 = i cosfly and k40 = isinfy are purely imaginary, so

3
(A% — 1) = Ton Y2 cos? By m g0 (1- 4m§/mio)1/2 , (6.5.12)
3
D(A® — bD) = == Y77 sin’ By mpo (1 - am3 /m%) "7, (6.5.13)
1
DA = 7577) = 1 Y2 sinBymgo (1 - am?2 m2,)"?. (6.5.14)

Note that the differing kinematic factors for the CP-odd Higgs decays came about because
of the different relative sign between the two Feynman diagrams. For example, in the case of
h? — bb, the matrix element is

iM= LYb sina (y192 + x];a:;), (6.5.15)
V2
while for A — bb, it is

. 1 :
M= EYL sinfy (y1y2 — x];a:;) (6.5.16)

The differing relative sign between y;y2 and :EIJ); follows from the imaginary pseudoscalar La-

grangian coupling, which is complex conjugated in the second diagram.

6.6 Sneutrino decay v, — 6’i+e_

Next we consider the process of sneutrino decay v, — éf e~ in the MSSM. Because only the left-

handed electron can couple to the chargino and sneutrino (with the excellent approximation that
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Xi (ke Aa)

e (ke, Ne)

Figure 6.6.1: The Feynman diagram for v, — 5:_6_ in the MSSM.

the electron Yukawa coupling vanishes), there is just one Feynman diagram, shown in Fig. 6.6.1.
The external wave functions of the electron and chargino are denoted as x, = :E(Ee, Ae), and
T = x(Eé,Aé), respectively. From the corresponding Feynman rule given in Fig. K.4.1 of
Appendix K, the amplitude is:

M = —igVi :ngi, (6.6.1)

where Vj; is one of the two matrices used to diagonalize the chargino masses [cf. eq. (K.2.6)].

Squaring this using eq. (2.42) yields:
IM? = g*|Vir | (alal) (weme) (6.6.2)
Summing over the electron and chargino spin polarizations using eq. (3.1.58) yields
D IMP = @V PTelke- T kg-0] = 26°| Vi ek = 9% |Via [P (m3, = mZ ) , (6.6.3)
Xehe

=2 2
where we have used 2kc ks = m; — me

grating over phase space in the standard way, the decay width is:

neglecting the electron mass. Therefore, after inte-

Ve

Ve

2 2 2
= 1 me. 2 me.
T — Cfe™) = (1 — mgz) > IMP| = é_wmlﬁmge (1 — mgz) , (6.6.4)

16mmgp, sy
which agrees with ref. [168] and eq. (3.8) in ref. [7].

6.7 Chargino decay C;" — et

Here again, there is just one Feynman diagram (neglecting the electron mass in the Yukawa
coupling) shown in Fig. 6.7.1. The external wave functions for the chargino and the positron
are denoted by x5 = 2(Ps, A\s) and ye = y(Ee,Ae), respectively. The fermion momenta and
helicities are denoted as in Fig. 6.7.1. As in the previous example, the amplitude can be directly

determined using the Feynman rule given in Fig. K.4.1 in Appendix K:
M = —igV] sy - (6.7.1)
Squaring this using eq. (2.42) yields:
M = Vi 2 (e (el (6.7.2)
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Xi (pes A) .

N el (ke, Ae)
Figure 6.7.1: The Feynman diagram for 6’Z+ — Deet in the MSSM.

Summing over the electron helicity and averaging over the chargino helicity using egs. (3.1.58)
and (3.1.59) we obtain:

2

g
3 >, IMP = 30"V Telke0po-0] = o VaPhepe = G IValP(mg, —mf). (673)
A67

So the decay width is, neglecting the electron mass:

g9’ m2,\
> ZIMI2 =%|Vﬂ|2m@< m2> (6.7.4)
)\e,

167Tmc

1
(C’Jr —vet) = (1
Cz

which agrees with ref. [168].

6.8 Neutralino decays N; — quJAV/j, for ¢° = h°, H°, A°

Next we consider the decay of a neutralino to a lighter neutralino and neutral Higgs boson
#° = hY, HY or A°. The two tree-level Feynman graphs are shown in Fig. 6.8.1, where we
have also labeled the momenta and helicities. We denote the masses for the neutralinos and the

Higgs boson as m ¢ and mgo. Using the Feynman rules of Fig. K.3.1, the amplitudes are

N T
respectively given by

’iMl = —iY :Eiyj, (6.8.1)
iMg = —iY" yZ ] , (6.8.2)

where the coupling Y = YXIX] s defined in eq. (K.3.1), and the external wave functions are
v = 2(B ), vl = yT(B ), vy = y(k;, \y), and ol = 2f(k;, ).
Taking the square of the total matrix element using eq. (2.42) gives:

M2 = |Y|*(z Zy]yT:E —I—yT:ETx i) + Yiryiry + Y 2ijjy;f j (6.8.3)
Summing over the final state neutralino spins using eqs. (3.1.58)—(3.1.61) yields

Z IM? = [V (k- 0:17 + yzk‘ TYi) — Y2mﬁjxiyi - Y*2mN yj j (6.8.4)
Averaging over the initial state neutralino spins in the same way gives
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XY (pis A) o Xt (piy M) -7

7 7

0T (g, A7) N X (kg Aj)

Figure 6.8.1: The Feynman diagrams for N; — quﬁo in the MSSM.

1 1 _ _
) Z |/Vl|2 = §|Y|2(Tr[k‘j'ffpi'0] + Tr[k;-opi-o]) + Re[Yz]mNimNjTr[ﬂng]
AiyAj
= 2|Y P’pi-kj + 2Re[Y *|mg my,
= [V]*(m% +m~ —m%) + 2Re[Y?|m T (6.8.5)

where we have used eq. (2.54) to obtain the second equality. The total decay rate is therefore

1

~ 0N\ _ 1/2 2
F(NZ — ¢ Nj) - 167Tm A (m m¢07 Z |M|
N; Aw\
mg.
= TN (1 g, my) (YOSt 1y — 1) 4 2Re[ (YOP9)?] ] (6.86)
where the triangle function A\'/2 is defined in eq. (6.1.11), r; = m /m~ and ry = 20/m%..

The results for ¢° = A% HO A° can now be obtained by using eqs (K.1.7) and (K.1.8) in
eq. (K.3.1). In comparing eq. (6.8.6) with the original calculation in ref. [169], it is helpful to
employ egs. (4.51) and (4.53) of [170]. The results agree.

6.9 N; — Z°N;

For this two-body decay there are two tree-level Feynman diagrams, shown in Fig. 6.9.1 with
the definitions of the helicities and the momenta. Using the Feynman rules of Fig. K.2.1, the

two amplitudes are given by®?
; _ 1L m *
iMy = i (’) ziotzie,, (6.9.1)

iMs =i O”L Totyer, (6.9.2)

where the external wave functions are z; = z(pj;, \i), yZ-T =y (B, \i), x; = (k:],)\ ), yj =
y(kj,);), and €, = eu(kz,\z)*. Noting that O;/Z-L = (’)Z/-;-L* [see eq. (K.2.5)], and applying
eqs. (2.43) and (2.44), we find that the squared matrix element is:

e
IM|? = —5 e [|Of P (o a”x}xja”x;f—kygﬁ“yjyjﬁuyi)
Sy

(OIIL) O' y]x]U f]}' o (O//L*) x,UUxTy;UVyZ ) (693)

**When comparing with the four-component Feynman rule in ref. [7] note that O})* = —O}** [cf. eq. (K.2.5)].
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7% (kz,\z) 7% (kz,\z)

XY (piy M) T (pis M)
X5 (kjs Aj) X5 (ks )

Figure 6.9.1: The Feynman diagrams for N; — NjZO in the MSSM.

Summing over the final state neutralino spin using egs. (3.1.58)—(3.1.61) yields:

2
Z‘MP —E e |:’O”L (a:,-a“kj-ia”xl—i—yj?“kj-ai”y,-)

2 _ 2 _
+ (01 g plto"s] + (OLF) my 0" (6.9.4)

Averaging over the initial state neutralino spins in the same way gives

~ Z IMJ? = —5 = [|(9”L (Tr[a“k‘jﬁa”pi-ﬁ] + Tr[E“k‘j'crE”pi-a])
)\Z,)\

2 _ 02 _
~ (08 my s, Tilato”) = (O3 my my Tolo*

2 v 2 v
= % €€ {|(9”L (k:“pZ +p“k‘ — pi-kjg" ) —Re[(O%L) ]mﬁimﬁjg“ },(6.9.5)
‘w
where in the last equality we have applied eqgs. (2.54)—(2.56). Using

Z eMre = —g + kiKY /m%, (6.9.6)

we obtain

1 2
5 2 IME=% {|<9"L (bi-ky + 20i-kighy ok fm3) + 3mg my Re[ (O4F) ]} . (69.7)
AisAj Az
Using 2kj-kz = m?v — m?v — m2Z, 2pi-kj = m?v + m% — m2Z, and 2p;-kz =m
[3 J g J
we obtain the total decay width:

2 2 2
~ — M~ m
N; Nj+ Z

1 1

F(j\vfz — Z(]j\vfj) = 167Tm3 A1/2 (mN ’m%’m?\[]) 5 Z |M|2 (698)
Ni )\i,)\j)\z

2m

g-m
7167TCN’ A2z, ) [|OM2 (1475 — 207 + (1 —1)2/r2) + 6Re[(O1F)*] /77|, (6.9.9)

w
where

i = m?vj /Mm%, rz =my/my . (6.9.10)

and the triangle function A'/2 is defined in eq. (6.1.11). The result obtained in eq. (6.9.9) agrees

with the original calculation in ref. [169].
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6.10 Selectron pair production in electron-electron collisions

6.10.1 e e — e ep

Here there are two Feynman graphs (neglecting the electron mass and Yukawa couplings), shown
in Fig. 6.10.1. Note that these two graphs are related by interchange of the identical initial
state electrons. Let the electrons have momenta p; and ps and the selectrons have momenta
ks, and kg, so that Pl =pi =0 Kk = mgL; k3 = ng; s = (p1 +p2)? = (k1 + k2)%
t= (ki —p1)? = (k2 — p2)% u= (k1 — p2)? = (k2 —p1)*

elp,\) L (k1) ep, ) L (k1)
A ! \ X!
&' (pa, )| eplka) A N €g (k2)
€ (p27 /\2)

Figure 6.10.1: Feynman diagrams for e"e™ — € €.

Using the Feynman rules of Fig. K.4.2, the matrix element for the first graph, for each

neutralino N; exchanged in the t channel, is:

p 9 (e 3w Y s s i(ky —p1)-o |+

We employ the notation for the external wave functions z; = (P;, A;), ¢ = 1,2 and analogously

for y;, xj, y;r The matrix elements for the second (u-channel) graph are the same with the two

incoming electrons exchanged, e; <> es:

iM, = (-1) [z% (Ni*z + Z—VVZ {iﬂ [—i\/igi—vv:j]\fﬂ] T2 [( itk —pg)'0'2 ] yl. (6.102)

_ 2 _
ki1 —p2) mNZ-

Note that since we have written the fermion wave function spinors in the opposite order in My
compared to My, there is a factor (—1) for Fermi-Dirac statistics. Alternatively, starting at the

electron with momentum p; and using the Feynman rules as above, we can directly write:

, . g « | SW s SW i | —i(k1 —pa2)T
iMy = i [ Nj + =N, —iV?2 —N,} 3. 6.10.3

This has no Fermi-Dirac factor (—1) because the wave function spinors are written in the same

order as in M;. However, now the Feynman rule for the propagator has an extra minus sign, as
can be seen in Fig. 4.2.2. We can also obtain eq. (6.10.3) from eq. (6.10.2) by using eq. (2.60).

So we can write for the total amplitude:

M = My + M, = z1a-0y} + ylb-72s (6.10.4)
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where

9 4
_ 9 sw « | SW e 1
at = p” (Y —p}f)ZNil(Nﬁ o il)t_irnzﬁv (6.10.5)
9*sw - SW 1
W= — -~ (K —ph) ZNz‘l(Nfz - i*l)u “mZ (6.10.6)
Hence, using eqgs. (2.43) and (2.44):
’MP = (azla'ayg) (yga*-ax];) + (y{b-am) (a;;b*-ﬁyl)
+ (azla'ay;) (a:;b*ﬁgﬂ) + (yJ{b-Eazg) (yga*-aaf{) : (6.10.7)

Averaging over the initial state electron spins using eqgs. (3.1.58)—(3.1.61), the a,b* and a*,b

cross terms are proportional to m, and can thus be neglected in our approximation. We get:

1
— Z IM|? = —Tr l[a-0 py-T a*-0 p1-7] + 4Tr[b T po-o b* T p1eo]. (6.10.8)
>\1,)\2

These terms can be simplified using the identities:
Tr[(k1 — p1)-0 p2-T (k1 — p1)-0 p1-5] = Tr[(k1 — p2)-0 p2-0 (k1 — p2)-0 p1-0]
=tu — m2 m2 (6.10.9)

eR’

which follow from eq. (2.55) and (2.56), resulting in:

; Z M Wt 2, m2,) Z Nj W NE) (Niz + 2 Ny )
>\1,)\2 W i,j=1 ow
1 1
- - ; ] . (6.10.10)
[(t_ )(t_ NJ) (u—mNi)(u—mNj)
To get the differential cross-section do/dt, multiply this by 1/(167s?):
do To? tu —m? m LW Sw
%7 N Nip + W N,
dt  4s%.c2, ( ) ;1 i cw 1) (N2 cw v
1 1
+ . (6.10.11)
[(t—m?vi)(t—m?vj) (u—m?vl)(u—m?vj)]

To compare with the original calculation in ref. [171] and with eq. E26, p. 244 in ref. [7], note

that for a pure photino exchange, N;7 — cw ;1 and Ny — sy, so that
1
Y — I Na 2 [Nig + Ny > - 1 (6.10.12)
Sw W cw

Also note that in ref. [171] polarized electron beams are assumed. The result checks.
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6.10.2 e"e” — epep

For this process, there are again two Feynman graphs, which are related by the exchange of

identical electrons in the initial state or equivalently by exchange of the identical selectrons

in the final state, as shown in Fig. 6.10.2. (We again neglect the electron mass and thus the

higgsino coupling to the electron.) Let the electrons have momenta p; and py and the selectrons
202 012 2 2 . 2. 4 _ 2,

have momenta ki and ko, so that p; = p5 = 0; kf = k5 = mz.; s = (p1 4+ p2)=; t = (k1 — p1)7;

u= (ki —p2)°.

e (p1, Aé) ______ €g (k1) ep ) €g (k1)
! Ny
X3 X3
) b Y A &g (ko)
) &' (p2, A2)

Figure 6.10.2: The two Feynman diagrams for e”"e™ — epep in the limit where m, — 0.

Using the Feynman rules of Fig. K.4.2, the amplitude for the first graph is:

2 .
‘  ~ Sw img. -
= —iv2 N; i , 6.10.13
iM, < zfgc 1> [(k‘l_pl)z_m%i] Y192 ( )

for each exchanged neutralino. The amplitudes for the second graph are the same, but with the

electrons interchanged:

2 .
) ) SW (AU t ot
iM, = [ —ivV2¢=EN; ) i . 6.10.14

Since we have chosen to write the external state wave function spinors in the same order in M;
and M, there is no factor of (—1) for Fermi-Dirac statistics. So, applying eq. (2.42), the total

amplitude squared is:

4.4 4 2
M= 295 NVZme [t ! 6.10.15
’ ’ = T(y1y2)(y2yl) Z( i) my. F—m2 + w— 2 ( 10.15)
=1 N; N;
The sum over the electron spins is obtained from
Z (yiyg)(yﬂh) = Tl"[pg'ﬁpl'd] =2p2p1 =5. (6.10.16)
A1,A2
So, using eq. (3.1.59), the spin-averaged differential cross-section is:
do (1) 1 [1 )
dt <§> 16752 | 4 Z M
A1,A2
2 | 4 2
T 1 1
= (Nin)*mg, + . (6.10.17)
2C%Vs ; N\t — m?\z U — m?vi




The first factor of (1/2) in eq. (6.10.17) comes from the fact that there are identical sleptons in
the final state and thus the phase space is degenerate.
To compare with [171] and also with eq. E27 of ref. [7], note that for a pure photino

exchange, N;1 — cw i1, so it checks.

6.10.3 e e —ejpep

Again, in the limit of vanishing electron mass, there are two Feynman graphs, which are related
by the exchange of identical electrons in the initial state or equivalently by exchange of the
identical selectrons in the final state. As shown in Fig. 6.10.3, they are exactly like the previous

example, but with all arrows reversed.

e (p1, A1) e (k) e (p1, A1) k)
A \\
XY XY
e (p2, A2) v er (kz2) er, (k2)
g T  (p2, Ao) T

Figure 6.10.3: The two Feynman diagrams for e”e™ — €, ¢, in the limit of vanishing electron
mass.

Using the Feynman rules of Fig. K.4.2, the amplitude for the first graph is:

2 .

. g sw LMy,

Mt = <Z_[N2*2 + — Z*l]> [ D) - 3 ] 1T, (61018)
V2 ‘w (p1 — k1) _ml\Nh

for each exchanged neutralino. The amplitudes for the second graph are the same, but with

p1 <> pa:

p2 — k1)? —m%

Since we have chosen to write the external state wave function spinors in the same order in M;

2 .
. g Sw LMy,
M, = (iL Ny + W ) i T17s . 6.10.19
<\/§[2 o 1 [( ?lez ( )

and My, there is no factor of (—1) for Fermi-Dirac statistics. The total amplitude squared is:

4 4
2 g % SW o nrs 2 1 1
IM|” = Z(xwz)(:l?;wb Z(Nm t o i) my, (t—m% R—y > - (6.10.20)
i=1 N; N;
The average over the electron spins follows from eq. (3.1.58):
Z (xlzng)(a:;:nb = Tr[py-op1-T) = 2p2-p1 = s . (6.10.21)

A1,A2
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So the spin-averaged differential cross-section is:

o (1\ 1 (1 )
E‘(i) 6 |12 M

1,A2

4 s 1 1
* W onrx\2,
2 (N LN gy <t_mz + _mN>

2
, (6.10.22)

7TC¥2

- 323%1/3

i=1 .
where the first factor of (1/2) in eq. (6.10.22) comes from the fact that there are identical sleptons
in the final state. To compare with [171] and also with eq. (E27) of ref. [7], note that for a pure

photino exchange, N;7 — cwd;1 and Njo — sy di1, so it checks.
6.11 e et — vv*

Consider now the pair production of sneutrinos in electron-positron collisions. There are two
graphs featuring the s-channel exchange of the Z°. We will neglect the electron mass and Yukawa
coupling, so there is only one graph involving the ¢-channel exchange of the charginos. These
three Feynman diagrams are shown in Fig. 6.11.1, where we have also defined the helicities and
momenta of the particles. The Mandelstam variables can be expressed in terms of the external

momenta and the sneutrino mass:

2p1-p2 = s, 2ky kg = 5 — 2mZ, (6.11.1)

2p1-k:1:2p2-k‘2:m%—t, 2p1-k’2:2p2-k‘1 :m,%—u. (6.11.2)

Using the Feynman rules of Fig. J.1.2, the amplitudes for the two s-channel Z boson exchange

diagrams are:%9
. . —igh” | |
iMq = [—z%(k‘l - k‘Q)“:| [ DgZ ] [z%(s%v - %)] :L"lo',jy;, (6.11.3)
. . —ig"™ 1 [ gsiy] +_
iMy = [—z%(k}l —kz)/{| [ DgZ ] [ng—WW] yi7,2, (6.11.4)

where the first factor in each case is the Feynman rule from the Z boson coupling to the
sneutrinos (see Fig. 72c, ref. [7]), and Dz = s —m% + il zmy is the denominator of the Z boson
propagator.! The t-channel diagram due to each chargino gives a contribution

i(ky —p1)-o t
6.11.5
(k1 —p1)* — mé@ o ( )

iMs = (—1gV;1) (—igVir) z1 [
using the rules of Fig. K.4.1. Therefore, the total amplitude can be rewritten as:

M = clxl(k‘l — kg)'dyg + ngi(kl — kg)-ﬁxg + ngl(kl — pl)-ayg , (6.11.6)

50Because we neglect the electron mass, we may drop the Q“Q" term of the Z propagator, where Q = p1 + p2
is the propagating four-momentum in the s-channel [cf. Fig. 4.2.5].

51The explicit inclusion of the finite decay width in the propagator of an unstable particle involves subtle issues
of gauge invariance and unitarity, particularly in higher loop computations. The authors of ref. [172] recommend
the complex-mass scheme for perturbative calculations with unstable particles, first introduced in ref. [173].
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e(p1, A1) v(ky) e'(p1, M) v(k1)

A v A v
ef(p2, \2) v* (k) e(p2, A2) v* (ko)
e (p1, A1) VR
A
el (p2, A2) v* (ka)
< - - - - — -

Figure 6.11.1: The Feynman diagrams for e~e™ — vr*.

where
2 2 2.2 2 2
g-(1 —2sy) 9" s 2 Vi1l
1= ——5—", 2=~ , 3=y 5 . (6.11.7)
deqyy Dy 2y Dz ; méj —t

Squaring the amplitude and summing over the electron and positron spins, the interference
terms involving cp will vanish in the massless electron limit due to egs. (3.1.60) and (3.1.61).

Therefore, we obtain

dIMP =Y {\01\2351(k1 — k)-oybya(ky = ka)-ow] + |ea? Y (k1 — ko) - T (k1 — ko) T
AL, A2 A1,A2

+C§ a:l(kl — pl)-ay; yg(kl — pl)'aazJ{ + 2Re[clcg a:l(kl — kg)-O'yg yg(kl — pl)-UxJ{]}

= |Cl|2 Tl“[(k‘l — k‘Q)'UPQ'?(k’l — k’g)'dpl'ﬁ] + |62|2 Tl“[(k’l — k‘Q)'EPQ'O‘(k’l — k’g)'ﬁpl'd]
+C§ Tr[(k;l — pl)-O'pg'E(kl — pl)-O'pl'E] + 2Re[61]63 Tr[(kl — kg)-o‘pg-ﬁ(k)l — pl)-O'pl'E],
(6.11.8)

where we have used eqgs. (3.1.58) and (3.1.59) to perform the spin sums. Applying the trace
identities egs. (2.55) and (2.56) and simplifying the results using egs. (6.11.1)—(6.11.2) and

u:Qm%—s—t,weget

> M = —[st + (t — m2)?] (4]er|* + Alea|* + 3 + 4Reca]es) - (6.11.9)
A1,A2

When mg = mg,, this agrees with egs. (E46)—(E48) of ref. [7]%2 and with ref. [174]. The

52There is a typographical error in eq. (E48) of [7]; the right-hand side should be multiplied by 1/cos® 6.
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differential cross-section follows in the standard way by averaging over the initial state spins:

do 1 1
= W<1 > |M|2> . (6.11.10)

1,A2

Note that

4m2 1/2
t=mZ— (1 —Bcosf)s, B = <1— ”) : (6.11.11)

where 0 is the angle between the initial state electron and the final state sneutrino in the center-
of-momentum frame. The upper and lower limits £ and ¢_ are obtained by inserting cos = +1
above, respectively.

Performing the integration over t to obtain the total cross-section, one obtains

t 4 2 2
_ [Ty 9 (g + 3855+ Sz (6.11.12)
7= . dt 647s Z by “ i z) o
where
Sy = 5—3(834 —4s%, + 1)8—2 (6.11.13)
27 ol W W D o
Sy = [Va|*[(1 = 240 Li — 28], (6.11.14)
(m%, +s73)La — (m?% + s77) L1
512 = 521 = "/11‘/12’2 { & 2 201 - B ’ (61115)
m%~ —m4
Ca C1
(2312/1/ -1 2 2 2 (s — m2z)
S7= Vi ((m2, + 92 Li + 5803 — 1/2)] “pLp (61116)
with
m% —mZ m% —t_
y=— G L= ln<§7> (6.11.17)
S C’ — t+

This agrees with egs. (E49)-(E52) of ref. [7] in the limit of degenerate charginos, or of a single
wino chargino with [V31| = 1 and Vi3 = 0. It also agrees with [174].

6.12 e~et — N;N;

Next we consider the pair production of neutralinos via e~e™ annihilation. There are four
Feynman graphs for s-channel Z° exchange, shown in Fig. 6.12.1, and four for t/u-channel
selectron exchange, shown in Fig. 6.12.2. The momenta and polarizations are as labeled in the
graphs. We denote the neutralino masses as Mg, My, and the selectron masses as mg, and

mey. The electron mass will again be neglected. The kinematic variables are then given by

$=2p1-py = m?vi + m?vj + 2k; -k, (6.12.1)
t= m?\z — 2p1 k’z = m?vj — 2p2'k‘j, (6.12.2)
U= m?\z — 2po-k; = m%j — 2p1-kj. (6.12.3)
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e(pi, A1) XY (Kiy Ai) e’ (p1,\1) XD (kiy M)

A A
el (p2, A2) T (e, 0y) € (p2, A2) X5 (ks )
e(p1, A1) X?T (ki, Ai) el (p1, A1) X?T (ki Ai)
AL A

Figure 6.12.1: The four Feynman diagrams for e e™ — NZN] via s-channel Z° exchange.

By applying the Feynman rules of Figs. J.1.2 and K.2.1, we obtain for the sum of the
s-channel diagrams in Fig. 6.12.1 [cf. footnote 60],

. —ig"” [ig(sjy — 3) igsty i i
iMy = D W__2 xlauyg + WyI T T2 O"La: OV — —O;-'Z-Lyia,,a:; , (6.12.4)
Z cw Cw c

where OZ is given in eq. (K.2.5), and Dy = s—m2Z+zT zmyz. The fermion spinors are denoted by
x1 = z(P1, \1), y% =y (P, \2), :E;r = xT(Ei, i) Yj = y(Ej, Aj), etc. Note that we have combined
the matrix elements of the four diagrams by factorizing with respect to the common boson
propagator. For the four ¢/u-channel diagrams, we obtain, by applying the rules of Fig. K.4.2:

imMY :(—1){ L ][\%(N,ﬁi—w 1)] [\%(N]ﬁ W N, >]x1y,y2xj, (6.12.5)

t —mg

w
iM = [ﬁ] [\/_(N CVVZ jl)] [\%(Nmr Nu)]wlyjyixja (6.12.6)
MY = 1)L_ R]( zxfg— N ) (—z‘ﬁgZ—Z i) uleleay,, (6.12.7)
zj\/léi) = {m] (—i\/ﬁgZ—ZNﬂ) (—i\/ig'z—VVENﬁ)yIﬂ?;%zyi- (6.12.8)

The first factors of (—1) in each of egs. (6.12.5) and (6.12.7) are present because the order of the
spinors in each case is an odd permutation of the ordering (1, 2,1, j) established by the s-channel
contribution. The other contributions have spinors in an even permutation of that ordering.
The s-channel diagram contribution of eq. (6.12.4) can be profitably rearranged using the
Fierz identities of egs. (2.66) and (2.67). Then, combining the result with the ¢/u-channel and
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e (p1, M) X (RN el (p1, M) o (ki k)

- -

T T
| |
€Ly R &
| |
el (p2, A2) X9 (kj, Ag) e (p2, A2) X5 (k. Ag)
e (ph )\11 X? (k’z, >\z) ET (pl, )\12 X?T (k% >\z)
~ :\ = :\
€L y g
| \\ | \\
el (p2, X2) XST (kj,A)) & (p2, Na) XY (kj, Aj)

Figure 6.12.2: The four Feynman diagrams for e"et — N,N] via t/u-channel selectron ex-
change.

s-channel contributions, we have for the total:

M = clxlyjyng + cleyiygx} + c;;yixjxgyj + cwix}xgyi, (6.12.9)
where
2
¢ = CgT [(1 = 25%)01F /Dy — Lew Nig + sw N )(ew Ny + swiNi)/(u—m2,)], (6.12.10)
W
2
g * *
Co = CT [(2812/[/ - 1)0;/f/DZ + %(CWNi2 + SWNil)(CWNj2 + Swle)/(t — mgL)] , (61211)
W
2923%/ "L * 2
3 = =5 [-O0}j/Dz + NuNj, /(t —mZ, )], (6.12.12)
&
w
292312/11 "L * 2
G =3 [Oji /Dz — N;iNj1/(u — méR)] . (6.12.13)
“w
Squaring the amplitude and averaging over electron and positron spins, only terms involving
T T T i

1T, Or Y1y;, and xoTy Or Y2y, survive in the massless electron limit. Thus,

STIMP =D <161!2y}x§x1ijiyzy§x3 + [ea Pyl ol @y oyl
A1,A2 A1,A2

+|C3|2517iy1y1[$;ry;33;332yj + |C4|2$jy1y1$;y3$;$2yi

+2Re [clcgijixlijjygygxﬂ + 2Re [%c}iazjylyixjij;xgyj] >

= le1[Pylp1 Ty 2ipa-oxl + oo Pyl pr Tyi jpa-oal
+|C3|2$z‘p1'0113j~ y}pg-ﬁyj + |C4|2$jp1'0’113} yjp2'5yz‘

+2Re [cchyjpl-Eyj xjpg'cr:nj.] + 2Re [03chjp1 -axj yjpg'ﬁyj] , (6.12.14)
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after employing the results of egs. (3.1.58)—(3.1.61).

We now perform the remaining spin sums using egs. (3.1.58)—(3.1.61) again, obtaining:

S IMP = e Trlpy - Tky 0] Telpa- ki ) + |ea|*Te[py -Thy 0] Tr[pa - o'k; -]
Al,Ag,)\i,A
+\03\2Tr[p1'aki-E]Tr[pg'Ekj-a] + ]64]2Tr[p1'akj-E]Tr[pg'Eki-a]

+2Re[clc§]mﬁimﬁj Tr[pe-op1 -7 + 2Re[63cZ]m]\7im]\7j Tr[p;-op2-7].(6.12.15)
Applying the trace identity of eq. (2.54) to this yields

STIMP = (Jea? + leal®)Apr Ky pa-ki + (|eal? + [es|*)Apy -k pa-k
spins " N
+4Rec165 + 0364]mﬁimﬁjp1 P2

= (Je1 ] + lea®) (u = m3 ) (u — m%,j) + (leaf” + [es|*) (t = m% ) (t — m?vj)

+2Rec1 5 + C3CZ]mﬁimﬁjS' (6.12.16)

The differential cross-section then follows:

do 1 9
= = 1o Z M| . (6.12.17)

spms

This agrees with the first complete calculation presented in ref. [175]. For the case of pure
photino pair production, i.e. N;; — cwd;1 and Ny — swd;; and for degenerate selectron
masses this also agrees with eq. (E9) of the erratum of [7]. Other earlier calculations with some
simplifications are given in refs. [176,177].

Defining cos 6 = pr -k; (the cosine of the angle between the initial state electron and one of

the neutralinos in the center-of-momentum frame), the Mandelstam variables ¢, u are given by

1

=3 (% +m — s+ XV2(s,m  m¥ ) cos ] (6.12.18)
1

u=g mE fmi — s A2(s.m m3 eoso] (6.12.19)

where the triangle function A/ is defined in eq. (6.1.11). Taking into account the identical

fermions in the final state when ¢ = j, the total cross-section is

t+d
/ 7 dt, (6.12.20)

where t_ and t; are obtained by inserting cos# = F1 in eq. (6.12.18), respectively.

1+5,]

6.13 NN, — ff

In this section, we compute the annihilation rate for Nlﬁl — ff, where f is any kinematically

allowed quark, charged lepton or neutrino. The case of f = e~ is the reversed reaction of the
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X7 (p1, A1) f (k1 Ap) X (p1, M) J (k1 Ap)

20 A
0f
X1 (p2, A2) 1 (B2, Afo) XY (2, A2) f1 (2, Apa)
XY (p1, M) f1(k1, A1) X (o1, M) f1(k1, A1)
70 Z°
ot - >
X1 (2, A2) f (k2, Ap2) X1 (p2, A2) f (K2, Ap2)

Figure 6.13.1: The four Feynman diagrams for Nlﬁl — ff via s—channel Z" exchange, where
f is a quark or lepton.

process examined in Section 6.12 (with ¢ = j = 1). In R-parity-conserving supersymmetric
models in which Nl is the lightest supersymmetric particle (and hence is stable), the Nlﬁl
annihilation process is relevant for the computation of the neutralino relic density [178]. In
particular, ]\71]% — ff can be an important contribution to cold dark matter annihilation
[178-181]. Neutralino dark matter is typically heavier than about 6 GeV [182]; for lighter
neutralinos see ref. [183].

In the computation of the relic density, one computes vyel0ann, Where oan, is the Nlﬁl
annihilation cross-section and v, is the relative velocity of the two neutralinos in the center-
of-momentum frame. The square of the relative velocity is taken to be its thermal average,
v2, ~ 6kpT/m 5, [178], which is typically non-relativistic when the temperature is of order the
freeze-out temperature [180] (where the neutralino falls out of thermal equilibrium). Hence, it is
sufficient to compute the annihilation cross-section for ]Vlﬁl — ff in the non-relativistic limit.

As in Section 6.12, there are four Feynman graphs for s-channel Z° exchange, shown in
Fig. 6.13.1. In addition, there are s-channel neutral Higgs exchange graphs, shown in Fig. 6.13.2,
that yield contributions to the annihilation amplitude proportional to the fermion mass, m f.63
Likewise, as in Section 6.12, there are four Feynman graphs for ¢/u-channel fL and fR exchange,
shown in Fig. 6.13.3. However, because we do not set my to zero, four additional ¢/u-channel
graphs contribute, shown in Fig. 6.13.4, that are sensitive to the higgsino components of the

neutralino.

63 i o~ 1 o~ 1 0 _ 30 70 0
In regions of parameter space where Mg, = 3Mz OF Mg = 5Mgo (where ¢” = h°, H” or A”), the resonant

2 — 1 annihilation Nl Nl — Z% or Nl Nl — qbo dominates the 2 — 2 annihilation processes considered here.
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X7 (p1, A1) f (k1 Ap) XY (p1, A1) f1 (k1 Ap1)

X1 (P2, A2) F (k2 Afa) X1 (P2, A2) f1(k2, A p2)

X1 (p1,A1) J (k1 Ap) X (p1, M) (ki Ap)
¢ ¢°

XoT (p2, A2) f (k2 A p2) X3 (92, o) f1 (K2, Ap2)

Figure 6.13.2: Feynman diagrams for Nlﬁl — ff via s—channel Higgs exchange. There are
four diagrams for each possible neutral Higgs state ¢ = Y, H? and A°.

The neutralino and the final state fermion four-momenta and polarizations are as labeled

in the Feynman graphs. In the center-of-momentum (CM) frame, the four-momenta are

=(E:D)., ph=(E;-P), M=E1:pk), K =EBEQ1;-pk), (6.13.1)

where

B=4l1— L. (6.13.2)

|p1?
E~mg + o (6.13.3)
1
and the kinematic invariants are given by
s = (p1+po)? =4E® = 4m§vl + 4)p1?, (6.13.4)

t=(p1—k1)*= m?vl +mF — 2p1-ky —m%l +m} + 28mg |l cos 0 — 2|p]*, (6.13.5)
u=(p1 —ko)? = m?vl + m? — 2p1 ko —m?vl + m? = 2Bmg, [Plcosf — 2|p1%, (6.13.6)

where 6 is the CM scattering angle. Subsequently, we shall neglect the subdominant O(|p])
terms in the ¢ and u-channel propagator denominators by setting ¢ ~ u ~ —m?vl + m?

By applying the Feynman rules of Figs. J.1.2 and K.2.1, and using the unitary gauge for the
Z-boson propagator, we obtain for the sum of the s-channel Z-exchange diagrams of Fig. 6.13.1,
_i(—9" + QY m3) < —_z'g>2 o

Dy cw

iMy
(6.13.7)
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xXa (P1,2y) | > f (k1 Ap) X1 (P, Ay) | « TTEAp)
7 Ty
| |
X0 (P2, o) | ) fT (K2, Ap2) W (2 0a) | i (2, Ap2)
X (1) £ (k1 Ap1) X (1, 2y) £1 (ki Ag)
fi }\ fi \
|

/
/

.
P

3 (p2, Aa) £1(ka, Ap2) X1 (p2, A2) f (2, Ap2)

Figure 6.13.3: The four Feynman diagrams for NZN] — ff via t/u-channel fL and fR ex-
change, where f; and fr couple to the gaugino components of the neutralino.

XY (P1, A1) | < ST (k1 Ap) X (P1, ) | . [ (k1, Af1)
o o
fr & o
| |
< | » » | <
X (p2, A2) f (K2, Apa) XY (p2, A2) I1 (k2 Ap2)
X7 (p1,>\<1) FH (ki Ap) Xy (p1,>\1=) I (k1, Af1)
o o
It y\ fi \
| \ ' \

- - 0 ¢
X1 (P2, X2) f (k2 Ap2) X3 (p2, A2) ST (k2, Ap2)

Figure 6.13.4: The four Feynman diagrams for NZN] — ff via t/u-channel fL and fR ex-
change, where f7, and fr couple to the higgsino components of the neutralino.

where O} is given in eq. (K.2.5), Dz = s — m% + il'zmyz, and Q = p; +p2 = k1 + ko.
The spinor wave functions are denoted by z1 = x(p, A1), y% =y (P, \2), x}l = $T(E1,Af1),
Ypo = y(Eg, Af2), etc. In obtaining eq. (6.13.7), we have combined the matrix elements of the

four diagrams by factorizing with respect to the common Z-boson propagator. Note that all
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four terms in eq. (6.13.7) have the same order of spinor wave functions (1,2,f1,f2). Thus, no
additional relative signs arise (beyond the sign associated with the choice of the o or @ version
of the vertex Feynman rules). One can simplify the terms that originate from the Q*Q" part
of the Z-boson propagator by writing Q¥ = (p; + p2)* and Q¥ = (k1 + k2)”. Contracting the
and v indices with the help of egs. (3.1.9)—(3.1.12) yields:

(p1 + p2)* xlauy; — yJ{Euazg} = 2m]\71 (azlxg — ny%) , (6.13.8)

(k1 + k2)” (T?f - Slz/VQf)xplﬁuyfz - S%VQfZ/ﬂUuﬂ?}g} = T;{mf <yf1yf2 - $}1$}2) - (6.13.9)

Hence, we shall write
Mz =MP + MP (6.13.10)

. . 2
) I _ _
M) = 0 (Z2) 0t [maosal — o) | (1] = Qe — Q).

Dz \ cw
(6.13.11)
. . . 2
g2 My [ —ig L oS t 1 tof
iMy = WD; — oVFerd) (:171:172 _ y1y2> (yflyf2 - xf1$f2) . (6.13.12)

Next, we apply the Feynman rules of Figs. K.1.1 and K.3.1 to obtain the sum of the four
s-channel Higgs exchange diagrams (for ¢° = h°, HY and A°) of Fig. 6.13.2,

) 1 —-m 0,00 0,010 4 «
iMg= > Dy <\f2—vj;> [(W XIXD) gy g + (VO X1XT) yiyﬂ [kfaﬁoyflyﬂ + Koz ahy |
¢O:hO7HO7AO

(6.13.13)
where VXX ig given by eq. (K.3.1), and Dy = s — mio + ilgomgo. In addition, we have

introduced the following notation

vg, for f=d,e,

kf(j)() = kud>0 s for f =u, (61314)

kago, for f=d, e,
UfE{
0, for f=v,

Uy, for f=wu,v,

where vy, vg are the neutral Higgs vacuum expectation values [cf. eq. (K.1.9)] and k40 and kg,
are defined in egs. (K.1.7) and (K.1.8). As the order of the spinor wave functions is (1,2, f1, f2)
for all four terms of My, no extra minus signs appear.

A good check of the above calculations is to repeat the analysis in the 't Hooft—-Feynman

gauge (where the gauge parameter £ = 1). In this gauge, My = M(ZI)

, since the term pro-
portional to Q*Q" is absent from the gauge boson propagator. However, we must now include
the diagrams of Fig. 6.13.2 with ¢ = GY. In the 't Hooft-Feynman gauge, m¢go = myz and

Dgo = Dyz. Moreover, using egs. (K.1.7) and (K.1.8),

kpeo _ 2Ty (6.13.15)
o —. 13.
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Hence, using eq. (6.13.13) with ¢ = G°

. 0,0,0
iMg = (2T;) Y& <:E1:E2 - nyE) (yflyﬁ - x}lx}z) : (6.13.16)

my
V2vDy
where we have noted that iY'¢"XIX! is real. In particular, using eq. (K.3.14) and recalling that
mi, = mel, = % g%*v?, we confirm that Mg = ./\/l(Z2) as expected from gauge invariance.

We next evaluate the t/u-channel exchange diagrams shown in Figs. 6.13.3 and 6.13.4. We
neglect fofR mixing. Eight Feynman graphs contribute, and we denote the total invariant
amplitude by: ,

M= (M ) + M(” + M d) ), (6.13.17)

j=1
where j = 1,2 labels the contributions of Figs. 6.13.3 and 6.13.4, respectively, and the other
superscripts (¢ or u) and subscripts (fL or fR) indicate the exchange channel and the exchanged
particle, respectively. These matrix elements are evaluated by applying the rules of Fig. K.4.2.

The graphs of Fig. 6.13.3 are sensitive to the gaugino components of Nl, and yield

= )

z'./\/((qu :( zgf)

2
(yzh)(22y;,) ,(6.13.18)

s
T;{Nm + %(Qf - Tsf)Nll

S
T Nis + 22(Qy — T )Ny
cw

2 .
1
<m ) (w19 (whahy) . (6.13.19)
fr

2 .
L4 (1) . SWwW 7 9 ot
iMp =D (Z\/ZC’JQO <t—mfg >|N11| (@197 (127 }) (6.13.20)
R
2 .
o ul)y SW 7
Mg, = <“/§95Qf> <7u_mf >|N11| (yia}y) (w2yp1) (6.13.21)

The explicit factors of (—1) in egs. (6.13.18) and (6.13.20) are present because the order of
the spinor wave functions in these cases is an odd permutation of the ordering (1,2, f1, f2)
established in the computation of the s-channel amplitudes.

The graphs of Fig. 6.13.4 are sensitive to the higgsino components of Nl, and yield

. 2 .
o (t2) —imy i 5 -
Mg, —(_1)< vr ) <t_m?; > INusl™ (21y ) (Y32 s) (6.13.22)
L
. 2 .
. u —i1m 1
ZME’;):( v f> <u_m >|le| (wlzhy) (@), (6.13.23)
! fr
. 2 .
. (t2) —umy 1
Mg, _(_1)< vy > Pa——; )Ilel (b)) (@2yy,) (6.13.24)
fr
. 2 .
. u2 —1im 7
ZMSFR):< Uff> <u_mg >\N1f!2(fc1yf2)(y$x}1), (6.13.25)
fr
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where vy is defined in eq. (6.13.14), and

N137 forf:d,e_,
le = N14, for f =u, (61326)
0, for f=v.

As before, the explicit factors of (—1) are due to the ordering of the spinor wave functions.

It is convenient to write the total matrix element for Ny Ny — ff as the sum of products
of separate neutralino and final state fermionic currents. The contributions of the s-channel
diagrams are already in this form. The contributions of the ¢— and u—channel diagrams given in
egs. (6.13.18)—(6.13.25) can be rearranged using the Fierz identities of egs. (2.66)—(2.68),

it zoypy = —(le"e:) (2,50 10) (6.13.27)
m1ypybathy = — 3@y (@4 T ) (6.13.28)
mypysahy, = —3(@10"y]) (v 0umhy) | (6.13.29)
ny}2x2yf1 = —%(y{?”xg)(yﬂa“xﬁ) (6.13.30)

Combining the result of the s, t, and u—channel contributions, we have for the total amplitude:

mfmﬁl

= o <:131:172 - yIZ/%) <yf1yf2 - 517}1517}2)
Z

e (Y] 77w (24,5 1) + 2 (21079 (2415 1) e (210 9]) ( pr o)+ ea (W] T 22) (y py 00

g es(@122) (W10 p0) + o@iea)@hialy) + e Wluh) W) + esiud)@haly)] o (613:31)

where the coefficients ¢y, ¢1, ..., ¢4 are given by
21 oYk
=g —— 6.13.32
€o g C%/VDZ ( )
L@ - shQport | 1T N+ 2@ ~ THNuP]  mi (NP
a=\anp, P T2 \iomz ) (61359)
Wz fr f fr
o [0 —2,QpofE TN+ 22Qs — T )NuP]  md [Ny
=g s + 5 + sz o | (6.13.34)
ciy Dz u—ms vy \u—mg
52 O"'L Niq |2 m2 Ny |2
oo 5 | a () o100
w ™ I R
2 "L 2 2 2
S @) N m N
e =g? 0, [Dl; +Cif! n;\ ]Jr# <UV 17;‘2 ) ' (6.13.36)
W ™ f T
The coefficients cs, ..., cg are obtained from eq. (6.13.13) and represent the s-channel Higgs

exchange contributions to the annihilation matrix element.
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In the non-relativistic limit, |p] < mg, . Then ¢ ~ u ~ —m2 + m%, and we can approxi-
1

N
mate® ¢; = —¢y and c3 = —c4. Hence, the total amplitude, eq. (6.13.31), can be written as
MMy i tot
./\/lzilc(xm— )( —a:x)
mQZ 0\ T1%2 = Y1Y2 | \Yr1Yy2 12
+ [y{ﬁ“:pg — :Elcf“y;} [61 (513}15#3/]”2) — Cg(yflduﬂf}z)} + My, (6.13.37)

where the s-channel Higgs exchange contributions, M, will be neglected for simplicity in the
subsequent analysis. The spin-averaged squared matrix element for Nlﬁl — ff then takes the
following form:
1 2 2 v 2 v *\ MY m?m%h 2
1 Z Mz + MGl = Ny |er|"FT7 + [e3|"F5" — 2Re(c1ch) Fiy +T|Co| NF
81,82,8 1,52 Z

memﬁl .
———Re|cy(c1 + c3)| N FH, (6.13.38)
mz
where N,,, N, and N are spin-averaged tensor, vector and scalar quantities that depend on

the initial state neutralino kinematics and Flu 5712, FH* and F are spin-summed tensor, vector
and scalar quantities that depend on the final state fermion kinematics. These quantities are
easily computed using the projection operators of egs. (3.1.58)—(3.1.61) and the standard trace
techniques to perform the spin averages and sums. FExplicitly, the spin-averaged neutralino

quantities are

N =1 (ewz - ylyd)(@hel — o) = prope + m% = 2B, (6.13.39)
S$1,52
i byt “rmg b, w=0
Nt =4 2(915%2 — x10"yy)(@awy — yoyn) = —m, (p1 + p2)t =
$1,52 0’ /1/ — Z ,
(6.13.40)

and a symmetric second-rank tensor,

Nt =13 (yioxs — w10 y}) (@35 1 — yoox}) = piph + phpt — " (pr-p2 — m% )

51,52

2m~ M:]j:o’
=93 0, pu=0,v=jor p=i,v=0, (6.13.41)

2[“7]25@)_13@]))}7 N:i7V:j7

54In particular, we assume that fL and fR are significantly heavier than all other particles in the annihilation
process. Consequently, we can ignore all O(|p]/m;y, ) terms in c1 +c2 and cs + ca.
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where the final results given in eqs. (6.13.39)—(6.13.41) have been evaluated in the CM frame.

Similarly, the spin-summed final state fermion quantities are

F= 3" Wnyp—2pwp)Whp —pep) =4k ks +m) = 8B, (6.13.42)
SfLSf2
Fr= 3" @y Wyl —oprn) == D Wpoteh) Wyl — prp)
Sf1-5f2 Sf15F2
AmE uw=0,
=2my (k1 + ko))" = (6.13.43)
0, p=1,

after evaluating the above quantities in the CM frame, and

FiY = 3" (2 7y) Whe 2 ) = kipkos Tr(0"5075") | (6.13.44)
Sf15f2

FY = 3" (ypoahy)(@,0"y)) = kipkoy Te(@ 05 0”) | (6.13.45)
SF1Sf2

Fiy = > (ypotzhy)Whe'zn) = Y (@h e ypm) (@0t yh) = —m} Tr(0"5"). (6.13.46)
Sf1,8f2 sfl’sf2

Since N#¥ is symmetric, the antisymmetric parts of F{" and F4" do not contribute in eq. (6.13.38).

The symmetric parts of FI" and F3" are equal and given by:

[Flw]symm = [sz]symm = 2%’;’“5 + k‘lfk‘g —ky - k‘29uy)

2mfc , pw=v=_0,
= 0, u=0,v=j5o0r p=1,v=0,
om2(2k' R — 0U) —ABA(R'K —5V),  p=iv=j,
(6.13.47)
and Fly = —2m§g‘“’ . The spin-averaged squared matrix element for NiN; — ff given by

eq. (6.13.38) can now be fully evaluated, resulting in

: Z Mz + Mf\z = 4(ler* + |es]?) {m%lmfc + 2|p1?(E%(1 4 cos® 6) — mfc cos®6)

81,582,571,5f2
+8m?c Re(cic3) {m%l — 2’1312}

16m§cm?~\«7
—I—Tl E? [E2|co|2 — m%Re[c(c1 + 03)]] , (6.13.48)

Z

where cos# = p-k/|p]. In the non-relativistic limit, we use eq. (6.13.3) and drop terms of

o(lp1").
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To compute vye10ann, We make use of the following result for the differential annihilation

cross-section in the CM frame:

d 1 Am?> 12

o f 2

el | — = 1—-— , 6.13.49
v 1<dQ>CM 3272s ( s ) [Mlave ( )

where |M|2,, is the squared matrix element for the annihilation process, averaged over initial

spins and summed over final spins, and the relative velocity of the initial state neutralinos in
the CM frame is given by v = 4|p]/\/s = 2|p]/my, , after noting that /s ~ 2mg in the
non-relativistic limit. Inserting the squared matrix element obtained above into eq. (6.13.49)

and integrating over solid angles, we end up with:

2\ 1/2 2
1 m 2|p
UrelOann = 87TE2 <1 - Eg) {(|Cl|2 + |C3|2) [m?vlm? + ’:):I (4’171,%1 o m%>:|

2.2
4mfmﬁ1 2 2 200 . |2 2/ 2 2 .
t— |y (m5, +21p17)col” = mz(mG + |P1")Relcy(c1 + ¢3)]
z
+2m% Re(c1c}) [m?vl - 2\1312] + (9(]1‘)‘]4)} , (6.13.50)

where the effects of the s-channel Higgs boson exchanges have been omitted.

The momentum dependence of eq. (6.13.50) reflects the famous p-wave suppression of the
annihilation cross-section in the m; = 0 limit noted in ref. [178].%5 In general, the annihilation
cross-section in the non-relativistic limit behaves as vpe] Oann X ]1‘)‘]25. Applying this result to
eq. (6.13.50) in the my = 0 limit implies that £ = 1. This is a consequence of the Majorana
nature of the neutralino. In particular, in the limit of m; = 0, the f fpairisinaJ =1
angular momentum state. However, Fermi statistics dictates that at threshold, a pair of identical
Majorana fermions in a J = 1 state must have relative orbital angular momentum ¢ = 1
(corresponding to p-wave annihilation). The s-wave annihilation (corresponding to the Majorana
fermion pair in a J = 0 state) is suppressed by a factor of m?c, as is evident from eq. (6.13.50).

We have checked that eq. (6.13.50) corresponds to a result first obtained in ref. [179] (al-
though the latter reference omits the terms in eq. (6.13.50) proportional to ¢p). However, we
emphasize that this formula neglects the effects of s-channel Higgs boson exchanges. We in-
vite the reader to complete the computation of the annihilation cross-section by including these
terms (along with the effects of interference between the neglected contributions and the ones

computed above).

55Tn ref. [178], the annihilation rate for photinos is computed, corresponding to Ni1 = cw, Ni2 = sw and
Niz = Nig = 0. In this case, the Z boson and Higgs boson s-channel exchange diagrams are absent. The
result presented in ref. [178] should be multiplied by a factor of two (H. Goldberg, private communication)—the
corrected expression then agrees with eq. (6.13.50).
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The annihilation of Ny Ny into heavy quarks (¢, b and t), followed by the decay of the heavy
quarks, can yield observable signatures suitable for indirect dark matter detection. For example,
the annihilation of neutralinos in the galaxy provides a possible source of indirect dark matter
detection via the observation of positrons in cosmic rays [184]. Neutralino dark matter can also
be captured in the sun [185]. The neutrinos that arise (either directly or indirectly) from the

neutralino annihilation in the sun can be detected on Earth (see, e.g., ref. [186]).
6.14 e et — C;C}

Next we consider the pair production of charginos in electron-positron collisions. The s-channel
Feynman diagrams are shown in Fig. 6.14.1, where we have also introduced the notation for the

fermion momenta and polarizations. The Mandelstam variables are given by

$=2p1-py = m%i + m%j + 2k; -k, (6.14.1)
t = m% — 21k = m%j — 2pa-kj, (6.14.2)
U= m%l — 2po-k; = m%j — 2p1-kj. (6.14.3)

Note that the negatively charged chargino carries momentum and polarization (k;, A;), while the
positively charged one carries (kj, A;).

Using the Feynman rules of Figs. J.1.2 and K.2.1, the sum of the photon-exchange diagrams

is given by:
gt
iM, = zg (_iemlauy; e yiﬁul’?) (ie Sijyiouh + ie 5,-jg;}auyj) L (6.14.4)
e(p1, A1) X; (Kis i) e (p1, A1) X; (Kis i)
Y, ZO Y, ZO
T _ — p—
€ (p2,>\2) X; T(k;j’/\j) e(pg,)\g) X; T(k‘j,/\j)
e (p1, A1) ST (k) e (p1, M) S (k)
v, ZO Y, ZO
el (p2, Aa) X5 (kj, A7) € (p2, A2) X5 (kg Ap)

Figure 6.14.1: Feynman diagrams for e e™ — 52_ 5’;’ via s-channel v and Z° exchange.
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e (p1, A1) X1 (kiy N

A

X5 Tk A5)

\{

Figure 6.14.2: The Feynman diagram for e” et — 52_ 5J+ via the t-channel exchange of a
sneutrino.

The Z-exchange diagrams yields [cf. footnote 60]:

: —ig"” [ ig igsiy ig

Mg = ia) — (st — 1):310“@/; + — yI ulﬂz] [——O;% Yio, X T O’Rx 1T,y
z Lcw cw cw

(6.14.5)

where Dy = s — m2Z +iI"zmy. The t-channel Feynman diagram via sneutrino exchange is shown

in Fig. 6.14.2. Applying the rules of Fig. K.4.1, we find:

iMg, = (1) (—igViiz1y;) (—z‘nglyga:}) : (6.14.6)

t— m%e
The Fermi-Dirac factor (—1) in this equation arises because the spinors appear an order which
is an odd permutation of the order used in all of the s-channel diagram results.

One can now apply the Fierz transformation identities eqs. (2.66)—(2.68) to eqs. (6.14.4)
and (6.14.5) to remove the o and @ matrices. The result can be combined with the t-channel

contribution to obtain a total matrix element M with exactly the same form as eq. (6.12.9), but

now with:
_o%0 9 ge o 6.14.7
C1 = _C%/VDZ( ) Jio ( )
2e26;; g° 2 PViVi
_ _ 1 - 253,)0'F + L 6.14.8
C2 S 2 DZ( ) t— m’%e ) ( )
220, 29 st R
o=t ag oL, (6.14.9)
2e%5;;  2g°
oy = 220 +- g SWO’L (6.14.10)
S DZ

The rest of this calculation is identical in form to eqgs. (6.12.9)—(6.12.16), so that the result is:

D IMP = (el + leal) (u = m ) (u — mé,) + (leaf” + [es[*) (¢ = mE ) (¢ —mE, )
spins

+2Refcr1c5 + c;;c}i]m@_majs. (6.14.11)

The differential cross-section then follows:

do 1 1

spins
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As in the previous subsection, we define cos = pq-k; (where 6 is the angle between the initial

state electron and (72_ in the center-of-momentum frame). The Mandelstam variables t,u are

given by
1
t = 3 [m%l + m%j -5+ /\1/2(s,m2@_,m26j) cos 9] , (6.14.13)
1
u=g [ma + m%j —5— /\1/2(s’m25¢’m2@) Ccos 9] . (6.14.14)
The total cross-section can now be computed as
b do
= @ 6.14.15
T @ ( )

where t_ and ¢ are obtained with cosf® = —1 and +1 in eq. (6.14.13), respectively. Our results
agree with the original first complete calculation in ref. [187]. Earlier work with simplifying
assumptions is given in ref. [188]. An extended calculation for the production of polarized

charginos is given in [189].

6.15 ud — C} N;

Next we consider the associated production of a chargino and a neutralino in quark, anti-quark
collisions. The leading order Feynman diagrams are shown in Fig. 6.15.1, where we have also

defined the momenta and the helicities. The corresponding Mandelstam variables are

s =2py-pg = m%i + m?\«,j + 2k; - kj, (6.15.1)
t= m% —2p1 -k = m?vj — 2po-kij, (6.15.2)
u= m% — 2ok = m?vj — 2p1-k;j. (6.15.3)

The matrix elements for the s-channel diagrams are obtained by applying the Feynman
rules of Figs. J.1.2 and K.2.2:

. _Z'gl“/ Zg . Lx T— - Rx
IMg = m <ﬁx10“y$> (Zngi :E;[Uyyj + Zngi yial,x;-) . (6.15.4)

The external spinors are denoted by x1 = z(p}, \1), yg = y1(py, \o), :E;r = xT(Ei,)\i), Yj
y(Ej,Aj), etc. The matrix elements for the ¢t and u channel graphs follow from the rules of
Figs. K.4.1 and K.4.2:

; _ i e ig Sw Tt

My = (—1)——— (—igU; <— Njs — ——N; ) Yo T 6.15.5
iMp = ( )t _m?iL (—igU)) \/5[ j2 e j ] T1YiYaX ( )
. _ i . ig * SW 7% Tt

M, = —— (—igV; <— —Niy— ——N; > iYL . 6.15.6
My u—m%L( igVi1) \/5[ 27 3o Nl )y ( )

The first factor of (—1) in eq. (6.15.5) is required because the order of the spinors (1,4,2,5) is

in an odd permutation of the order (1,2,7,7) used in the s-channel and u-channel results.
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u(p1, A1) x; (ki \i) u(p1, A1) X (ki N)
W+ W+

d (p2, A2) X5k, As) df (pa, X2) X5 (ks A7)

u (p1, A1) X; (ki \) u(p1, A1) X" (ki M)

A

/

d' (p2, \a) X3 (K5, Ag) df (p2, 22) Xy (ks Ag)

Figure 6.15.1: The four tree-level Feynman diagrams for ud — (ZJF Nj.

Now we can use the Fierz relations eqs. (2.66) and (2.68) to rewrite the s-channel amplitude
in a form without ¢ or @ matrices. Combining the result with the ¢-channel and wu-channel

contributions yields a total M with exactly the same form as eq. (6.12.9), but now with

oL 1 s Vi
— /92 gi S N* W N i 6.15.7
“l V29 ls—m%,v+ (2 32+60W gt uw—mg, |’ ( )
Oftx 1 s *
— /22 Ji Ny, - W 2 6.15.8
C2 \/_g [S—m%{/ + (2 52 6y ]1 t—mch ’ ( )
C3 = C4 = 0. (6159)

The rest of this calculation is identical in form to that of egs. (6.12.9)—(6.12.16), leading to:

Z IMP? = |er]?(u — mQC )(u— m?vj) + |ea2(t — mza)(t — m?vj) + 2Re[clc§]m@_mﬁjs. (6.15.10)

spins

From this, one can obtain:

do
= W 5 Z M2, (6.15.11)

spins
where we have included a factor of 1/3 from the color average for the incoming quarks. As in
the previous two subsections, eq. (6.15.11) can be expressed in terms of the angle between the

u quark and the chargino in the center-of-momentum frame, using

1 1/2 2 2

t= 5 [m z, —|—mﬁj s+ AV4(s, me ,m J)COSQ:| , (6.15.12)
1 _ 1/2 2 2

u=g [m z, +mﬁj — A4 (s, me ,m J)cos@} . (6.15.13)
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This process occurs in proton-antiproton and proton-proton collisions, where /s is not fixed,
and the angle 6 is different than the lab frame angle. The observable cross-section depends
crucially on experimental cuts. Our result in eq. (6.15.11) agrees with the complete computation
in ref. [190]. Earlier calculations in special supersymmetric scenarios, e.g. with photino mass

eigenstates, are given in refs. [177,191].
6.16 N; — N;NiN,

Next we consider the decay of a neutralino N; to three lighter neutralinos: N s ]Vk, N;. To the
best of our knowledge, this process has not been computed in the literature. This decay is
not likely to be phenomenologically relevant, because a variety of two-body decay modes will
always be available. Furthermore, the calculation itself is quite complicated because of the large
number of Feynman diagrams involved. Therefore, we consider this only as a matter-of-principle
example of a process with four external state Majorana fermions, and will restrict ourselves to
writing down the contributing matrix element amplitudes.

At tree level, the decay can proceed via a virtual Z° boson; the Feynman graphs are shown
in Fig. 6.16.1. In addition, it can proceed via the exchange of any of the neutral scalar Higgs
bosons of the MSSM, ¢ = hY, H?, A, as shown in Fig. 6.16.2. Since any of the final state
neutralinos can directly couple to the initial state neutralino there are two more diagrams for
each one shown in Figs. 6.16.1 and 6.16.2, for a total of 48 tree-level diagrams (counting each

intermediate Higgs boson state as distinct). In all cases, the four-momenta of the neutralinos

X; X;
0 0
Xi Xi
Z X5 Z X!
Z0 Z0
0
XgT X?
0 0
XjT XjT
0t 0t
X X
7 X% 7 ng
Z0 Z0
0
XgT Xg

Figure 6.16.1: Four Feynman diagrams for N; — Njﬁkﬁg in the MSSM via Z° exchange.
There are four more where N; <+ N, and another four where N; <+ Ny.



0 0
X' 0 X
Z—»—/ XkT ' Xg
Ko, HO AO\\ Ko, HO AO\\
0
XgT X?
X; X;
0t 0f
X X;
e Xy L e Xi
Ko, HO AO\\ Ko, HO AO\\
0
XgT Xg

Figure 6.16.2: Four Feynman dlagrams for N; — N NN, in the MSSM via (bo =n0 HY A°
exchange. There are four more where N > Nk and another four where N > Ng

NZ-, Nj, Nk, Ng are denoted p;, kj, ki, k¢ respectively.
We obtain the sum of the four diagrams in Fig. 6.16.1 by implementing the rules of
Fig. K.2.1, and using the 't Hooft-Feynman gauge:

z'./\/l(Zl) = —i9°/ciy 5 (O”Lazzau - 0; ’Lyz auy]) (O,ZZLJJLE“W Oy, y,w“a:}) (6.16.1)
(pi — kj )% - my

The external wave functions are z; = z(pj, \i), Tjrs = :E(kjkg, Ajke), and analogously for
a:;r e and y; j ¢ and y;r ket Note that we have factorized the sum of the four diagrams, taking
advantage of the common virtual boson line propagator. By a judicious use of the o or & version
of the vertex rule, we have ensured that the order of the four spinor wave functions is the same
for each of the four diagrams. Hence, no additional relative minus signs are required.

The contributions from the diagrams related to these by permutations can now be obtained

from the appropriate substitutions (j <> k) and (j <> ¢):

- 9/9
2 —ig®/c L "L 1L

ZM( ) = (—1) D — Fop)? ivmgz <O;g/z HJZUMSUL ol yjauyk) <O]g ! U“yg O/ yja“a:é> (6.16.2)

iMy) = (-1 —i9/cy <O”Lx oz — Ollylz ) (O”L:ETE“ 0] "Lyeotat ) (6.16.3)
z (pi — k)2 —mZ \ 0 T it YiOuYe )\ Yk L0 Y5 — Yk Yk

The first factors of (—1) in iM(Zz) and z'./\/l(Zg) are present because the order of the spinors in each
1)

case appear in an odd permutation of the canonical order set by ZM(Z . Note that if we were
to proceed to a computation of the decay rate, the very first step would be to apply the Fierz

relations of egs. (2.66)—(2.68) to eliminate all of the ¢ and @ matrices in the above amplitudes.
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The diagrams in Fig. 6.16.2 combine to give a contribution:

—1

iMyl = — (Y95 + Yigyla) (VEypyp + Yienla)) (6.16.4)

(pl - k])2 - m¢0 J

where we have used the Feynman rules of Fig. K.3.1, and adopted the shorthand notation
YU = (V)" = Yo, Again we have factored the amplitude using the common virtual boson
propagator. As in the Z-exchange diagrams, the other contributions can be obtained by the
appropriate substitutions:

—1

M) = (-1 Y* x4+ Yyl 2D) (Y y5y0 + Yigzlal),  (6.16.5
17 @0 ( )(pz_kk)z_mzo( LYk + zkyzxk)( yij_F ]éx]xe) ( )

—1

ZME;) =(-1) (Y, + lﬁgij})(ijykyj + ijxla:}) . (6.16.6)

(pl - k€)2 - m¢0

The first factors of (—1) in z./\/l((;()) and iM((;’)) are needed because the spinors in each case are in
an odd permutation of the canonical order established earlier.

The total matrix element is obtained by adding all the contributing diagrams:

3 3
M= MP+3 S M) (6.16.7)
n=1

0 n=1
Squaring the matrix element, dividing by 2M 7, and integrating over phase space yields the
total decay rate. Note that final states differing by the interchange of identical particles must
be considered as a single state, counted once [38]. Given an N-body final state made up of v,

particles of type r (where r < N), we define a statistical factor S,
S = HVT»!, where Z v, =N. (6.16.8)

Then, in computing the total decay rate, the integration over the total phase space must be
divided by S to avoid over-counting. In the present example, N = 3 with S = 2 [or S = 6] in

the case of two [or three| identical neutralinos in the final state, respectively

6.17 Three-body slepton decays ZI_% L TEFF forb=e,p

We next consider the three-body decays of sleptons through a virtual neutralino. The usual as-
sumption in supersymmetric phenomenology is that these decays will have a very small branching
fraction, because a two-body decay to a lighter neutralino and lepton is always open. However,
in Gauge Mediated Supersymmetry Breaking models with a non-minimal messenger sector, the
sleptons can be lighter than the lightest neutralino [192,193]. In that case, the mostly R-type
smuon and selectron, jip and ég, will decay by Zfz — E‘Ti?’f . The lightest stau mass eigenstate,

7~'1i, is a mixture of the weak eigenstates ?zc and ?1%, as described in Appendix K.4:
T, = R:Tp + L:7,, (6.17.1)
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0" (b1, M) 0T (1, M)

lr (p) 71 (kg, A2)
Xj
N7 (k) N7 (ks)
0" (k1, M) 0F (K1, )
eﬁ (p) T(kQ,)\Q) eﬁ (p) 7t (k}g,)\g)
XJ Xj
TN UF (k) TN (ks)

Figure 6.17.1: Feynman diagrams for the three-body slepton decays 57}_2 — (~7T7] (top row)
and (5 — (7777, (bottom row) in the MSSM.

and 7;" = (7, )*, while the fig and ép are taken to be unmixed.

First consider the decay f@; — ¢~777, which proceed by the diagrams in the top row of
Fig. 6.17.1. The momenta and polarizations of the particles are also indicated on the diagram.
Using the Feynman rules of Fig. K.4.4, we find that the amplitudes of these two diagrams, for

each neutralino N; exchanged, are:

; . Ok . T _Z(p_kl)o-
iMyp = (—za§ )(—iaj) y1 [(p Sy ]az;, (6.17.2)
.1 J
~ N sz
iMy = (—ia’*)(—ibT) yy J Y. (6.17.3)
J J [(p—kl)z—m?%}
where
£ = Vag' N, (6.17.4)
T =Y:NjsLi +V2¢'NjRE, (6.17.5)
T * ok 1 * * *
bj = YTNj3R'F1 - E(QNJQ + g/ jl)Lﬁ' (6176)

The spinor wave function factors are y; = y(El, A1), Y2 = y(Eg, A2), and :E; = ZET(EQ, A2).

In the following, we will use the kinematic variables

20 = 2p-k1/m?~R = 2E¢/my,, Zr = 2p-k2/m§R =2E;/mj,, (6.17.7)
Ty, = mNj/ng, rE = ma /mg,, (6.17.8)
rr = me/mg,, re =my/my, . (6.17.9)

117



The total amplitude then can be written as

4
= [cjyl p—ky)-oxh +d]y1y2] , (6.17.10)
7=1
where
cj = —ag-*a%-/[mﬁR(r?vj — 1+ 2], (6.17.11)
d; = af*bj my, /[m%R(T?vj — 1+ 2)) (6.17.12)

We consistently neglect the electron and muon masses and Yukawa couplings (so r¢ = 0) in the
matrix elements, but not below in the kinematic integration over phase space, where the muon
mass can be important.

Using egs. (2.42) and (2.43), we find
MP =D [Cjcz y1(p — k1) oxh xa(p — k1) oy} + didiyiye yby!
jk

+cjdiyi(p — k1) -ng ygyi + cjdrza(p — k1) -JyI Y1y2| - (6.17.13)

Summing over the lepton spins using egs. (3.1.58)—(3.1.61) gives

Z IM? = Z [cjc;;Tr[(p — k1) 0keT(p — k1)-0ky T + d;d} Tr[ke- 0k, -5
A1, A2 gk

—cjdpm;Tr[(p — k1)-0k1-G] — ¢;dpm;Tr[(p — k1)-0k1-T]|. (6.17.14)
Taking the traces using eqs. (2.54) and (2.55) yields

S IMPE =37 {eicilthn- (o — ke (0 — k) — 281 -ka(p — k1)) + 2k -k
spins .k
_4Re[cjd;;]m7_k;1.(p o kl)}
=> {CjC}Zm;%R[(l (1= 2) — 2 2]
ik

+djd,’;m§ (2o + 2, —14+72 —712) - 2Re[cjdk]m7mé Zg} (6.17.15)

The differential decay rate for Z}_% — (~777 then follows:

d2F mg 9
dzgdz, 25671:3 <Z M| ) : (6.17.16)

spins

The total decay rate in that channel can be found by integrating over zy, z,, with the limits (see

for example ref. [164]):

2 < zg < 1477 — (ry +77)2, (6.17.17)
(ZT)min <z < (ZT)max, (61718)
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where

1

m[(2—Ze)(1+r?+7“3—TE—Ze)ﬂF(Ze?—4r§)1/2A1/2(1+r?—zz,rZﬂ%) :

(6.17.19)

(Zr)min ,max —

and the triangle function A'/? is defined in eq. (6.1.11).

Now we turn to the competing decay Zﬁ — E_T_?fr , with diagrams appearing in the bottom
row of Fig. 6.17.1. By appealing again to the Feynman rules of Fig. K.4.3, we find that the
amplitude has exactly the same form as in egs. (6.17.2) and (6.17.3), except now with a]%- > bj—*.

Therefore, the entire previous calculation goes through precisely as before, but now with

—al*pT*
¢ =— 2% i : (6.17.20)
mZR(TNj — 14 2z)
0% Fx
a:ar" my
dj = ——52 20 (6.17.21)

mZR(TNj —1+42z)

The differential decay widths found above can be integrated to find the total decay widths. The
results agree with ref. [194], except that the signs of the coefficient cg-’) and cl(-?) in the published
version of that paper are incorrect; the arXiv eprint version has been corrected. (Also, the
notations for the sfermion mixing angle are different in that paper.) If mg. — Mz — My is not
too large, the resulting decays can have a macroscopic length in a detector, and the ratio of the

two decay modes can provide an interesting probe of the supersymmetric Lagrangian.

6.18 Neutralino decay to photon and Goldstino: ]/\7Z — 'yé’

The Goldstino G is a massless Weyl fermion that couples to the neutralino and photon fields

according to the non-renormalizable Lagrangian term [195]:

¥ — _%(XOJ“EPUV(?MGT) (0,A, —9,A,) + h.c. (6.18.1)

i
Here X? is the left-handed two-component fermion field that corresponds to the neutralino N,
particle, G is the two-component fermion field corresponding to the (nearly) massless Goldstino,
and the effective coupling is

1
a; = ———(N;j cos Oy + Nj5sin Oy ), 6.18.2
T Vi cont -+ N i) (6.18.2)

where N;; the mixing matrix for the neutralinos [see eq. (K.2.8)], and (F) is the F-term ex-

pectation value associated with supersymmetry breaking. Therefore N; can decay to v plus G

through the diagrams shown in Fig. 6.18.1, with amplitudes:

My :i% :L"Nk:@-a(s*-ﬁk,y-a—kw-ﬁe*-a):ng, (6.18.3)
: aj - _ .
Mg = —iy y}}]ké-a(a 0kyT—ky 0" T)ys. (6.18.4)
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v (kys Ay) Y (kyy Ay)
XY (. Ay) X5 (0, A 5)

é(k‘é,)\é) éT (k(;7)‘é)

Figure 6.18.1: The two Feynman diagrams for N; — vé in supersymmetric models with a
light Goldstino.

Here z g = (P, A\y), y;fv = y! (P, \y), and x - = xT(k:G,)\ ) ya =yka, Aa), and e* = *(k,, Ay)
are the external wave function factors for the neutralino, Goldstino, and photon, respectively. Us-
ing the on-shell condition k,-¢* = 0, we have k., -0e*-0 = —¢*-0k,-0 and k,-0e*-0 = —c*-Tk, -0

from egs. (2.50) and (2.51). So we can rewrite the total amplitude as

M = My + My =zg Azl + 1y Byg, (6.18.5)

where
A=a;jkg-0e"-Tk,y-o0, (6.18.6)
B=—ajksoe"-0kyT. (6.18.7)

The complex square of the matrix element is therefore
MP? = a2y Azl xGAa: + yLByGyGByN + a:NAxGy ByN + oyl BnyGAx - (6.18.8)

where A and B are obtained from A and B by reversing the order of the o and @ matrices and
taking the complex conjugates of a; and ¢ [cf. eq. (4.4.4) and the associated text].
Summing over the Goldstino spins using eqgs. (3.1.58)—(3.1.61) now yields:

D IMP =2y Akg - TAxk 4yl Bhg-oByg. (6.18.9)
A

(The A, B and /1, B cross terms vanish because of m s = 0.) Averaging over the neutralino spins

using egs. (3.1.58) and (3.1.59), we find

= Z yMP_—Tr Akg-aAp-7) + Tr[Bk -oBp-0]

= §|ai|2Tr[€*-5k‘,y-0 keTky-oeTka-opGhg-ol+ (0 < 7). (6.18.10)
We now use

ky-okaOky-o =2ka kyky o, (6.18.11)
ka-op-okao =2kapka-o, (6.18.12)
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which follow from eq. (2.52), and the corresponding identities with o <> @, to obtain:
1 w — _ _
5 > IMP =20ai (kg ky) (kg p)Tre” Thy-0e-Thg-o] + (0 < 7). (6.18.13)
ARAG

Applying the photon spin-sum identity

D et =g, (6.18.14)
)\’7
and the trace identities eq. (2.55) and (2.56), we get
1
5 > IMP =16ail* (kg ky)* (kg p) = 2]a,-]2m%i. (6.18.15)
A AgAg

So, the decay rate is [192,196]:

5
~ ~ 1 1 mg
T'(V; =—-| = 2] = |N; 0 Nygsin Oy | ——i— . (6.18.16
? VNN NG

6.19 Gluino pair production from gluon fusion: gg — gg

In this subsection we will compute the cross-section for the process gg — ¢g. The relevant
Feynman diagrams are shown in Fig. 6.19.1. The initial state gluons have SU(3). adjoint
representation indices a and b, with momenta p; and ps and polarization vectors e} = (P}, A1)
and e = (P, \2), respectively. The final state gluinos carry adjoint representation indices ¢
and d, with momenta k1 and ko and wave function spinors a:J{ = xT(El, Ap) ory; = y(El, A1) and
:E; = 21 (ks, A,) or yo = y(ks, A}), respectively.

The Feynman rules for the gluino couplings in the supersymmetric extension of QCD are

given in Fig. K.5.1. For the two s-channel amplitudes, we obtain:

. —igP”
iMs = (—gsf“be[guu(pl —12)p + Gup(P1 + 2p2)p — Gup(201 +p2)u]> ( . > efes

X [(—gstde):UIEnw + (g5 f*) yrowad| . (6.19.1)

The first factor is the Feynman rule for the three-gluon interaction of standard QCD, and
the second factor is the gluon propagator. The next four (¢-channel) diagrams have a total

amplitude:

- — (_ cea 1\ (__ edb v\ T—= Z‘(kl_pl)’o' _
iMy = (=g ) (=95 *Ve5) w10 [(kl—p1)2—m§ TvY2

eca deb_v Z(kl _pl)'a T
+(.gsf 5?) (.gsf 52) Y10y [(kl _p1)2 — m%] OpTy

_ mg
e o el ]
g

img
(k1 —p1)?

+(gsfeh) (—gs f“Pe8) yrou [ — mz] Yo (6.19.2)
g
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Figure 6.19.1: The ten Feynman diagrams for gg — gg. The momentum and spin polarization

gc (kla )‘/1)

Gh (k2. Xy)

assignments are indicated on the first diagram.
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Finally, the u-channel Feynman diagrams result in:

, _ (k1 —p2)-0 | _
iMy = (—gs edagu —gs cebEV xTUV Z( &
(—gsfe)) (—gsf“e5) 21 (k‘l—pz)2—m§ nY2

(k1 — T
(gsfdea )(gstCb ) Y10v [(kll(_lp2)p22)_ mg] qug

ea ceb_v — im~
o) s ) |
(o (g0 g0 )ylo'u[(kl_;z;z_mg . (6.19.3)
g

We choose to work with real transverse polarization vectors €1, 5. These vectors must both

be orthogonal to the initial state collision axis in the center-of-momentum frame. Hence,

€161 =€2:€2 = —1, (6.19.4)
€1:p1 = €2°p1 = €1°p2 = €2-p2 = 0, (6.19.5)
€1k = —&1-kq, (6.19.6)
€9-ko = —e9-kq, (6.19.7)

for each choice of A1, A2. The sums over gluon polarizations will be performed using [cf. eq. (1.2.61)]:

2
Zs‘fel 26262 (plpzjmpl) (6.19.8)

Note that in QCD processes with two or more external gluons, the term 2 (pi'py + php¥) /s
in eq. (6.19.8) cannot in general be dropped [197]. This is to be contrasted to the photon
polarization sum [cf. eq. (6.18.14)], where this latter term can always be neglected (due to a
Ward identity of quantum electrodynamics).

Before taking the complex square of the amplitude, it is convenient to rewrite the last two

terms in each of eqgs. (6.19.2) and (6.19.3) by using the identities [see eq. (3.1.12)]:
mgx]; = yl(k‘l-a) s mgy1 = xi(k‘l 'E) . (6199)

Using egs. (2.52) and (2.53), the resulting total matrix element is then reduced to a sum of

terms that each contain exactly one o or @ matrix. We define convenient factors:

= g2 fabe fede /g, (6.19.10)
Gy = g2 focc f2% /(¢ — m3), (6.19.11)
Gu = g3 7 f*°/(u — m). (6.19.12)

where the usual Mandelstam variables are:

s=(p1 +p2)? = (k1 + k2)?, (6.19.13)
t= (k‘l —p1)2 = (k‘Q —p2)2, (6.19.14)
uw=(ky —p2)? = (kz —p1)> (6.19.15)
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Then the total amplitude is (noting that the gluon polarizations 1,9 were chosen real):
M=M;+ M+ M, = :EJ{(I'EZ/Q + yla*-axg, (6.19.16)
where

at = —(Gt + GS)€1'€2 p'Lf — (Gu — Gs)€1'€2p5 — 2Giky &1 65 — 2G k€9 6‘{
—’L'E‘uypn€1y€2p(th1 — Gupg),.;. (6.19.17)

Squaring the amplitude using egs. (2.43) and (2.44), we get:

M = xia-ﬁygyga*-ﬁm + yla*-cr:n;xga-ay;f + xia-ﬁygznga-ayi + yla*-ax;yga*-ﬁxl.
(6.19.18)
Summing over the gluino spins using eqs. (3.1.58)—(3.1.61), we find:
Z |IM|? = Tr[a-Gky-0a* -Gky-0] + Trla*-cky-Ga-ok; -5
AL
—mgTr[a-Ea-a] - mgTr[a*'Ja*-E]. (6.19.19)

Performing the traces with eqs. (2.54)—(2.56) then yields:

Z IM|? = 8Rela-kia*-ka] — da-a* ky-ky — die" P ky, kaya,a), — 4m§Re[a2]. (6.19.20)
A1AY

Inserting the explicit form for a* [eq. (6.19.17)] into the above result, we obtain:
D IMP =2(t = m2)(u—md)[(Gr + Gu)® + 4Gs + G1)(Gs — Gu)(e1-€2)°]
AL
e +16(Gt + Gu)[Gs(t — u) + Gt(t — m%) + Gu(u — m?])](€1 '62)(1{71 '61)(1{71 '62)
—32(Gy + Go)?(ky-e1)%(ky-£2)2. (6.19.21)

The sums over gluon polarizations can be done using eq. (6.19.8), which implies:

> 1=4, > (erre2)® =2, (6.19.22)
A1,\2 A1,A2

> (er-e2)(kie1)(kr-e2) = m3 — (t —m3)(u—m2)/s, (6.19.23)
A1,A2

D (kr-e1)?(kr-e2) = (m} — (t — m)(u — m2)/s)?. (6.19.24)
A1,A2

Summing over colors using fabefchfabe’fcde’ _ 2fabefcdeface’fbde’ — Nc2 (Nc2 _ 1) =72,

72 72
Y@= 98 Yoai= 25 , (6.19.25)
colors colors o [) )
724 36 A
Y= 7922, Y GG = gs ot (6.19.26)
colors g ) colors mg
36¢% 3692

GGy = ——0s GG = s . (6.19.27)

20T 2 e
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Putting all the factors together, and averaging over the initial state colors and spins, we have:

o1 (1 1 )
E‘lﬁws2<ZZZZ’M’>
colors  spins
32(8—1—2m§)2 B 4m§s4
N 2 0 2\2( _n2\2 |
(t—m2)(u—mz) (t—m3)?*(u—m;)

g
(6.19.28)

2
_ 9o
454

[2(15 - mg)(u - m?]) —3s% — 4m§s +

which agrees with the result of [177,198] (after some rearrangement). Note that in the center-
of-momentum frame, the Mandelstam variable ¢ is related to the scattering angle # between an

initial state gluon and a final state gluino by:

t:m§+§<cose,/1—4m§/s—l>. (6.19.29)

Since the final state has identical particles, the total cross-section can now be obtained by:

1 [ do
o=—-

= dt 19.
i . (6.19.30)

where t4 are obtained by inserting cos = £1 into eq. (6.19.29).

6.20 R-parity violating stau decay: 7o — et

In an R-parity-violating extension of the MSSM (denoted henceforth by RPV-MSSM), new
Yukawa couplings can arise [see egs. (L.1)—(L.3)] that violate either a global U(1) lepton number
L or baryon number B. The corresponding Feynman rules are derived in Appendix L. Consider
the decay of a right-handed scalar tau via an L-violating LLé coupling governed by eq. (L.1).
This is particularly relevant when the scalar tau is the lightest supersymmetric particle (LSP)
[199, 200] and in the case of resonant slepton production [201,202]. Note that in R-parity
violation the LSP need not be the lightest neutralino and in a minimal supergravity embedding
often it is not [203,204]. The Feynman diagram is shown in Fig. 6.20, where we have also defined

the momenta and the helicities of the fermions.

Vl(kﬂyﬁ A17/,1‘)

el (ke, Ae)

Figure 6.20.1: Feynman diagram for the R-parity-violating decay 77}4%' — ety

The amplitude for the R-parity-violating ?E decay is given by:

iM = —idyeys, - (6.20.1)
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Here we have defined A = Aq23, and the external wave functions are denoted by y. = y(Ee, Ae),

and yp, = y(E,;H, A, ), respectively. Using eq. (2.42), the amplitude squared is
M = [Myeys, vl vl (6.20.2)
Summing over the fermion spins using eq. (3.1.59) gives:

> IMP = NPTlke-o by, 7] = [A*m?,,, (6.20.3)
Ae Ay,
where in the last step we have used the trace formula eq. (2.54), and neglected the mass of the

electron and the neutrino. The total decay rate is then given by

I= 2 = W Tom M 6.20.4
which agrees with the computation in refs. [205-207]. Completely analogously we can obtain
the total rate for the decays 7, — 7~ e™ and €, — 777, which proceed via the same operator,
by replacing mz, — (mg, ,ms,), respectively.

In general the two-body decay rate of a sfermion fvia the L-violating LQd coupling gov-
erned by eq. (L.2) or the B-violating @dd coupling governed by eq. (L.3) is given by:

2
N - af) = P, (6:205)

where we have neglected the masses mq o of the final state fermions. The factor C' denotes the
color factor. For the slepton decays via the LQd coupling which are summed over the final
state quark colors, C' = 6% 0;; = 3, where 4, j = 1,2,3 and 9;; is the symmetric invariant tensor
of color SU(3). For the squark decays via the LQd where the initial state color is averaged
over and the final state color is summed, C' = 1. For the squark decays via the @dd coupling,
C = %eijkeijk = 2, where the Levi-Civita tensor, €/% = €ijk, 1S the antisymmetric invariant
tensor of color SU(3). In realistic cases, one must also include the effects of mixing for the

third-family sfermions, which we have omitted here for simplicity.

6.21 R-parity-violating neutralino decay: JA\TJZ — p-ud

Next we consider the R-parity-violating three-body decay of a neutralino N, — p~ud, which
arises due to the L-violating LQd coupling governed by eq. (L.2). This is of particular interest
when the neutralino is the LSP, since it determines the final state signatures [208-210]. The
three Feynman diagrams are shown in Fig. 6.21.1, including the definitions of the momenta
and helicities. We have neglected sfermion mixing, i.e. we assume iy, uy, and C?R are mass

eigenstates. Using the Feynman rules given in Figs. L.2 and K.4.2 (or K.4.4), we obtain the
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,u(kua/\u) J(kch)\d)

0 0
XiT(piv)‘i) u(k‘u,)\u) XiT(pi’)\i) ,u(kua/\u)
N - . N\ N
3 dr
J(kd,)\d) u(kﬁy)\u)
U (K, Au)
X; T (pis M) 1t (K M)
T
ur
d (kg, M)

Figure 6.21.1: Feynman diagrams for the R-parity violating decay NZ — pud.

corresponding contributions to the decay amplitude,

My = () | (G0N + o' N, ! fod ol ot 6.21.1
iMy = (iN") ﬁ(g 2+g 1)] [(pz e m%L Yi T T Ty ( )
iv2 i
iMy = (iN*) | ——=¢g'Na ylalalal | (6.21.2)
( )_ 3 (pi—k‘d)2—m3R d-p
o
iMz = (iN*) |——=(gN +g,Ni1/3):| [ . ]ijlx}lﬂ. (6.21.3)
L \/5 (pi - ku)2 —mg, K

Here we have defined X = X, and the external wave functions are denoted by yj =y (P, i),
a:L = xT(Eu,)\u), zl = xT(Eu,)\u), and a;Il = xT(Ed,)\d), respectively. In the following, we will
neglect all of the final state fermion masses. The results will be expressed in terms of the

kinematic variables

2 = 2k /mY, = 2B, /my,, (6.21.4)
24 = 2pi-ka/m%, = 2Eq/myg, (6.21.5)
2y = 2pi-k‘u/m?§7i =2E,/myg,, (6.21.6)

which satisfy z, + 24 + z, = 2. Then we can rewrite the total matrix element as:

M = clijL:Esz; + czyng;xL:ET + c;;yj:z:LmLxL , (6.21.7)

u
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where

1

€1 = EA/*(QNQ +9'N)/[m7, — m?vl(l = 2], (6.21.8)
V2.

02 = === N"g' N /[ —m% (1= za)), (6.21.9)
L

3 = —EA’ (9Niz + g'Nir /3)/[m3, —m%; (1 — z)]. (6.21.10)

Before squaring the amplitude, it is convenient to use the Fierz identity [eq. (2.65)] to reduce

the number of terms:
M= (c; — C3):UZ:EL:EL$L + (eg — C3)ij2$L$Tw (6.21.11)

Using eq. (2.42), we obtain

|/Vl|2 =le1 — 63|2y3wLmuyiwLmLmdwu + |e2 — CsFZ/hIﬁd@/ﬂL%%%
—2Re[(c1 — ¢3)(c5 — cg)ijL:EH:EuxL:Eledyi] , (6.21.12)

where eq. (2.58) was used on the last term. Summing over the fermion spins using eqs. (3.1.58)—
(3.1.61), we obtain:

Z M = e — c3*Tr [k, -Gpi- o) Trlkq-Thy -0 + |c2 — e3> Tr[kq-Gp;- o] Tr[ky - Tky -0
spins

—2Re[(c1 — ¢3)(c5 — ¢3)Tr[ky, - Tky-okq-p;-ol] . (6.21.13)
Applying the trace formulae, egs. (2.54) and (2.56), we obtain

ST IMP = dler — e3Pk kaka + 4les — es*pika ke

spins
—4Re[(cl —c3)(cy — e3)|(ky-kupi-ka + pi-kpka-ky — ky-kapi-ku)
= [ler P2 (1 = 2) + leaP2a(1 = 20) + lesPzu(1 - 2)
—2Re[c163)(1 — 2,)(1 — z4) — 2Re[c1e3](1 — 2,)(1 — 2)
—2Re[cac3](1 — zq)(1 — z4) | , (6.21.14)

where in the last equality we have used egs. (6.21.4)—(6.21.6) and

2k, kg =(1— zu)m?v,, 2k, ky = (1 — zg)m*

Yo 2kake=(1—z)m% . (6.21.15)

N;

The differential decay rate follows:

d*T Nemg (1
— Ny <§ > \MP), (6.21.16)

dz,dzq 2873 :
spins
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where a factor of N, = 3 has been included for the sum over colors, a factor of 1/2 to average

over the neutralino spin, and the kinematic limits are

0<z, <1, (6.21.17)
1—2, <z <1 (6.21.18)

In the limit of heavy sfermions, the integrations over z; and then z, are simple, with the result

for the total decay width:
5
cmNi /2 /2 /12 S S S
= ST 3,3 (|c1]? + |y]* + |57 — Re[c)dy + ¢ + eycf]) (6.21.19)

where the ¢ are obtained from ¢; of egs. (6.21.8)—(6.21.10) by neglecting m?v in the denom-

inators. Our results agree with the complete computation (which includes mixing) given in

refs. [206,207,211]. Earlier calculations with some simplifications are given in refs. [209,212].

6.22 Top-quark condensation from a Nambu-Jona-Lasinio model gap equa-
tion

The previous examples have involved renormalizable field theories. However, there are cases in
which it is preferable to use effective four-fermion interactions. The obvious historical example
is the four-fermion Fermi theory of weak decays. This has been superseded by a more complete
and accurate theory of the weak interactions but is still useful for leading order calculations of
low-energy processes. Another case of some interest is the use of strong coupling four-fermion
interactions to drive symmetry breaking via a Nambu-Jona-Lasinio model [213], as in the top
quark condensate approach [214-218] to electroweak symmetry breaking.

Consider an effective four-fermion Lagrangian involving the top quark [216], written in

two-component fermion form as:
_ G
& = it'aHo,t + it 70, t + P(u‘)(tT ). (6.22.1)

Here the Standard Model gauge interactions have been suppressed; the quantities within paren-
theses are color singlets. Note also that there is no top quark Yukawa coupling to a Higgs scalar
boson, nor a top quark mass term, which would normally appear in the form —my(tf + t'zT).
Instead, the effective top quark mass is supposed to be driven by a non-perturbatively large and
positive dimensionless coupling GG, with A the cutoff scale at which G arises from some more
fundamental physics such as topcolor [218].

The Feynman rule for the four-fermion interaction can be derived from the mode expansion
results of Section 3, and is given in Fig. 6.22.1. The resulting gap equation for the dynamically
generated top quark mass is shown in Fig. 6.22.2. Evaluating this using the Feynman rules of
Figs. 4.2.3 and 4.2.4, one finds:

AN 4 . :
; d*k G . im
—imadleB = (— 2N | sisksBsP ngd Tt
im61 68 = ( 1)/ oL <z A2515n5a5a> <5k5/3 k2—m§+z’e>' (6.22.2)
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i%&{éﬁégag

t, 4,8 t,n, B

Figure 6.22.1: Feynman rule for the four-fermion interaction in the top quark condensate
model. The indices i,j,k,n = 1,2,3 are for color in the fundamental representation of SU (3),
and the indices «, 3, &, 8 are two-component spinor indices.

— 4 =

Figure 6.22.2: The Nambu-Jona-Lasinio gap equation for a possible dynamically generated
top quark mass m;.

Here i, j, k,n are color indices of the fundamental representation of SU(3), and «, 3, &, B are
two-component spinor indices. The factor of (—1) on the right-hand side is due to the presence
of a fermion loop.

Euclideanizing the loop integration over k* by k? — —k:fzE and [ d*k — i i d*kp, and then

rewriting the integration in terms of x = k%, this amounts to [216]:

2N0Gmt A? 9
my = 1672 A2 /0 dr/(1+mji/z)
3Gm
= oz (1= (mf/A?) (A /mf) + .. ], (6.22.3)

where N, = 3 is the number of colors, and a factor of two arises from the sum over dotted spinor
indices of 5552:‘.

For small or negative GG, only the trivial solution m; = 0 is possible. However, for G >
Geritical = 3™2/3 &~ 26, there is a positive solution for m?/A? [216]. It is now known that this
minimal version of the model cannot explain the top quark mass and the observed features of

electroweak symmetry breaking, but extensions of it may be viable [219].

6.23 Electroweak vector boson self-energies from fermion loops

In this subsection, we consider the contributions to the self-energy functions of the Standard
Model electroweak vector bosons coming from quark and lepton loops. (For a derivation of
equivalent results in the four-component fermion formalism, see for example Section 21.3 of

[114].) The independent self-energies are given by HE,//W, Hf,/Z , H;Yf = Hﬁ[] , and II}}}, as shown
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Figure 6.23.1: Contributions to the self-energy function for the W boson in the Standard
Model, from loops involving the left-handed quark and lepton pairs (f, f') = (e,ve), (1, 1),
(1,vr), (d,u), (s,c), and (b,t). The momentum of the positively charged W flows from left to
right.

] ] [T Pt
) Vv Vv Vv Vv Vv’
iy = + W@A - W@M + W@M
7 1% % v M _ v 1% 4 v
i q 7 ;1
Figure 6.23.2: Contributions to the diagonal and off-diagonal self-energy functions for the

neutral vector bosons V,V’ = ~,Z in the Standard Model, from loops involving the three
generations of leptons and quarks: f = e, v, p, vy, 7,07, d,u, s,c,b,t.

in Figs. 6.23.1 and 6.23.2. In each case, ill,, is equal to the sum of Feynman diagrams for
two-point functions with amputated external legs, and is implicitly a function of the external
momentum pH.

First consider the self-energy function for the W boson, shown in Fig. 6.23.1. The W boson
only couples to left-handed fermions, so there is only one Feynman diagram for each Standard
model weak isodoublet. Taking the external momentum flowing from left to right to be p, and
the loop momentum flowing counterclockwise in the upper fermion line (f) to be k, we have

from the Feynman rules of Fig. J.1.2:

- o 2 5 el () ) (225 )

(6.23.1)

Here p is a regularization scale for dimensional regularization in d = 4 — 2¢ dimensions. The
sum in eq. (6.23.1) is over the six isodoublet pairs (f, f') = (e, ve), (1, vu), (1,v7), (d,u), (s,¢),
and (b,t) with CKM mixing neglected, and

3 = k
NS {3 J = auarks, (6.23.2)
1, f = leptons.

The first factor of (—1) in eq. (6.23.1) is due to the presence of a closed fermion loop. The trace

is taken over the two-component dotted spinor indices. Using eq. (B.2.27), it follows that

2

g

M = 5o > N Luw(mi.m3), (6.23.3)
f
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where we have defined
. A%k Ak, k, + 2kupy + 2kp, — 2k (k + p) g
Iy$7y :7/1677-2 26/ ;U' /J' /J' :u“
i) =60 [ o 32— )k + ) — 3]

This integral can be evaluated by the standard dimensional regularization methods [114,220]:

(6.23.4)

I;u/(x7 y) = (p2g;w - pupu)fl (p2§ xz, y) + g;w[2(p2§ z, y), (6235)

where, after neglecting terms that vanish as € — 0,

B(sia) =~ + oo { (20 = 2 = 9)A() + 2y — 20~ 5)AQ)
+ {2(3: —y)? —s(z+y) — 32] B(s;z,y) —s(z+y) + 32/3}, (6.23.6)
I(sizy) = 2 - 3{( ~9)[A@) - AW)] + (@ )~ sla + y)}B(ax,y)}. (6.23.7)
The functions
Alz) = zln(z/Q?) — , (6.23.8)
. _ [ Lt (Lt — (1 —t)s —ic
B(s;z,y) = /0 dt 1 < 2 ) , (6.23.9)

are the finite parts of one-loop Passarino-Veltman functions [221], with the renormalization scale

Q related to the regularization scale y by the modified minimal subtraction relation
p? = Q%" /ax, (6.23.10)

where v = 0.577216 ... is Euler’s constant.
The photon and Z boson have mixed self-energy functions, defined in Fig. 6.23.2. Applying

the pertinent Feynman rules from Fig. J.1.2, we obtain:

iy = o [ s S () (s ) o) (e )

i
+(—1‘G€6u> (%) (~iGl,7, ) <(/<;‘f;; p)-o )

f
} (6.23.11)

2
f
f = imy AT
+(—vaau> <k2 — m?) (ZGV/O'V) < = )
where V' and V' can each be either y or Z, and ) ; is taken over the 12 Standard Model fermions.

my N\ af
+(= ZGVUM> (m) (ZGV’UV) < k+p)2

The corresponding V f f and V f f couplings are:%6
G = —Gf = eQy, (6.23.12)
Gh=m -shaQpn o= (6.23.13)

56Note that there is no contribution from the left-handed two-component antineutrino fields, 7, Uy, Ur, which
do not exist in the Standard Model.
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The four terms in eq. (6.23.11) correspond to the four diagrams in Fig. 6.23.2, in the same order.
The first two terms in eq. (6.23.11) are computed exactly as for HE,/,W, while in the last two
terms we use eq. (B.2.5) to compute the trace. It follows that the neutral electroweak vector

boson self-energy function matrix, after dropping terms that vanish as e — 0, is given by

/ 1 Fof F F
" =150 N [(G{/G{ﬂ + GYG ) L (mG,m3) + 9 (GG, + GLGY)mE I3 (mG,m3) |
!
(6.23.14)
where 1,,,(x,y) was defined in eqgs. (6.23.5)-(6.23.7), and we have defined the function
d’k 2
(2m)¢ (k* — 2)[(k + p)* — y]

2
I3(x,y) = —i(167?) ;ﬂf/ ==+ 2B(p*;z,y).  (6.23.15)

The photon self-energy function is a simple special case of eq. (6.23.14):
1
) = o Z2ch(le)2 [Iw,(m?,m?) - gu,,m?clg(m?,m?)] ) (6.23.16)
f

Evaluating the integrals I, and I3 yields

1 1

o 2 2m?
HZZ - 3r ZNCJCQ? (p2.g,uu _pupu){——‘Fg—F [A(m?:) +m?] — <1+ !
!

p—2>B(p2;mff,mff)},
(6.23.17)

in agreement with the result given in, for example, eq. (7.90) of [114]. This formula satisfies
pMIL) = p’I};) = 0 as required by the Ward identity of QED, and is regular in the limit p? — 0.
In each of eqs. (6.23.3), (6.23.14), and (6.23.17), there are 1/e poles, contained in the

loop integral functions. In the MS renormalization scheme, these poles are simply removed by

€

counterterms, which have no other effect.

In egs. (6.23.1) and (6.23.11), we chose to write a &, for the left vertex in the Feynman
diagram in each case. This is an arbitrary choice; we could also have chosen to use instead —o,
for the left vertex in any given diagram, as mentioned in the caption for Fig. J.1.2. This would
have dictated the replacements @ <+ —o throughout the expression for the diagram, including
for the fermion propagators, as was indicated in Fig. 4.2.4. It is not hard to check that the result
after computing the spinor index traces is unaffected. Note that the contribution proportional
to €upr from eq. (B.2.26) or eq. (B.2.27) vanishes; this is clear because the self-energy function
is symmetric under interchange of vector indices, and there is only one independent momentum

in the problem.

6.24 Self-energy and pole mass of the top quark

We next consider the one-loop calculation of the self-energy and the pole mass of the top quark
in the Standard Model, including the effects of the gauge interactions and the top and bottom

quark Yukawa couplings. As in Section 6.1, we treat this as a one-generation problem, neglecting
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Figure 6.24.1: One-loop contributions to the 1PI self-energy functions for the top quark in the
Standard Model. The external momentum of the physical top quark, p#, flows from the right to
the left. The loop momentum k* in the text is taken to flow clockwise. Spinor and color indices
are suppressed. The external legs are amputated. The last diagram contains one-loop tadpole
contributions.

CKM mixing. Consequently, the corresponding Yukawa couplings Y; and Y} are real and positive
(by a suitable phase redefinition of the Higgs field5”). Using the formalism of Section 4.6 for
Dirac fermions, the independent 1PI self-energy functions are given by% ¥, Yp; and Xpy
(defined in Fig. 4.6.5) as shown in Fig. 6.24.1. Note that in these diagrams, the physical top
quark moves from right to left, carrying momentum p*. Then according to the general formula

obtained in eq. (4.6.31), the complex pole squared mass of the top quark is given by:

. + Ypy)?
M2 Ty M, = , 6.24.1
C = S - S (6:24.1)
where my is the tree-level mass. Working consistently to one-loop order, this yields
MP —iT My = [mi(1+ Sri + Sge) + 2meSpy] i (6.24.2)
s=mj+ie

(It would be just as valid to substitute in s = M2 + ic here, as two-loop order effects are being
neglected.)

It remains to calculate the self-energy functions r;, Xg; and Xp;. Two regularization
procedures will be used simultaneously—the MS scheme [222] based on dimensional regulariza-

tion [124] and the DR scheme based on dimensional reduction [223]. This is accomplished by

57As shown in Section 3.2, after the fermion mass matrix diagonalization procedure, the tree-level fermion
masses are real and non-negative. If CKM mixing is neglected, it follows from eq. (J.1.9) that the corresponding
diagonal Yukawa couplings are real and positive if the phase of the Higgs field is chosen such that the neutral
Higgs vacuum expectation value v > 0.

68GSince the Yukawa couplings can be chosen real (in the one-generation model), Yt = X1:. Note that after
suppressing the color degrees of freedom, Y1, Xzt and X p; are one-dimensional matrices, so we do not employ
boldface letters in this case.
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. O

EhSM + EhSM -0

Figure 6.24.2: The tree-level Higgs tadpole cancels against the one-loop Higgs tadpole, pro-
vided that one expands around a Higgs vacuum expectation value that minimizes the one-loop
effective potential (rather than the tree-level Higgs potential, which would yield no tree-level
tadpole).

integrating over the loop momentum in
d=4-—2¢ (6.24.3)

dimensions, but with the vector bosons possessing

D =4 —2ebyg (6.24.4)
components, where
1 for MS,
s = o (6.24.5)
for DR.

In other words, the metric g" appearing explicitly in the vector propagator is treated as four
dimensional in DR, but as d-dimensional in MS. The renormalization scale @ is related to the
regularization scale p in both cases by the modified minimal subtraction relation of eq. (6.23.10).

The calculation of the non-tadpole contributions to the self-energy functions will be per-
formed below in a general R¢ gauge, with a vector boson propagator as in Fig. 4.2.5. There are
different ways to treat the tadpole contributions, corresponding to different choices for the Higgs
vacuum expectation value around which the tree-level Lagrangian is expanded. If one chooses to
expand around the minimum of the tree-level Higgs potential, then there are no tree-level tad-
poles, but there will be non-zero contributions from the last diagram shown in Fig. 6.24.1. (This
corresponds to the treatment given, for example, in ref. [224].) Alternatively, one can choose
to expand around the Higgs vacuum expectation value v that minimizes the one-loop Landau
gauge’? effective potential. In that case, the one-loop tadpole contribution is precisely canceled
by the tree-level Higgs tadpole, as shown in Fig. 6.24.2. Here, we have in mind the latter pre-
scription; the calculation for the pole mass is therefore complete without tadpole contributions

provided that the tree-level top quark mass is taken to be

my = Y, (6.24.6)

59This procedure is considerably more involved outside of Landau gauge, because the propagators mix the
longitudinal components of the vector boson with the Nambu-Goldstone bosons for £ # 0 if one expands around
a Higgs vacuum expectation value that does not minimize the tree-level potential. This is the same reason the
effective potential is traditionally calculated specifically in Landau gauge.
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where Y; is the MS or DR Yukawa coupling, and v is the Higgs vacuum expectation value at the
minimum of the one-loop effective potential in Landau gauge. To be consistent with this choice,
& = 0 should be taken in all formulae below that involve electroweak gauge bosons or Goldstone
bosons. (The gluon contribution is naturally independent of £ because the gauge symmetry is
unbroken, providing a check of gauge-fixing invariance.) Nevertheless, for the sake of generality
we will keep the dependence on £ in the computation of the individual non-tadpole self-energy
diagrams below.

Consider the one-loop calculation of the self-energy Yr;, which is the sum of individual
diagram contributions Xr; = [Xr4]g+[X 1]y + Xz + B ndw+H X el hey + 2Lt o+ [Ere] o+ - First,
consider the diagrams involving exchanges of the scalars ¢ = hgy, GO, G*. These contributions

all have the same form

—ipF[Sps = #26/% (-iy*)(%)(-iﬂ(ﬁ), (6.24.7)

where the loop momentum k* flows clockwise, and the couplings and propagator masses are,

using the Feynman rules of Figs. J.1.3 and J.1.4,

forg=hsm: Y =Y/V2  mp=my o omi=mjg, (6.24.8)
for ¢ = GV : Y =i, /V2; my = my; mi = tm%, (6.24.9)
for ¢ = G* : Y =Y; my=my;  m3=Emy. (6.24.10)

Multiplying both sides by p-o and taking the trace over spinor indices using eq. (B.2.5), one
finds
d’k p-(k+p)

— 2'u_26
[ELt](z) = i|Y| D2 /(27T)d [(k+p)2 _m%][kﬂ —m?b] '

Performing the loop momentum integration in the standard way [114,220], and expanding in €

(6.24.11)

up to constant terms, one finds that in each case

1
% =———
T
Here we have introduced some notation for the loop integral:
1 (st+z—y)B(s;z,y) + Alx) — A(y)
J— + s
2e 2s
where the Passarino-Veltman functions A(x) and B(s;z,y) were defined in egs. (6.23.8) and

Y [? Ipg(s;mF,m3). (6.24.12)

Irs(s;z,y) = (6.24.13)

(6.23.9). These functions depend on the renormalization scale (), which is related to p via
eq. (6.23.10). It can be checked that Ipg(s;x,y) has a smooth limit as s — 0.
Next, let us consider the contributions to > involving the vector bosons V = g,v, Z, W.

These have the common form:
. d?k . i(k+p)o .

e — 2¢ v — A\ P _ —

ip Ty = p / (27)1 ( ) <(l<: ) = m?) (—iGa7,)

i kR
(ﬁ) (g*“’ + %) . (6.24.14)
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where again the loop momentum k flows clockwise, and, using the rules of Figs. J.1.2 and K.5.1:

for V=yg: G = g1, my = my, (6.24.15)
for V=r: G =eQy, my = my, (6.24.16)
for V.=2": G = g(T% — s%Q) Jew , my = my, (6.24.17)
for V=W: G=yg/V2, my = mp. (6.24.18)

In the case of gluon exchange (V = g), the T are the SU(3)¢ generators (with color indices
suppressed). The adjoint representation index a is summed over, producing a factor of the
Casimir invariant (7°7%);; = Crpd;j = %52-]-. We now use ,0,0, 9" = —(D — 2)G, [see
eq. (B.2.11)]; note that this introduces a difference between the MS and DR schemes. Also, we
use k-o(k + p)-ok- = (k* + 2k-p)k-& — k?p-7, which follows from eq. (2.53). One therefore

obtains, after multiplying by p-o and taking the trace over spinor indices:

L pe d%k 1
Sy =65 [ G T ¢ P
+ (K2k-p + 2(k-p)? — k2p?) %} , (6.24.19)
\%4

Performing the loop momentum integration, one finds that
1
Eudv = =15z G v (simG, my), (6.24.20)

where we have introduced the notation

Irv(siz,y) = % + (s + 2 —y)B(siz,y) + A(x) — A(y)]/s — s + { (s — ) [A(y) — A(&y)]
(s —2)? —y(s + )| B(s;z,y) — [(s —2)? = &y(s + )| B(s; x, Ey) } [2ys,  (6.24.21)

after dropping terms that vanish as € — 0. Combining the results of egs. (6.24.12) and (6.24.20):
1
T KQECF + €2Q3>IFV(m§; mi,0) + [9(T5 — siy Qo) /ew | Ipy (mi; mi, m%)

1 1
+5921Fv(mf; my, miy) + §YtZIFS(m?; mi,mpg,,)

1
+§YtQIFs(mf; mi, &m%) + Yy Ips(mif;mp, é’m%v)} : (6.24.22)
where we have now substituted s = m?. It is useful to note that for massless gauge bosons,
1
Ipy(z;2,0) = €| = — In(z/Q%) + 2] +1 — 31g- (6.24.23)
€

The contributions to Xt = [Erelg + [Ertly + [Ert]z + [Ertlhey + [Ertlgo + [Ert]gr are

obtained similarly. [Note that there is no W boson contribution, since the right-handed top
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quark is an SU(2);, singlet.] For the scalar exchange diagrams with ¢ = hgy, G°,GF, the

general form is:

: 'k i(k+p)-o , i
—ip-o[Sply = p* V) N (i) |y 6.24.24
p J[ Rt]¢ M /(27T)d ( 7 )<(k’+p)2—m%>( (3 ) k;2_m§) R ( )
which yields
Srilo = =153V Trs(simf, mg). (6.24.25)

Here the couplings and propagator masses for hgy and GY are the same as in eqgs. (6.24.8),
(6.24.9), but now instead of eq. (6.24.10),

for ¢ = G* : Y=Y, myp=my, mi=Emiy, (6.24.26)

from Fig. J.1.4. For the contributions due to exchanges of vectors v = g,~, Z, the general form

is given by
, k. i(lk+p)oT ,
—ip-o[2 = p* | —= (iG —— | (iGoy,
wottnly = i [ s G () (6o
i L€ DR
<k2 _m%) <gu i > (6.24.27)
where
for V=g: G=—gsT?, (6.24.28)
for V.=r: G = —eQy, (6.24.29)
forV.=2: G = g5 Qi/cew (6.24.30)

after using the rules of Figs. J.1.2 and K.5.1 with m; = m; in each case. We then make
use of 0,5,0, 9" = —(D — 2)0, [cf. eq. (B.2.10)] and k-o(k + p)-Gk-0 = (k* + 2k-p)k-0 —
k*p-o [cf. eq. (2.52)]. After multiplying by p-& and taking the trace over spinor indices [using

eq. (B.2.5)], we obtain
1

- 1672
in terms of the same function appearing in eqs. (6.24.21) and (6.24.23). Adding up these con-

gy = G*Ipy (s;mi,miy), (6.24.31)

tributions and taking s = m? yields

1
SR = 1pm2 [<9§CF + 62Q3>1Fv(mf; m7,0) + (¢ Q7 sy /iy ) ey (m7;mi, m%)
1 1
+§Y;2]F5(m?; m2, m%SM) + 53/;2[1:3(771?; m2, émy) + YiIps(m?;m?, §m%v)] . (6.24.32)
Next, consider the contributions to Xp; = [Ep¢lg + [Epe)y + [Epilz + [EDtlhen + [EDel o +
[Xpt]g+, ignoring the tadpole contribution for now. The diagrams involving the exchange of

scalars ¢ = hgn, G°, GT have the form:

Sy = M?e/(ng];d (—ivh) <(/<;—|—Z;1—2f—m%> (—iYs) <k2+m(2b> (6.24.33)

138



so that

dk 1
[Xptle =im Y1Y2M2€/
v 2m) [(k +p)? — m3][k2 — m3]

1

= w?mfylnffs(s;m;,m;), (6.24.34)

where we have introduced the notation:
1

Ig(s;x,y) = - B(s;z,y), (6.24.35)

after dropping terms that vanish as ¢ — 0. The relevant couplings and masses are, from
Figs. J.1.3 and J.1.4:

forg=hsw:  Vi=Ye=Y/V2, my=my, mi=mi ., (6.24.36)
for ¢ = G : Vi =Y, =iY;/V2, ms=my, mj =¢&my,  (6.24.37)
forg=G*: Y=Y, Yo=-Y, mp=my, mi=E&mj. (6.24.38)

The contributions from vector boson exchanges are of the form

d’k m
4 I’ e L =
ol = [ g ) (G ) 16
—i L (e- 1>/<:W>
— ) (g ), 6.24.39
(=) (o + e (62439
Using 0,0,9" = D [see eq. (B.2.8)] and k-ck- = k? [from eq. (2.50)] yields
d’k 1 (€ —1)k?
S o 202
oy =ims G | Gyt e o — e — ] [P e
1
= WmfGlGQIFV(s;mfc,m%,), (6.24.40)
where
_ 3+4¢
Ipy (siz,y) = ——— = 3B(siz,y) = EB(s32,£y) + 2y, (6.24.41)

after dropping terms that vanish as € — 0. It is useful to note that for massless gauge bosons

Iy (z;2,0) = —¥ + (3+&)[In(x/Q%) — 2] + 205 (6.24.42)

The relevant couplings are obtained from the rules of Figs. J.1.2 and K.5.1:

for V=g: G = -Gy = g, T, (6.24.43)
for V.=r: G1 = -Gy = eQy, (6.24.44)
for V=2:  Gi=g(T5—sjyQ)/cw,  Ga=gsyyQi/ew, (6.24.45)
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and my = m; in each case. Adding up these contributions and taking s = m?, we have:

m
o =m0~ Qs Q] By i ) — (O + QD im0

167
3V Ipg(miymi,my ) — 5V Trg(mi; mi, ém7) — nzfmm?;m%,&m%v)} , (6.24.46)

where Y; = m;Y,/my, was used on the last term.

In each of the self-energy functions above, there are poles in 1/e, contained within the
functions Iry, Irs, Iy, and I5g. In the MS or DR schemes, these poles are simply canceled
by counterterms, which have no other effect at one-loop order. The one-loop top quark pole
mass can now be obtained by plugging eqs. (6.24.22), (6.24.32), and (6.24.46) into eq. (6.24.2)
with £ = 0, as discussed earlier. It is not hard to check that the terms from massless Nambu-
Goldstone boson exchange just cancel against the terms from the vector exchange diagrams that
came from §m%v and &m%.

As a simple example, consider the one-loop pole mass with only QCD effects included.
Then the result of eq. (6.24.2) has no imaginary part. Taking the square root (and dropping a
two-loop order part) yields the well-known result [225]:

M pole = my(1 + %2Lt + %ZRt) + Xpt

= mt(l - ?g:g [IFV(mg; mi,0) + I, (mi;m7, O)D
= my (1 + Z—;CF [5 iy — 31n(m§/Q2)} ) (6.24.47)

As another check, consider the imaginary part of the pole squared mass of the top quark. At

leading order, eq. (6.24.2) implies:

I'y = —Im[my (X1 + Xre) + 2X py]

2
m g
= 16;2 Im[ngv(mg; mi, miy) + (Y2 + Y ) Ips(mismy, Emiy) + 2V g (miymy, fm%v)]
1
= Samamy WO TYE A YP)(mi + mp = miy) — 4Yimg } Im[B (mys mj, miy)). - (6.24.48)

The fact that the & dependence canceled here is a successful check of gauge-fixing invariance,
since the tadpole diagram in Fig. 6.24.1 does not contribute to the absorptive part of the self-

energy. One can express Im[B(s; x,y)] in terms of the triangle function [cf. eq. (6.1.11)],

0 for s <(Vz+ 9%
a2 (s, z,)/s for s> (Vz+9)>

Eq. (6.24.48) then reproduces the result of eq. (6.1.10) for the top quark width at leading order.

Im[B(s; z,y)] = { (6.24.49)
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6.25 Self-energy and pole mass of the gluino

The Feynman diagrams for the gluino self-energy are shown in Fig. 6.25.1. Since the gluino
is a Majorana fermion, we can use the general formalism of Section 4.6. We will compute the
self-energy functions =z = Z:9 and Q5 = Q99 defined in Fig. 4.6.3, and infer Q5 = Q55 from
the latter by replacing all Lagrangian parameters by their complex conjugates.”” At one-loop
order, it follows from the general result of eq. (4.6.23) that the complex pole squared mass of

the gluino is related to the tree-level mass mg by

M —iMgTg = [mj(1 + 255) + mg(Q + Q)]

(6.25.1)

s:m%—i—ia '
It is convenient to split the self-energy functions into gluon/gluino loop and squark/quark
loop contributions, as
Eo=[Egle > D [Egla, and  Q=[l+> > Qla (6.25.2)
q z=1,2 q x=1.2
where the sum over ¢ runs over the six squark flavors u, d, s, ¢, b,t, and x = 1,2 corresponds to
the two squark mass eigenstates [i.e., the two appropriate linear combinations (for fixed squark
flavor) of qr and gg]. The gluon exchange contributions, following from the Feynman rules of
Fig. K.5.1, are:
R dk _ i(k+p)o _
—ipa gl 0 = i [ ot m) () (~0sT)

(2m)d (k +p)? —m?

<;_;> <gMV b 1)%> 7 (6.25.3)

. o . d%k cac ims ebo
-1 [Qé]g5 b= #2 /W (9sf Uu) (W) <—gsf b O'l/)

<;_;> (qu - 1)%) . (6.25.4)

The internal gluon and gluino lines carry SU(3). adjoint representation index indices ¢ and e
respectively, while the external gluinos on the left and right carry indices a and b respectively.
The gluino external momentum p* flows from right to left, and the loop momentum k* flows
clockwise. Comparing with the derivations of eqs. (6.24.20) and (6.24.40) in the previous sub-
section, and using — f2¢c febe = feac febe — §abC, [with Cy = 3 for SU(3).], we can immediately

conclude that

—_ o
[:‘g]g = _Z;CAIFV(S; m?p 0)7 (6255)
Y
[Q5)g = =~ Camglgy (s;mg, 0), (6.25.6)

where the loop integral functions Iry and I, were defined in eqs. (6.24.21) and (6.24.41).

"Suppressing the color degrees of freedom, =,  and Q are one-dimensional matrices, so we do not employ
boldface letters in this case.
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Figure 6.25.1: Self-energy functions for the gluino in supersymmetry. The external momen-
tum p* flows from the right to the left. The loop momentum k* in the text is taken to flow
clockwise. Spinor and color indices are suppressed. The index = = 1,2 labels the two squark
mass eigenstates of a given flavor ¢ = u,d, s,c,b,t. Both x and ¢ must be summed over. The
external legs are amputated.

Next consider the virtual squark exchange diagrams contributing to Z5. Labeling the quark

and squark with color indices j, k respectively, we have for each squark mass eigenstate:
d’k i(k +p)o i
ab 2¢ . ak bj 1 *
- —— (—1V29, T L; _— sTLg )| w5
7Bl =i [ e (vt 1) (G e wg) Ce It

% / (;l:;d (z’x/igsT,SjR%) <%> (z’x/igsi'}kagz) (ﬁ) (6.25.7)

This uses the Feynman rules shown in Fig. K.5.3, given in terms of the squark mixing parameters
Lg, and Ry, defined in eq. (K.4.1). Using Tr[T%T"] = 16 and |Lg, |*+|Rg,|*> = 1, and comparing

to the derivation of eq. (6.24.12) of the previous subsection, we obtain:

—

Qg
Zla. = — 5 Trs(simg,mg,). (6.25.8)

—

Similarly, for the last two diagrams of Fig. 6.25.1, we obtain:

qx

ddk m . 7
2e . {1]9 . _tmg » b .
+ / (27T)d (Z\/igsT] RQm) <(k‘ _|_p)2 — mg) ( ZﬁgsTk qu> <7k2 — m§m>,(6.25.9)

again using the Feynman rules shown in Fig. K.5.3. As before, j and k are the color indices

for the quark and the squark, respectively. Comparing to the derivation of eq. (6.24.34) of the

previous subsection, we obtain:

[l = “or L* Ra.melFg(s; m?pm?] ) (6.25.10)
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Summing up the results obtained above, and taking s = mg, we have:

EQZ_E[CAIFV(WL m2,0)+ Y > Ins(mg;m?,mg )], (6.25.11)
q x=1,2

Qg:_E[CAmg Ipy(m3smg, 00+ 2> > Lt Rgmglpg(mi;me, m} )} (6.25.12)
q =12

As previously noted, we can now write down ﬁg by replacing the Lagrangian parameters of
eq. (6.25.12) by their complex conjugates:

Q5 =— Z; [C’Amg Fv(m m ,0) +2Z Z Lg, Rz my FS(m m m2 )] (6.25.13)
q x=1,2

Inserting the results of egs. (6.25.11)—(6.25.13) into eq. (6.25.1), one obtains the result [226,227]:

MZ —iMglg = m} [1 + ;‘—;{CA [5— dyig — 3In(m2/Q%)]

—Z Z [IFS m m m )+ 2Re[L; Rj ]ZZIFS(m2 mg,m?] )] }},(6.25.14)
q x=1,2

with dyrg defined in eq. (6.24.5).

6.26 Triangle anomaly from chiral fermion loops

As our final example, we consider the anomaly in chiral symmetries for fermions, arising from

the triangle diagram involving three currents carrying vector indices.”

Since the anomaly is
independent of the fermion masses, we simplify the computation by setting all fermion masses
to zero. In four-component notation,”® the treatment of the anomaly requires care because of
the difficulty in defining a consistent and unambiguous 5 and the epsilon tensor in dimensional
regularization [230,231]. The same subtleties arise in two-component language, of course, but
in a slightly different form since ~5 does not appear explicitly.

We shall assemble all the (%, 0) [left-handed] two-component fermion fields of the theory into
a multiplet ¢;. For example, the fermions of the Standard Model are: 1; = (¢}, Uy Vi s Qie s Gie),
where k = 1,2,3 and i = 1,2,...,6 are flavor labels and ¢ = 1,2, 3 are color labels [see Table 5.1].

The two-component spinor indices are suppressed here. Let the symmetry generators be given

by hermitian matrices 1'%, so that the 1; transform as:
5p; = 10 (T®); ey, (6.26.1)

for infinitesimal parameters 0% The matrices T form a representation R of the generators

of the Lie algebra of the symmetry group. In general R will be reducible, in which case the

"'The discussion here parallels that given in ref. [228], Section 22.3.
"For an excellent review of the computation of the chiral anomaly via four-component massless and massive
spinor triangle loops, see ref. [229].
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—i(T*);* 5, or i(T%);" oy
1, a
k

Figure 6.26.1: Feynman rule for the coupling of a current carrying vector index p and corre-
sponding to the symmetry generator T'* acting on (%, 0) [left-handed] fermions. Spinor indices
are suppressed.

T* have a block diagonal structure, where each block separately transforms (irreducibly) the
corresponding field of ¢; according to its symmetry transformation properties. Some or all of
these symmetries may be gauged. The Feynman rule for the corresponding currents is the same
as for external gauge bosons, as in Fig. 4.3.2 (but without the gauge couplings), and is shown
in Fig. 6.26.1.

Fig. 6.26.2 exhibits the two Feynman diagrams that contribute at one-loop to the three-
point function of the symmetry currents. Applying the -version of the Feynman rule for the
currents given in Fig. 6.26.1, and employing the Feynman rules of Fig. 4.2.1 (with m = 0) for
the propagators [traversing the loop in the direction dictated by eq. (4.4.2)], the sum of the two

triangle diagrams shown in Fig. 6.26.2 can be evaluated.

@ lp+q

kE+q+A k—p+A k—q+B

prc kA I b pe oL kB o mb
Nﬁj% " P el P

Figure 6.26.2: Triangle Feynman diagrams leading to the chiral fermion anomaly. Fermion
spinor and flavor indices are suppressed. The fermion momenta, as labeled, flow in the arrow
directions.

The resulting sum of loop integrals is

4 ik — .o 7 .o 7 Ao
ity = (1) [ %ﬂ{(—z’@:ﬂ)—i’; D i ) i AT

i(k—q+B)o
(k—q+B)?

i(k+ B)-o
(k+ B)?

i(k+p+B)o

+(—i5,T) (—i7,T°) (—iz, T") }, (6.26.2)

where the overall factor of (—1) is due to the presence of a closed fermion loop. The trace
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is taken over fermion flavor/group and spinor indices, both of which are suppressed. Because
the individual integrals are linearly divergent, we must allow for arbitrary constant four-vectors
AP and B* as offsets for the loop momentum when defining the loop integrations for the two
diagrams [232,233].

The persistence of the symmetry in the quantum theory for the currents labeled by u, a and

v,b and p, c implies the naive Ward identities:™

(p+ Q)" 050 (—p — q,p, q) = f™TIE (q) + fTIN (p) | (6.26.3)
—p” il (—p — q,p,q) = fI% (p+ q) + fP*II% (q) (6.26.4)
—q” T (—p — q,p, q) = FTI (p) + fIIN (p+ q) (6.26.5)

where infl’, (p) is the one-loop current-current two-point function shown in Fig. 6.26.3.

k+q

Figure 6.26.3: The one-loop contribution to the current-current two-point function. The
fermion momenta, as labeled, flow along the corresponding arrow directions.

By Lorentz covariance, Hffl’, (p) is a rank-two symmetric tensor that is an even function of the
four-momentum p [cf. eq. (6.26.41)]. In eqs. (6.26.3)—(6.26.5), we have employed a convention
in which the arguments of iI' correspond to the outgoing momentum of the external legs of the
corresponding one-loop Feynman diagrams, and the order of the momentum arguments matches
the order of the indices.

It is convenient to define the symmetrized three-point function by symmetrizing over the

indices a, b and c:

AZZCP = %iffﬁfp + [five permutations of a, b, . (6.26.6)

In terms of the symmetrized three-point function, the naive Ward identities imply

(p+rAle =0,  —p"A% =0, and —¢PAN =0. (6.26.7)

We now perform the explicit diagrammatic computation to show that the naive Ward identi-

ties exhibited in eq. (6.26.7) are violated due to a quantum anomaly. Although the symmetrized

"The derivation of the Ward identities is most easily achieved by writing the three-point function in position
space as a vacuum expectation value of the time-ordered product of three currents. After taking the divergence
(with respect to the position of any one of the three currents) of the time-ordered product and using the fact that
the currents are conserved (9,7 = 0), the surviving terms can be evaluated using the equal-time commutation
relations, §(z% — y")[j*°(x), 5" (y)] = if**j® (x)6*(x — y). Fourier-transforming the result yields the terms on
the right-hand side of egs. (6.26.3)—(6.26.5). See refs. [234,235] for further details.
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three-point function is ultraviolet finite, the individual loop momentum integrals are divergent,
and must be defined with care. We do not regularize them by the usual procedure of continuing
to d = 4 — 2e dimensions, because the trace over sigma matrices crucially involves the antisym-
metric tensor with four indices, brought in by egs. (B.2.26) and (B.2.27), for which there is no
consistent and unambiguous generalization outside of four dimensions. (This is related to the
difficulty of defining 75 in the four-component spinor formalism.) The existence of the vectors A
and B corresponds to an ambiguity in the regulation procedure, which can be fixed to preserve
some of the symmetries, as we will see below.

Starting from eq. (6.26.2), it follows from eq. (E.2.8) that the symmetrized three-point

function is proportional to the group theory factor (often called the anomaly coefficient),
D = ITy[{T*, T} T, (6.26.8)

where the numerical values of the D%¢ depend on the representation R. As discussed in Ap-
pendix E, D¢ vanishes for all simple Lie groups, with the exception of SU(N) for N > 3.
The D¢ are also non-vanishing in general for any non-semisimple compact Lie group, which
contains at least one U(1) factor.

First, consider the result for (p + ¢)*A%¢ . This can be simplified by rewriting

pvp*
(p+gt=(k+qg+ A —(k—p+ A", (6.26.9)
p+qt=(k+p+B*—(k—q+ B)", (6.26.10)

in the first and second diagram terms, respectively, and then applying the formulae
v-ovT = v?, VG0 = v?, (6.26.11)

which follow from eqs. (B.2.1) and (B.2.2). After rearranging the terms using the cyclic property
of the trace, we obtain:
(p+ @) Aps, = =D Tr[o,7,007,) X",
= =20 [ Xy + Xp = g Xa* + i, X (6.26.12)

after applying eq. (B.2.26). (In our conventions, eyjo3 = —1.) The integral X" is given by:

X“*—/ d*k [(k—p—i—A)“(k:—kA)’\_(k—l—q—kA)”(k:—i—A)A
) et [(k—p+ A2 (k+A)2  (k+q+ A2 (k+ A)?

(k+B)*(k—q+B)* (k+B)"(k+p+B)>
(k+B)?(k—q+B)*> (k+B)? (k:+p+B)2]' (6.26.13)

Naively, this integral appears to vanish, because the first term is equal to the negative of
the fourth term after a momentum shift &k — &k — p + A — B, and the second term is equal

to the negative of the third term after &k — k + ¢ + A — B. However, these momentum shifts
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are not valid for the individually divergent integrals. Instead, X** can be evaluated by a Wick
rotation to Euclidean space, followed by isolating the terms that contribute for large k2 and are
responsible for the integral not vanishing, and then employing the divergence (Gauss’) theorem
in four dimensions to rewrite X** as an angular integral over a three-sphere with radius tending
to infinity. This integral is initially evaluated at large but finite Euclidean k, with the limit
k — oo taken at the end of the computation. For example, consider a smooth function f(k) of

the four-momentum k with the property that the integral

/d4l<:f(l<:) (6.26.14)

is at worst quadratically divergent. We define the even and odd parts of f(k), respectively, by:

fe(k) = 5 [f (k) + f(=R)], folk) = 5 [f(k) — f(=k)] . (6.26.15)

It then follows that [234,236,237]

0
Ok,

d*k ;
/ (27’(’)4 [f(k + a) - f(k)] — ? [27"%‘# kh_}ngo kuk2fo(k) + 7T2Clua,/ kll_?;o kqu

= 10

(6.26.16)
has a finite limit.”™ In deriving this result, we have expanded f(k+a) in a Taylor expansion and
follow the procedure outlined above eq. (6.26.14). Note that the angular integration removes
the even parts of f(k) and Of/0kV = 2k, 0f/Ok? from the right-hand side of eq. (6.26.16).
The “limits” in eq. (6.26.16) actually correspond to an average over the three-sphere at large

Euclidean k, and thus should be interpreted by the use of:

Kk
i = = a0 (6.26.17)
kREVEPEY 1 , ,
e T e A (6.26.18

For example, if
(k—p+ A=k + A)>

k) = , 6.26.19
1K) (k—p+ A)?2(k+ A)? ( )
then in evaluating eq. (6.26.16), it is sufficient to write:
1 2k-(p—24A)
o(k) ~ 2(k—p+ A" (k+ A —(k— —
K AN _ LA (y K KA 1. _
N EfAN — EMNp — A) n 2k5 kN k- (p — 2A) (6.26.20)

(k2)? (k2)? ’
where we have dropped terms that do not contribute to eq. (6.26.16) in the limit of & — oc.

Similarly,
afe N gnukA + gAVk?H 4knkAkV
(9/4:,, - (k2)2 (k2)3
"f eq. (6.26.14) is linearly divergent, then the second term on the right-hand side of eq. (6.26.16) is zero. If
eq. (6.26.14) is logarithmically divergent or finite, then the right-hand side of eq. (6.26.16) vanishes.

(6.26.21)
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The evaluation of X** is now straightforward [after using eqgs. (6.26.17) and (6.26.18)]:

X [g“(p 4 q)-(A+B)+(A-2B)(p+q)*+ (p+q)"(B — 2A)A]. (6.26.22)

~ 9672
Hence, eq. (6.26.12) yields the result for the anomaly in the current labeled by w, a:

7

(b + 0V gty = 25D | (0 + 0o (A + B)y + (A+ B), (0 + )y + 90y (p + 0)-(A+ B)

—3ieypmr(p+ q) (A — B)*|. (6.26.23)

Repeating all of the steps starting with eq. (6.26.9), we similarly obtain:™

1

P A, = — 5 D" [0p(A+ B)y+ pu(A+ B)y + gupp- (A+ B) = Sicpuap™(A — B+29)°).
(6.26.24)

{ , .
P Al = == D™ |qu(A+ B)y + a(A+ B)y + 900 (A + B) = Bicuind™(A— B —2p)’).
(6.26.25)

Non-chiral anomalies will arise for all three of the currents (assuming D¢ is non-vanishing),

unless we choose the arbitrary constant vectors A and B such that

A+B=0, (6.26.26)
with the result:
1
(p+ )" Ay = gD evpma(p + )" A%, (6.26.27)
v jqabc 1 abc K A
P Ay = g D Counar (A+q)", (6.26.28)
1
_quZII)/cp = _WDabce;wn)\qn(A —p)’\- (6.26.29)

If D% is non-vanishing, it is not possible to avoid an anomaly simultaneously in all three
symmetries, but one can still arrange for two of the symmetries to be non-anomalous. If one
wants an anomaly to arise only in the current labeled by p,a (for example, if the symmetries

labeled by b, ¢ are gauged), one must now choose A = p — q. The standard result follows:

1

(p + Q)M-AZ,I)/CP = _mDabceupﬁ)\p’iqA7 (62630)
—pP A = 0, (6.26.31)
—gP A = 0. (6.26.32)

5 Alternatively, one can simply note that eq. (6.26.24) follows from eq. (6.26.23) by making the replacements
w—=v,v—p,p—pu A= A+q, B— B—q,p— ¢, and ¢ - —p—q, while eq. (6.26.25) follows from eq. (6.26.23)
by making the replacements u — p, v -y, p v, A—>A—p, B— B+p,p— —p—q, and ¢ — p.
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In particular, one cannot gauge all three symmetries labeled by a, b, ¢ unless D¢ = (.
If all three currents are identical, then by Bose symmetry the anomalies of the three currents
must coincide. This can be achieved by choosing A = %(p —q), in which case,

1

(p+ )" Ay = — 5z D™ eupap™ (6.26.33)
1

VA, = — 13 D Couan™ (6.26.34)
1

—¢P A, = — s D e (6.26.35)

Returning briefly to the original naive Ward identities given in egs. (6.26.3)—(6.26.5), the
analysis above shows that these identities must be modified by an additional additive contribu-
tion given by the right-hand side of egs. (6.26.27)—(6.26.29). In particular, there is no anomalous
contribution proportional to f%¢. This can be checked explicitly by a diagrammatic computa-
tion of the two-point and three-point functions that appear in eqgs. (6.26.3) and (6.26.5). We
use egs. (E.2.12) and (E.2.16) to write

Tr(TeTbT¢) = DY(R) + %12(1%) fabe, (6.26.36)

where I5(R) is the index defined in eq. (E.2.1) and R is the representation of the generators T®.
For example, inserting this result in eq. (6.26.2), it follows that:

(p+q) il = — [D“bc XA 4 %IQ(R) feeY M Tr[o,7,0,7,)] (6.26.37)

where the integral Y* is given by:70

Ym:/ d'k [(k=pFK (k+9" K (k=g K (k+p)
@m)t [(k—p)? k> (k+q?* Kk Kk (k—q? K (k+p)?*]
By letting & — —Fk in the third and fourth term in the integrand of eq. (6.26.38), we see that

Y\ = Y2 and hence by eq. (B.2.26),

(6.26.38)

—%IQ(R) £ Y (0,5, 005,) = —il(R) £ [2v,, — g,,pY,\)‘} . (6.26.39)

Since no e-tensor appears, we can evaluate this integral in d # 4 dimensions using the standard
techniques of dimensional regularization.
One can check that this result matches the diagrammatic calculation of the right-hand side

of eq. (6.26.27). In particular, Fig. 6.26.3 yields
d*k ik-o i(k+q)-o
% (q) = (=1) [ 2Ty |(—iz, T 2 (—i7, ) 2 D2
¢ ,ul/(Q) ( )/(271_)4 |:( Wy ) L2 ( o ) (k‘—l—q)2

d*k kP(k+q)*
(2m)4 k2(k 4 ¢)2

L (R)3 Te(540,7,0) / (6.26.40)

"Here Y" is obtained from X"** by setting A = B = 0, since we can use dimensional regularization for this
part of the computation as explained below eq. (6.26.38).
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where we have used eq. (E.2.1). Lorentz covariance implies that

T (q) = 6% [Cr(a®) g + Co()auas] (6.26.41)

for some scalar functions C7 and Cs. It follows that Hzll’,(q) = HZ?j(—q) and Hzll’,(q) = Hl‘fZ(q).
Consequently, we can write:

d*k kP(k + q)*
(2m)* k2 (k +q)*

19 (q) = %Iz(R)é‘“’ Tr(6,0,0,0) +0,0,0,0)) / (6.26.42)

and so no e-tensor appears in the evaluation of the trace. As above, we are now free to evaluate
the integral in d # 4 dimensions. Comparing eqs. (6.26.37) and (6.26.38) to eq. (6.26.42), and
using eq. (6.26.27), the end result is

-abc abc 1 abc K
(p + Q)u Zru?/p(_p —4,D, q) = 12(R)f b [Hl/p(q) - Hup(p)] + =D b (R)El/pli)\(p + q) A)\ )

82
(6.26.43)
where we have written Hﬁl; = I5(R)5%11,,. Indeed the terms on the right-hand side proportional
to £ match those of the naive Ward identity given in eq. (6.26.3). As previously asserted, the
anomaly only resides in the contributions to the Ward identity proportional to D¢,

In writing down eq. (6.26.2), we chose to use the rules with & matrices for the current
vertices and o matrices for the massless fermion propagators. If we had chosen the opposite
prescription (i.e., o matrices for the current vertices and @ matrices for the massless fermion
propagators), then the order of the factors inside the trace of eq. (6.26.2) would have been

reversed.”’ Instead of eq. (6.26.12), we would have obtained

(p + Q)MAZ?/Cp = _Dabc TI‘[EHO',,E)\UP] Xﬁ)\ = _2Dabc [Xup + Xpu - gpr)\)\ - 'L’ERV)\pXRA 3
(6.26.44)
after applying eq. (B.2.27). The integral X** is simply related to X** by:

XA = XM\ (6.26.45)

Inserting eq. (6.26.45) into eq. (6.26.44), we immediately reproduce the result of eq. (6.26.12),
as expected.
It is instructive to examine the case of massless QED. The terms of the Lagrangian involving

the electron fields is given by
& =ix13"D,x +in'a" D,n, (6.26.46)

where D,, = 0, + iQA, is the covariant derivative, and @ is the charge operator. Here, we
identify x as the two-component (left-handed) electron field and 7 as the two-component (left-

handed) positron field. The corresponding eigenvalues of the charge operator are: Qx = —ex

""The arrowed fermion lines in the loop must be traversed in the direction parallel [antiparallel] to the arrow
directions when the @ [o] versions of the propagator rule are employed, as indicated in eq. (4.4.2) [and in the
discussion that follows]. This rule determines the order of the factors inside the spinor trace.

150



and @Qn = +en (where e > 0 is the electromagnetic gauge coupling constant, or equivalently the
electric charge of the positron).

At the classical level, the massless QED Lagrangian [eq. (6.26.46)] is invariant under a
U(1)yxU(1)4 global symmetry. Under a U(1)yxU(1)4 transformation specified by the in-

finitesimal parameters 6y and 64,
Uy : ox = iefyx, on = —iebyn, (6.26.47)
U(1)4: ox = i04x, on =1i64m. (6.26.48)
We can combine these equations into a two-dimensional matrix equation,

50; = —ifa(Ta);*n,  where w= (Y], (6.26.49)

Ui

and the index a takes on two values, a = V', A. It follows that the U(1)y xU(1)4 generators are

given by
Ty =e , for UQ1)y, (6.26.50)

-1 0
Ty = , for U(1)a. (6.26.51)
0—1

The classically conserved Noether currents corresponding to the U(1)y xU(1) 4 global sym-

metry are the vector and axial currents:”®
Ji = —e(XTE“X — nTE“n) , (6.26.52)
Jh = —xTa"x — niaty. (6.26.53)
Since the U(1)y symmetry is gauged, we demand that this symmetry should be anomaly free.

Thus, we make use of egs. (6.26.30)—(6.26.32), where we identify the index pair u, a with the

axial vector current and the index pairs v, b and p, ¢ with the vector current. Thus, we compute:
DAY = e (Ty Ty Ty ) = —2¢%. (6.26.54)

Moreover, for an abelian symmetry group, fo¢ = 0. Hence, using eq. (6.26.30) [which also
applies in this case to the unsymmetrized three-point function], the U(1) axial vector anomaly

equation reads:

2
rAvY € koA
P+ @) Ty = 5 3€map™d (6.26.55)
"Note that the interaction Lagrangian for massless QED is Zne = —J{; Ay, as expected. This accounts for the

factor of e in the definition of the vector current. The axial vector current does not couple to the photon field;
hence no coupling constant is included in its definition.
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in agreement with the well-known result.”™
We now convert eq. (6.26.55) into an operator equation. Consider the process of two photon
production by an axial vector current source [239]. First, we note that 8,J% (z) = i[P*, Ja,(x)],

where P* is the momentum operator. It follows that:

(p, q19,74(0)]0) =i(p, q|[P", Jau(0)]|0) = i(p + )" (p, ¢| Jau(0)|0) . (6.26.56)
We identify the S-matrix amplitude for the two photon production as:

Y & (p)eP*(q) = (p, q| — iJau(0)]0) (6.26.57)

where (p) and €(g) are the polarization vectors for the final state photons. Note that the factor
of —i on the right-hand side of eq. (6.26.57) has been inserted to be consistent with the Feynman
rule for the axial vector current insertion given in Fig. 6.26.1. Thus, using eqs. (6.26.55)—
(6.26.57), we end up with [114]:

2

€ v * K
<p7 q | aqu(O) |0> = - ﬁeupnke (p)gp (Q)p qA

2

e
= 16?@, q| €xrpF™ F(0) |0), (6.26.58)

where €,,5, " F A = de,.,, Ap(OFAY )(0*AP) has been used to eliminate the photon fields in favor
of a product of electromagnetic field strength tensors. In deriving eq. (6.26.58), an additional
factor of two arises due to two possible contractions of the photon fields with the external states.
We thus obtain the operator form for the axial vector anomaly:8°

e?

Ap
8;,;]” - — WF pF)\p, (62659)

where the dual electromagnetic field strength tensor is defined by ﬁAp = %GRVAPFRV .
As a final example, we examine the anomalous baryon number and lepton number currents
in the theory of electroweak interactions [240-242]. For simplicity of notation, we consider a

one-generation model. The baryon number current is a vector current given by:
Iy = % (uletu + digtd — al'eta — d'gtd| (6.26.60)

following the particle naming conventions of Table 5.1. Consider the process of gauge boson pair
production by a baryon number current source. It is convenient to work in the interaction basis
of gauge fields, {W#* BF} where WH% is an SU(2)-triplet of gauge fields and B* is a U(1)y

hypercharge gauge field. We consider triangle diagrams where one generation of quarks runs in

"This result was first obtained by Adler [238]. In comparing eq. (6.26.55) with Adler’s result, note that the
normalization of the triangle amplitude in ref. [238] differs by a factor of (27)* and the opposite sign convention
for €p123 is employed.

80Tn the literature, eq. (6.26.59) often occurs with the opposite sign due to a sign convention for the Levi-Civita
e-tensor that is opposite to the one employed in this review. Here, we have reproduced the form given in ref. [114].
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the loop. The external vertices consist of the baryon number current source and the two gauge
bosons.
The generators corresponding to the SU(2) gauge boson vertices are given in block diagonal

form by:
b
Tb = gdiag <% ® 13y3, 0, 0) , (6.26.61)

where the 70 are the Pauli matrices, 13y3 is the identity matrix in color space, and ® is the
Kronecker product.®! We have included a factor of the weak SU(2) coupling ¢ in the definition of
T?, since the Feynman rule given by Fig. 6.26.1 does not explicitly include the gauge coupling.
Likewise, the generators corresponding to the U(1)y gauge boson vertices are given in block
diagonal form by (cf. Table J.1):

Y = g diag (§loxo ® L3xg, —313x3, s13x3) , (6.26.62)

where 155 is the identity matrix in weak isospin space, and ¢’ is the U(1)y hypercharge gauge
coupling. Finally, the generator corresponding to the baryon number current source is given in

block diagonal form by:
B = idiag (Laxo ® I3x3, —l3x3, —l3x3) - (6.26.63)

Consider first the production of two SU(2)-triplet gauge fields. We put T® = B and
associate the indices b and ¢ with the SU(2)-triplet gauge bosons. A simple calculation yields

DBbc _ 92 TI‘(BTbTC) — %9251757 (62664)

where the superscript index B refers to the baryon number current. Since the gauged weak
SU(2) and hypercharge U(1)y currents must be anomaly free for the mathematical consistency
of the electroweak theory, it follows that eqs. (6.26.30)—(6.26.32) apply. That is, the symmetrized
amplitude for the production of SU(2) gauge boson pairs by a baryon number source is anoma-
lous:

2
(p+ @A = —%WEWWW . (6.26.65)

Next, consider the production of two U(1)y hypercharge gauge fields. A simple calculation
yields
DPYY = ¢?Ty(BY?) = —14%. (6.26.66)

That is, the symmetrized amplitude for the production of U(1)y gauge boson pairs by a baryon

number source is anomalous:

/2

(p+H AR = %eupmp“qA : (6.26.67)

81The Kronecker product of an n x n matrix and an m X m matrix is an nm X nm matrix. In addition, the
following two properties of the Kronecker product are noteworthy [159,243]: (i) (A® B)(C ® D) = AC ® BD,
and (i) Tr(A® B) = Tr A Tr B.
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Finally, the symmetrized amplitude for the associated production of an SU(2)-triplet and U(1)y
hypercharge gauge field exhibits no anomaly as the corresponding DBY¢ = g¢/ Tr(BY T) = 0.

The symmetrized amplitudes of the triangle diagrams involving a baryon number current
source and a pair of SU(2) or U(1)y gauge bosons are anomalous. Since the baryon number
current is a vector current, we conclude that the source of the anomaly is a VVA triangle diagram
in which one of the gauge boson currents is vector (V) and the other gauge boson current is axial
vector (A). Nevertheless, the gauge boson axial vector current must be conserved, as noted above.
Hence, the baryon number vector current must be anomalous [240]. In eqgs. (6.26.55)—(6.26.58),
we showed how to derive the operator form of the anomaly equation from the anomalous non-
conservation of the symmetrized triangle amplitude. Following the same set of steps starting
with egs. (6.26.65) and (6.26.67), one obtains the anomalous non-conservation of the baryon

number vector current, in a model with N, quark generations [55,241,242]:

2 /2
w_ 9 Ng w9 Ny oron
Oully = 353 WYW'W, = 555 BV By, (6.26.68)
where B), and
W3, = W) — 9,W3 — ge WW s, (6.26.69)

are the field strength tensors for the hypercharge U(1)y gauge boson and SU(2) gauge boson
fields, respectively.®? Note that for the non-abelian SU(2) gauge fields W,

WAL, = 263 [(@,WE)(OAWE) — ge™ (0, W WA |

— 260, {Wf(@AW})’) - gge“bcwgwg’wg} . (6.26.70)

Strictly speaking, the triangle graphs yield only the terms on the right-hand side of eq. (6.26.68)
that are quadratic in the gauge fields. To obtain the corresponding terms that are cubic in
the gauge terms, one must compute the anomalies that arise from VVVA and VAAA box dia-
grams [234,244].

For completeness, we re-express the anomalous non-conservation of the baryon number
current in terms of the mass eigenstate SU(2)xU(1)y gauge fields:

_ g2Ngw)\p+N— 92N9 Z)\pZ egNg

I __J "9 __J"9
Ous = T2 o 3ap2e2, T TV 3am2ey

ZVEy,+ FYZ),| . (6.2671)

where ¢y = cos Oy, and Wip, Zyp and F), are the W=, Z and the electromagnetic field strength
tensors, respectively.

By a similar analysis, one can also compute the anomalous non-conservation of the lepton
number vector current,

Ji = 01510 4+ viGhy — 01GHE, (6.26.72)

82We again caution the reader that a different overall sign in eq. (6.26.68) often appears in the literature due
to a sign convention for the Levi-Civita e-tensor that is opposite to the one employed in this review. Here, we
have chosen €"1?% = 41.
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due to triangle diagrams with N, generations of leptons running in the loop. In the one-
generation calculation, the relevant generators are:

b

T® = gdiag <T

R 0) , Y =g diag (—119x2, 1) , L = diag (1242, —1) . (6.26.73)

Thus, we end up with:
DLbC _ %925607 DLYY — _%9/2 ’ DLYC =0. (62674)
Thus, in the Standard Model with N, generations of quarks and leptons,
O Jt = 0,J0 . (6.26.75)

In particular, the B — L current is conserved and anomaly free.
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Appendix A: Metric and sigma matrix conventions

In this review, the metric tensor of four-dimensional Minkowski space is taken to be:®3
uv = g = diag(—l—l, -1,-1, _1) ) (Al)
where p,v = 0,1,2,3 are spacetime vector indices. Contravariant four-vectors (e.g. positions,

momenta, gauge fields and currents) are defined with raised indices, and covariant four-vectors

(e.g. derivatives) with lowered indices:

= (t; @), (A.2)
P’ =(E;p), (A.3)
AM(z) = (D(&,1); A(E,1)), (A.4)
T (@) = (p(&t); J(&,1)), (A.5)
9, = 8%“ = (9/0t; V), (A.6)

in units with ¢ = 1. The totally antisymmetric pseudo-tensor €***? is defined such that
12 = €0y = +1. (A.7)

Egs. (A.2)—(A.7) are taken to be independent of the metric signature convention.
The sigma matrices are defined with a raised (contravariant) index to be independent of

the metric signature convention,
ot = (]]-2><2; 6:)7 o' = (]]-2><2; _6:)7 (A8)

where the three-vector of Pauli matrices is given by & = (¢!, 02, 03) [cf. eq. (2.27)] and Loy

is the 2 x 2 identity matrix. The corresponding quantities with lower (covariant) index are:
oy = gWJ” = (]lgxg; —5:), EM = gwjﬁy = (]lgxg ; E) . (Ag)
Various identities involving products of sigma matrices are given in Appendix B. The generators

of the (%, 0) and (0, %) representations of the Lorentz group are, respectively, given by:

i

(@0 — ot (A.10)

T, _ _
oM = Z(U“U” —o"ah), ot =

In adopting the above definition of the sigma matrices, we differ from the corresponding
conventions of Wess and Bagger [68] and Bilal [82]. The Wess/Bagger and Bilal (WBB) definition

of the sigma matrices can be written (with lowered index p) as:%*
WBB 40 -
(@"5P) L0 = 000571 0055 = (Lax2; G, (A.11)
— | —d ) =
(O-WBB)ZCB = 08‘7%75006 = (Lox2; —&). (A.12)

83 An otherwise identical version of this paper with the opposite metric signature is also available; see footnote 2.

81 Although Wess/Bagger and Bilal employ opposite metric signatures of goo = —1 and goo = +1, respectively,
their definitions of ¢, and 7, (with covariant index p) coincide. Note that the spinor structure of the o and @
matrices and the definitions of the various (two-index and four-index) epsilon tensors [cf. egs. (2.19) and (A.7)]
are identical in both the WBB conventions and in our conventions.
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One consequence of the WBB definition of o and @ is that v, = diag(lax2, —1ax2) in the
chiral representation [cf. eq. (G.1.2)]. This associates a lowered undotted [raised dotted] two-
component spinor with a right-handed [left-handed] four-component spinor [cf. egs. (G.1.6) and
(G.1.8)]. Indeed, this was the common convention in the older literature (e.g., see refs. [35,36,38,
39,41,58]).85 However, in the modern formulation of electroweak theory in terms of left-handed
fermions, it is now more common to associate a lower undotted [raised dotted] two-component
spinor with a left-handed [right-handed] four-component spinor. This is the motivation for our
conventions for the sigma matrices given in egs. (A.8) and (A.9).

In order to facilitate the comparison with the metric signature with ggg = —1, we provide
the key ingredients needed for translating between Minkowski metrics of opposite signature.
In our conventions [cf. eqs. (A.2)—(A.9)], each of the following objects (with the Lorentz index

heights as shown) is defined independently of the metric signature:

xﬂ, pﬂ’ a,ua Oﬂuv 5#’ S#’ J“v Aﬂ, D,uv GHVa 7”7 755 557 E,ul/po, €uvpo 5 [DO Sign Change]7
(A.13)

but the following objects change sign when the Minkowski metric signature is reversed:
G > 9" @y pu, O 0, Ty Sy Jus Ay, DML G Gl Yy s [sign change]. (A.14)

Here, the spin four-vector S* is defined in eq. (3.1.15), J* is any conserved current, A* is
any gauge vector potential, and D, and G|, are the corresponding covariant derivative and
antisymmetric tensor field strength, respectively. The Dirac gamma matrices are defined in
eq. (G.1.2). The list of eq. (A.14) can be deduced from eq. (A.13) by using the metric tensor
and its inverse to lower and raise Lorentz indices, simply because each metric or inverse metric
changes sign when the metric signature is reversed. Given any other object not included in
eqs. (A.13) and (A.14), it is straightforward to make the appropriate assignment by considering
how the object is defined. For example, we must assign o0,,, ., 0" and " to the list of
eq. (A.13), based on the definitions given in eqgs. (2.69) and (2.70). In general, objects that do
not carry Lorentz vector indices (including all fermion spinor fields and spinor wave functions)
are defined to be the same in the two metric signatures, with the obvious exception of scalar
quantities formed from an odd number of objects from the list of eq. (A.14). For example, the dot
product of two four-vectors may or may not change sign when the Minkowski metric signature
is reversed. By writing out the dot product explicitly using the metric tensor to contract the
indices, one can use egs. (A.13) and (A.14) to determine the behavior of a dot product under the
reversal of the metric signature. In particular, p-A changes sign whereas p-o does not change
sign, when the Minkowski metric signature is reversed.

The translation between Minkowski metrics of opposite signatures is now straightforward.

Given any relativistic covariant quantity or equation in the convention where ggoo = +1, one need

85This convention persists in the literature of the spinor helicity method (cf. footnote 156 in Appendix 1.2).
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only employ egs. (A.13) and (A.14) to obtain the same quantity or equation in the convention
where goo = —1, and vice versa.®0

As an example, let us verify that under the reversal of the Minkowski metric signature the
gauge covariant derivative D, does not change sign and the gauge field strength tensor G

changes sign. In the metric signature with goo = +1, we define
D, =14,0,+igA,, (goo = +1), (A.15)

where 4, = A7T* is the matrix gauge field for a representation R of dimension dg, and I, is
the dg x dg identity matrix. Since under the reversal of the metric signature, 9, does not change
sign [according to eq. (A.13)] whereas A, changes sign [according to eq. (A.14)], it follows that

the quantity defined in the metric signature where ggg = —1,
DM = IdRE?M — z'gAu s (go() = —1) (A16)

has the same overall sign as eq. (A.15). It follows that when the metric signature is reversed,
D,, does not change sign whereas D" = ¢g"” D,, does change sign, as indicated in egs. (A.13) and

(A.14). Next, consider the matrix gauge field strength tensor G, = Gy, T, defined by
G =D, D)= oA 0 g A (g = ), (A.17)

where the commutator [D#, D¥] is an operator that acts on fields that transform with respect
to an arbitrary representation R. In the metric signature with ggg = —1, we define the gauge

field strength tensor as a commutator of covariant derivatives with the opposite overall sign:
amw =1 [DF | D¥] = o AY — 9V AF — ig[A* | A”], (goo = —1), (A.18)
g

where D* is now defined as in eq. (A.16). Since under a reversal of the metric signature, A*
does not change change sign [according to eq. (A.13)] whereas 0* changes sign [according to
eq. (A.14)], it follows that G* and G, = g.p9v-G?° do indeed change sign when the metric
signature is reversed, as stated in eq. (A.14).

As another simple illustration, consider the o-matrix identity,
FhoVTl = g'aP — g'PEY + gVPH — eV PRT, (go0 = +1), (A.19)

In the opposite metric signature with gog = —1, we apply the results of egs. (A.13) and (A.14)
and then multiply both sides of the equation by —1 to obtain:

GhoVTP = —g"GP + gT — ¢PTH 4 i PG, (goo = —1). (A.20)

86Note that for any relativistic covariant term appearing additively in a valid equation, the relative sign that
results from changing between Minkowski metrics of opposite signature is simply given by S = (—1)N , Where
N = Ny + Ng + Ng + .... Here Ny, is the number of metric tensors appearing either explicitly or implicitly
through contracted upper and lower indices, Ng4 is the number of spacetime and/or covariant derivatives, Ng is
the number of gauge field strength tensors, and the ellipsis (...) accounts for any additional quantities whose
contravariant forms (with all Lorentz indices raised) appear in the list of eq. (A.14).
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Finally, in the sigma matrix conventions of Wess/Bagger [68] and Bilal [82], both egs. (A.19)
and (A.20) are modified by changing the overall sign of ie/”?"5,. In general, to convert the
identities of Appendix B to the conventions of WBB, one must first convert (if necessary) to the
appropriate metric signature, and then interchange o <> @ [cf. egs. (A.11) and (A.12)].

We end this Appendix with a brief summary of our conventions for four-dimensional Eu-
clidean space. The Euclidean components of the coordinates [represented in Minkowski space

by the contravariant four-vector, 2# = (2% ; &), for = 0, 1,2, 3], are defined as
x%:xEu:(a_c’,:E%), x4E::EE4Eix0, (n=1,2,3,4). (A.21)

The four-momentum operator in Minkowski space is p* = 0" = i(9/0t, —6) Following the

conventions of ref. [245], the Euclidean counterpart of the momentum operator is
= ppu = (B, ppy) = —idly = —i(V , /dxh) b =pp1=ip’ (A.22)
Pg PEu D, DPE Wop ¢ ) TE), Pr = PE4 w, .

The Minkowski space Green functions are obtained from Euclidean space Green functions by
means of a Wick rotation [123,245,246] of 2}, = iz® in a counterclockwise sense.’” Scalar
products of Euclidean four-vectors are carried out by employing the Euclidean metric tensor
O = M =diag(1, 1, 1, 1). For example, the Euclidean counterpart of —p-z = 20 + P&
is p’é:ﬂ% =p-T+ p4Ex4E, etc. Given any tensorial equation in Euclidean space, the heights of the
indices is irrelevant. Consequently, one can simply place all indices at the same height (either
all raised or all lowered), with an implied sum over a pair of repeated indices.

One can also introduce Euclidean sigma matrices [247]:
ot = (—id, op) ot = (id, Tp) where of =55 =1 (A.23)
E = sy VR ) E = sy VUR), E E = 12x2, .

which satisfy:3®

ohTY + oYl = 201 Th oY 4 Tt = 201 . (A.24)

The four-dimensional rotation group in Euclidean space is SO(4), which is locally equivalent to
SU(2)xSU(2). It possesses two independent pseudo-real two-dimensional spinor representations
(3,0) and (0,1) [not related by hermitian conjugation in contrast to the Lorentz group|, with
corresponding hermitian generators oy and @, , respectively:

ol = i (oo — ooty | oy = i (Tpof — o5ok) - (A.25)

These tensors are anti-self-dual and self-dual, respectively [120],

pvo 1 pvpT o PT —pv 1 _uvpr—=pT
oy = —5"PTal oy = 5o (A.26)

8"Expressing the corresponding Green functions as Fourier transforms of momentum-space Green functions,
one must simultaneously Wick-rotate pf; = ip° in a clockwise sense to avoid singularities in the complex p°-plane.

881t is seemingly more natural to define 0% = (&, o}) and 7% = (=&, T) where 0f, = G = ilax2, in which
case one must replace 6*” with —§*” in eq. (A.24). Nevertheless we prefer eq. (A.23), which avoids an overall minus
sign in the respective anticommutation relations of the Euclidean sigma and gamma matrices [cf. footnote 133].
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where the totally antisymmetric Levi-Civita tensor is defined in Euclidean space such that

€234 = €934 = +1. One can express 0%” and 5‘5/ in terms of the 't Hooft eta symbols [248],

pwy _ 1=kpv _k —pv 1, kuv _k
oy = —5n o, op = —sn*ta", (A.27)

where pu,v = 1,2, 3,4 and there is an implicit sum over k = 1,2,3. Equivalently,
oGy = 0 ok ol = oM 4 g ot (A.28)
The 't Hooft symbols n and 77 satisfy self-duality and anti-self-duality properties, respectively:

kuv 1 _uvpX, _kp\ —kuv __ 1 _puvpi=kp\
nﬂ_ieﬂpnp’ n#__ieﬂﬁnp, (A29)

and are explicitly given by:

kij _ mkij _ gk kj4
- bl

—7 — Y R = kit — gki M= 0. (A.30)

n n

For a more comprehensive treatment of two-component spinors in Euclidean space, see ref. [128].

Appendix B: Sigma matrix identities and Fierz identities

In Section 2, we derived a number of identities involving o#, g, o and "*”. When considering
a theory regularized by dimensional continuation [124], one must give meaning to the sigma
matrices and their respective identities in d # 4 dimensions. In many cases, it is possible to
reinterpret the sigma matrix identities for d # 4. However, the Fierz identities, which depend on
the completeness of {1242, o'} in the vector space of 2 x 2 matrices, do not have a consistent,
unambiguous meaning outside of four dimensions (e.g., see refs. [249-252] and references therein).
In Appendix B.1, we exhibit a comprehensive list of identities from which many generalized Fierz
identities can be derived. In Appendix B.2, we examine the class of sigma matrix identities that
can unambiguously be extended to d # 4 dimension and thus can be employed in the context of

dimensional regularization.

B.1 Two-component spinor Fierz identities

We begin with the basic identity for 2 x 2 matrices [77],
dabOcd = % [5ad60b + Uédaib] s (Bll)

where there is an implicit sum over the repeated superscript i = 1,2,3. Eq. (B.1.1) is a conse-
quence of the completeness of {242, 0} in the four-dimensional vector space of 2 x 2 matrices.
In particular, we denote the four-dimensional vector spaces of 2 x 2 matrices labeled by undotted
and dotted spinor indices, respectively, by V and V. It is also useful to consider matrices with

one undotted and one dotted index. Hence, we construct the Kronecker product ¥V ® V, which
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is a sixteen-dimensional vector space. The sixteen linearly independent matrices taken from the
Set,89
= {5067 UZB" o P (5‘5‘6, ohaB E‘“’dﬁ-} , (B.1.2)
serve as a complete basis set for V ® V. Elements of T’ will be denoted by I'(") (n=1,2,...,6).
Starting from eq. (B.1.1), one can establish a set of 21 identities of the following form:
TN AN Ep = Y (O @) i), (B.1.3)
¢, K,L
where each label I, J, K and L can represent zero, one or two Lorentz spacetime indices, and
A, B, C and D represent two-component spinor indices, each of which may be undotted or dotted
and in the lowered or raised position as appropriate. The sum in eq. (B.1.3) is taken over the
matrices specified in eq. (B.1.2), and the CE" are numerical coefficients [cf. eqs. (B.1.5)—(B.1.25)].
Let us multiply eq. (B.1.3) by four (commuting or anticommuting) two—component spinors
ZiaZopZscZap, Where Z; stands for either the undaggered or daggered spinor z; or z , depend-
ing on whether the corresponding spinor index is undotted or dotted. This procedure yields
generalized Fierz identities of the form [74,77,85,88]:
(2T W Zy)(25T M Z4) = (=) Y (CENZL(Z 00K 2,) (250D Zy) | (B.1.4)
p,q,K,L

where (—1)4 = 41 [~1] for commuting [anticommuting] spinors.”

The explicit expressions for the 21 identities represented by eq. (B.1.3) are as follows.

5a°6%; = Lot 70" (B.1.5)
505677' _ % |:5 (5 B Uuy)a‘r(auu)yﬁ] 7 (B.1.6)
5a65‘y+ _ % [504 541 J“")d+(ﬁw)ﬁ5] ’ (B.1.7)
&fa”d = %0’ 575 10y aa (o )Vﬁ, (B.1.8)

5, 55187 = 15, TG BB 4 (o) ED8 (B.1.9)
0% 4ok = 30%00, +1(T) %50, 5. (B-1.10)

5% 71 = Lot 0‘“5V — iz (@), (B.1.11)
5065(0;“/”7 _ %{ (c) 7575 + 5067(0;“/)76 — i [(UHR)OCT(O,VP)VB _ (Uun)ar(aup%ﬁ] }7 (B.1.12)
5o (@) = —Li [a I z‘eﬂ”f’“awdaﬁﬁ] , (B.1.13)
56 . (0”“’)50‘ _ 4 [O_uaa Eﬁ _gvaa, ZB ieuupnﬁgaanﬁﬁ'] , (B.1.14)

5dﬁ.(5u1/)*y+ — %{(EW)QT'WB + 5d+(5uu)#ﬁ. — G [(5un)d+(5up)"¥ﬁ. _ (Eun)%(gup)&ﬁ.} }, (B.1.15)

89Due to the self-duality relations of eq. (2.74), ¢ and " are completely determined by the six matrices ¢

and 7 (i = 1,2, 3). However, for convenience we keep all 0" and " matrices in the set T.
9Tt is often convenient to reverse the order of the spinors Zs and Zs on the right-hand side of eq. (B.1.4) by
using eqs. (2.58)—(2.60) and (2.93)-(2.94) to eliminate the factor of (—1)* [cf. eq. (2.66)].
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boov
Taa934 =
FhbasvfB _

B =vBB _
ol TP =

(UW)aBUf;d —

3pd6(0uv%a —

UZB @) =

(E,uy)dgap Yoo

(0")a (07")" =

@)% @)+

N[

N[

D=

D=

D=

D=

N[

i . |
_UZBUEd + ‘725‘75@ - gWUQBU)\ o+ i o, 50y ﬁa] , (B.1.16)
'E’MBEVBO‘ + EudBEuBa g’wa)‘ aﬁ Boc Z'e’wp'{ﬁgﬁ Eéo‘} 7 (B.l.l?)
96,557 4 — 2i(0")o 6% + 21607 (3")P 4 — 49 (0" 5(5””)5@] :

i (B.1.18)
_Ugd(o-up)'yﬁ - UZd(Uup)’Yﬁ + ieuu’ikanad(o)\p)"/ﬁ

—4i (9"0ks — 900k — i 0c0a) 0,7 | (B.1.19)
[0 (0), 2 — (7). + i 7 (),

i (ghrat oo — gregha _ jehrergaa) W] , (B.1.20)
Oaa(@0) 5 = 0hs (@) 5 — e \0kaa (@)

+3i (g"Pol — gPoly + i PO, 06 576} , (B.1.21)
_El/ da(app)*fﬁ. _ Gk da(az/p)*/ﬁ_ . ieuuﬁ)\aga(a)\p)*fﬁ

—Li(ghrTv A — gPGhae 4 PR e § B] , (B.1.22)

%(Uuu) T(O,pn)’yﬁ + %6047575 (g,upgwi . g;mgz/p _ Z'e,uupﬁ)

+

+

+

1i0a” (g7 0"" 4 g ot — g"Pat — ghiaP) P

i6, P (g0 o 4 gttt — gUP et — ghiaP) T

L[0T (@), + (07)aT (@) = (07T (), = (") (077)y
g [gun(apo)aT(O,u)\)’yﬁ —i—g”p(am)aT(U“)‘)yﬁ

0" (0")a” (@), = g (0")a"(0") 7] (B.1.23)

%(Euu) (Upn) +1 5a 57 (gMPg"" — gl g"P + ielPr)

+

+

+

() @) = &

i 6% (g"PT"" + gV T — g P — gﬁmgw)“} P
% 5 ﬁ (gupawi _’_gunapp o gupa;m o g;mayp)d‘r
L@ )5 @) 5+ @)oY 5 — @) — @) )

Lr [0 @) (@) 5 + 9700 @)
—g" (@) (@) — g (@) ()] (B.1.24)

[(g”” g’ — g" g o Ufﬁ

+i6uyp>\0)\ G BB _ el 5 'Epﬁﬁ —iehPRA 1/ Bﬁ + Zeupn)\o_u O’fﬁ

O\a

—gH* (" aa”ﬁﬁ—ka 0“56)4—9 P(ofy, Uu56+0 UHBB)
+g" (o? O’VBB—FO' Upﬁﬁ) q” (aadﬁ”w—i-aadﬁpﬁﬁ) . (B.1.25)
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From egs. (B.1.5)-(B.1.25), one immediately obtains the corresponding 21 Fierz identities rep-
resented by eq. (B.1.4). Eleven of these identities also appear in Appendix B of ref. [77].9

The derivation of the 21 identities listed above is straightforward. Egs. (B.1.5)—(B.1.7) are
equivalent to the completeness relation of eq. (B.1.1). The next eight identities [eqs. (B.1.8)—
(B.1.15)] are easily derived starting from egs. (B.1.5)—(B.1.7). As a simple example, using the

results of egs. (B.1.6) and (B.2.20), it follows that
5‘150—% = 0070, ol; = 2 [5‘17575 T (Um)aT(Jpn)vB] Tra
= % [Uga‘syﬁ + (Upﬁau)ad(gpn)vﬁ}
= % [agddyﬁ + %i(gﬁuap —gMo" + iﬁpﬁuuau)ad(f’pn)vﬁ}

— 15,0578 4 i(0"), 177 (B.1.26)

where eq. (2.74) was employed in the final step. We can now use eqs. (B.1.8)—(B.1.11) to derive
egs. (B.1.16)—(B.1.22) by a similar technique. Finally, starting from eqgs. (B.1.12)—(B.1.15) we
may employ the same technique once more to derive eqs. (B.1.23)-(B.1.25).72 A useful check of
the last three identities can be carried out by multiplying these results by g,,9,« and summing

over the two repeated Lorentz index pairs. We then find:

(U“V)QB(JW),YT = —%(U“V)QT(UW),YB + %5,{&,6, (B.1.27)
) 5 F) s = 3TV F) 5+ 0% (B.1.2)
(0")a” (@) '+ = 0. (B.1.29)

Eq. (B.1.29) has already been recorded in eq. (2.82). To verify egs. (B.1.27) and (B.1.28), we
first rewrite these equations with the interchange of 8 <+ 7 and 3 <> 7. Inserting the resulting
equations back into egs. (B.1.27) and (B.1.28) then yields the previously obtained egs. (2.80)
and (2.81) [or equivalently, egs. (B.1.6) and (B.1.7)].

A similar check can be performed on egs. (B.1.16)—(B.1.18) by multiplying these results by

gy and summing over the repeated Lorentz index pair [with assistance from eq. (B.1.29)]:

JZ@%BB - _"Zg%ﬁa’ (B.1.30)
Eudaﬁgﬁ _ _Uua605a7 (B.1.31)
05&556 — 26,65, . (B.1.32)
It follows that:
0130 55 = 2Cadtss (B.1.33)
FH daﬁgﬁ — 9 0B ap , (B.1.34)

“!Note that in ref. [77], ¢**** has the opposite sign with respect to our conventions, and ¢*” is defined without
an overall factor of i. Taking these differences into account, we have confirmed that the results of Appendix B of
ref. [77] match the corresponding results obtained here.

9In particular, the identities given in eqs. (B.2.18) and (B.2.19) are especially useful in the evaluation of
egs. (B.1.19)-(B.1.24).
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since egs. (B.1.30) and (B.1.31) are antisymmetric under the separate interchanges of a <+  and
& ¢+ 3. The coefficients in egs. (B.1.33) and (B.1.34) are determined by substituting a = ¢ = 1
and 8 = = 2. Thus, we have confirmed the results previously obtained in eqs. (2.47)(2.49).
Egs. (B.1.5)—(B.1.7) can also be used to derive four additional identities, which yield Fierz
identities of a different form. Simply multiply each of these equations by two e symbols (with
appropriately chosen undotted and/or dotted spinor indices), and use eqs. (2.30) and (2.77).
Two of the resulting identities coincide with egs. (B.1.33) and (B.1.34), while the other two are:

€ap€™™ = L1 [0a7057 — (0")a (00)57] - (B.1.35)
edﬁe:yi- = —% |:5d;y55+ — (E‘w)d;y(ﬁwj)ﬁ.f} . (B136)

One can check that egs. (B.1.35) and (B.1.36) are equivalent to the previously obtained egs. (2.80)
and (2.81). Multiplying egs. (B.1.33)—(B.1.36) by four (commuting or anticommuting) two-
component spinors Zy4ZspZsc Z4p yields the corresponding Fierz identities of the form:
(2T Zy)(ZsT 7 Z4) = (=) > (CENZL(Z DK Z3) (2,7 0E Zy) | (B.1.37)
P, K,L
which differs from eq. (B.1.4) in the ordering of the spinors on the right-hand side.
Finally, we note that the Schouten identities,

€aB€ys T €ar€sg T €asepy =0, 4565 T €avCip + €ai€ay = 0, (B.1.38)

are the basis for Fierz identities given by egs. (2.64) and (2.65), which do not assume the simple
forms of either egs. (B.1.4) or (B.1.37).

B.2 Sigma matrix identities in d # 4 dimensions

When considering a theory regularized by dimensional continuation [124], one must be careful in
treating cases with contracted spacetime vector indices p, v, K, p, .... Instead of taking on four
possible values, these vector indices formally run over d values, where d is infinitesimally different
from 4. This means that some identities that would hold in unregularized four-dimensional
theories are inconsistent and must not be used; other identities remain valid if d replaces 4 in
the appropriate spots; and still other identities hold without modification.

Two important identities that do hold in d # 4 dimensions are:

(075" + 0"5"]” = 29" 6,7, (B.2.1)
[0 +3" oM 5 = 29" 6% 5. (B.2.2)
Equivalently,
(5") P = g"6,° — 2i(c™)o”, (B.2.3)
(@0")" 5 = g 8% 5 — 2i(@")7 (B.2.4)
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where 0" and """ are defined in eq. (A.10). The trace identities,
Trlo#a"] = Tr[e"c”] = 2¢"", (B.2.5)
Tro®” =Tra" =0, (B.2.6)
then follow. We also note that the spinor index trace identity,
Tr[1] = 62 = 6% = 2, (B.2.7)

continues to hold in dimensional continuation regularization methods. In contrast, the Fierz
identities of Appendix B.1 do not have a consistent, unambiguous meaning outside of four
dimensions [249-252]. However, the following identities that are implied by eq. (B.1.5) do

consistently generalize to d # 4 spacetime dimensions:

(09T ,)o” = dof (B.2.8)
70" 5 = dég . (B.2.9)

Using egs. (B.2.8) and (B.2.9) along with the repeated use of egs. (B.2.1) and (B.2.2) then yields:

0¥ 0], 5 = —(d = 2)0” (B.2.10)
[7#0,7,]% = —(d - 2)—“5 (B.2.11)
(05" 0"T]o” = 49768 — (4 — d)[0"57]." (B.2.12)
[70"5°0,]% = 49705 — (4 — d)[7"0"], (B.2.13)
05 0P 5" 0] 5 = —2(0"F 0] 5+ (4 — d)[0" T 0" 5, (B.2.14)
7075 075,40 = —2[770PF % + (4 — d)[7"aPT"]P . (B.2.15)

Identities that involve the (explicitly and inextricably four-dimensional) e**?* symbol

GhoVEP = 'GP — g'PEY + VP — iR, (B.2.16)
otc’of = g™ ol — g*Pc” + g"Pot + i o, (B.2.17)
MV oM = —j (gFPat — g"Pat + gHPo¥™) | (B.2.18)
VI = i (g — VPR 4 gMPER) | (B.2.19)
oMol = %z (g"Pot — g'Po” + ie"Pro,,) (B.2.20)
oMol = %z (¢g"Pat — g'Ps" — 1P T, (B.2.21)
ot = Li(g"of — g"'TY — i T,) (B.2.22)
ot = %z (g" o — g'Po” + ie"Pra,,) (B.2.23)
oMot = —L(g"P gt — ghP gVR i PR) + Li(g Pt + gMi P — gMPot — PR atP) | (B.2.24)
GG = —1(g"P g — g"Pg"" — i€ + Li(gV e + ¢TGP — MG — g et),  (B.2.25)
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are also only meaningful in exactly four dimensions. This applies as well to the trace identities

which follow from them.”® For example,

ugpn - g,upglm + glmg’/ﬁ + Z'EH”P“) , (B.2.26)
Vgpn _ g,upglfli + glmg’/ﬁ _ Z'El“’p“) . (B227)

Tr[o"e” 05"

(
(

—2(g"
Tr[g" 0" 0" = 2 (g"
This could lead to ambiguities in loop computations where it is necessary to perform the com-
putation in d # 4 dimensions (until the end of the calculation where the limit d — 4 is taken).
However, in practice one typically finds that the above expressions appear multiplied by the
metric and/or other external tensors (such as four-momenta appropriate to the problem at
hand). In almost all such cases, two of the indices appearing in egs. (B.2.26) and (B.2.27) are
symmetrized which eliminates the e#*?* term, rendering the resulting expressions unambiguous.
Similarly, the sum of the above trace identities can be assigned an unambiguous meaning in

d # 4 dimensions:
Trjo"5”0P5"| 4+ Tr[c"o"T o] = 4 (¢" ¢*" — g"Pg"" + g""g"?) . (B.2.28)

One can recursively derive trace formulae for products of six or more o/ @ matrices by using the

results of egs. (B.2.16) and (B.2.17) to reduce the number of ¢/ @ matrices by two. For example,

Tr[a“ﬁ”a”ﬁ“a)‘ﬁé] = g””T‘r[JpE“J’\E‘S] — g“”Tr[J”E“o*)‘Eé] + g”pTr[a“E“a)‘E‘s]

+iel P Tr[o 770 5], (B.2.29)

Tr[E“a”E”a“E)‘a‘;] = g”"Tr[E”J“E’\J‘S] — g“”Tr[E”a“E)‘U‘;] + g”pTr[E”o*“E)‘J‘S]

—ie" P Tr[F 0 5 0] . (B.2.30)

We then use eqs. (B.2.26) and (B.2.27) to evaluate the remaining traces over four o/ @ matrices.

Appendix C: Explicit forms for the two-component spinor wave
functions

In this Appendix, we construct the explicit forms for the eigenstates of the spin operator %6”-§,
and examine their properties. For massive fermions, it is possible to transform to the rest frame,
and quantize the spin along a fixed axis in space. The corresponding spinor wave functions will
be called fixed-axis spinors. For either massive or massive fermions, one can quantize the spin

along the direction of momentum. The corresponding spinor wave functions are helicity spinors.

93This is analogous to the statement that Tr (y57#~"v*7") = —4ie"*?* [in our convention where €*'** = +1, and
s is defined by eq. (G.1.2)] is only meaningful in d = 4 dimensions. In two-component notation, the equivalent
result is Tr[c"5" 05" — /0”5 0" = 4ie"”"". In the literature various schemes have been proposed for defining
the properties of v5 in d # 4 dimensions [231, 252]. In two-component notation, this would translate into a
procedure for dealing with general traces involving four or more o/ matrices.
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Helicity spinor wave functions are most conveniently applied to massless fermions or fermions
in the relativistic limit of high energy F > m. Fixed-axis spinors are most conveniently applied

to massive fermions in the non-relativistic limit.

C.1 Fixed-axis spinor wave functions

Consider a spin-1/2 fermion in its rest frame and quantize the spin along a fixed axis specified
by the unit vector
§ = (sinfcos¢, sinfsin¢, cosh), (C.1.1)

with polar angle 6 and azimuthal angle ¢ with respect to a fixed z-axis. The relevant basis of

two-component fixed-axis spinors x, are eigenstates of %&'-é, ie.,

08X, = SXss S:ﬂ:%. (C.1.2)

N[

In order to construct the eigenstates of %6” -8, we first consider the case where § = 2. In

this case, we define the eigenstates of %03 to be:

1 0
X1/2(2) = o) X_1/2(%2) = e (C.1.3)

By convention, we have set an arbitrary overall multiplicative phase factor for each spinor of
eq. (C.1.3) to unity. We then determine x,(3) from x,(£) by employing the spin-1/2 rotation
operator that corresponds to a rotation from 2 to §. This rotation is represented by a 3 x 3 matrix
R such that § = RZ. However, this rotation operator is not unique. In its most general form,

the rotation operator can be parameterized in terms of three Euler angles (e.g., see refs. [44,45]):

R(¢,0,7)=R(2,¢)R(G,0)R(Z, 7), (C.14)

The Euler angles can be chosen to lie in the range 0 < 0 < 7 and 0 < ¢, v < 27. Here, R(71, 6)

is a 3 x 3 orthogonal matrix that represents a rotation by an angle 6 about a fixed axis 7,

—

RY(7, 0) = exp(—ifn-8) = n'n + (0¥ — n'n’) cos § — €7 nF sin g, (C.1.5)
where the § = (S!, 82, 83) are three 3 x 3 matrices whose matrix elements are given by
(SHIF = —ie* [cf. eq. (2.9)].

However, the angle v is arbitrary, since R(2, v)2 = 2. Thus,
§ =Rz = (sinfcos¢, sinfsing, cosh), (C.1.6)

independently of the choice of y. For § = 0 or § = 7, where § is parallel to the z-axis, the
azimuthal angle ¢ is undefined. Since § — —3§ corresponds in general to § — 7 — 6 and
¢ — ¢+ 7 (mod 27), we shall adopt a convention whereby:

0, fors§=2, (6=0),
¢={ (6 =0)

(C.1.7)
T, fors=—-2, (@=mn).
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Using the spin-1/2 rotation operator corresponding to R(¢, €, 7), one can compute ys(§),

Xs(8) =D(¢, 0, 7)x,(2), (C.1.8)

where D is the spin-1/2 unitary representation matrix [253]

D(¢,0,v)=D(2,¢)D(g,0) D(2,7), (C.1.9)

and D is the 2 x 2 unitary matrix

0 0
D(n,0) = exp (—i0n-8/2) = cos 3 in-6 sin 3" (C.1.10)
Eq. (C.1.8) yields explicit forms for the eigenstates of %&’-.§:
e_i(¢+7)/2 cOS g _e_i(¢_7)/2 Sin g
ei(d)_V)/z Sin 5 ei(¢+7)/2 CcOS —

The well-known two-to-one mapping between SU(2) and SO(3) implies that for a given

rotation matrix R there are two corresponding spin-1/2 rotation matrices D. In particular,
D(p+2r,6,7)=—D(6,6,7), (C.1.12)

which implies that a rotation of a spinor by 27 yields an overall change of sign in the spinor
wave function (an effect that can be observed in quantum interference experiments!). Strictly
speaking, we should take the range of the Euler angles to be 0 < ¢ < 4w, 0 < 8 < 7 and
0 <+ < 27. However, when constructing the spinor wave function of a spin-1/2 particle whose
spin quantization axis is given by eq. (C.1.6), we will fix the overall sign of the spinor wave
function by convention.

More generally, the overall phase of the spinor wave function is unphysical. Noting that
D(2,7) x,(2) = e7"7x,(2), the choice of v is also a matter of convention. First, we will require
that when § = 2, eq. (C.1.8) should reproduce the spinor wave functions given in eq. (C.1.3).

This implies that:

v=0, fors=2, (=¢=0). (C.1.13)
For § = —2, we use eq. (C.1.7) to obtain:
Xo(—2) = i Dy (2)., s= 41, (C.114)

where the notation v(—2) has been employed to allow the possibility that the convention for -y
depends on the direction indicated by its argument.
Two different conventions are commonly employed in the literature. In the first convention,

one chooses 7 = —¢. This choice has the good feature that R(¢, 0, —¢) = 1343, independently

168



of the angle ¢, which is undefined when 6 = 0. Moreover, the rotation matrix R(¢, 6, —@)
and the corresponding spin-1/2 rotation matrix D(¢, 6, —¢) can be expressed simply as a

single rotation by an angle 6 about a fixed axis that points along a unit vector in the azimuthal

direction:
@ = (—sing, cos¢, 0), (C.1.15)
In particular,
R($,0)=R(2, 6) R, O)R(2, —9), (C.1.16)

Hence, in this convention x,(8) = D(®, 8)x,(£), which is the most common choice for the
spinor wave function [36,254,255].
In the second convention, one chooses v = 0. One motivation for this choice is that the

corresponding rotation matrix is somewhat simpler:

cos 0 cos ¢ —sing sin 6 cos ¢
R(p,0,0)=R(Z, ) R(G, 0) = | cosOsing cos ¢ sinfsing | - (C.1.18)
—sinf 0 cost

Employing the corresponding spin-1/2 rotation operator D(¢, 6, 0) in eq. (C.1.8) yields a
slightly more symmetrical form for the spinor wave function [256].

Explicit forms for the spinor wave functions in the two conventions are obtained from
eq. (C.1.11) by taking v(8) = —¢ and v(8) = 0, respectively. For example, eq. (C.1.14) reduces

to:

—2sx_4(2) fory(-%2)=-¢= -,
X.(—2) = s=+1, (C.1.19)

ix_.,(2) forvy(—2)=0,
in the convention specified by eq. (C.1.7).
Many of the properties of the spinor wave functions are independent of the choice of the

Euler angle . The spinor wave functions y, defined by eq. (C.1.8) are normalized such that

XE(8)xs(8) = basr (C.1.20)
and satisfy the following completeness relation:

PR RONIOE (1)(1) - (C.1.21)

“However, R(¢, m, —¢) # 13x3 even though ¢ is also undefined when 6 = 7.
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The spinor wave functions x,(8) and x_,(8) are connected by the following relation:
X_(8) = —2si0” x*(3) . (C.1.22)

Consider a spin-1/2 fermion with four-momentum p* = (E, §), with E = (|p]*> + m?)/2,
and the direction of p given by

P = (sinb, cos ¢, , sinf,sin ¢, , cosb,) . (C.1.23)

Using egs. (2.106) and (2.107), one can employ eqs. (3.1.19)—(3.1.22) to obtain explicit expres-
sions for the two-component spinor wave functions z(%, s), y(p, s), 2! (5, s) and y'(p, s).
Additional properties of the xs can be derived by introducing an orthonormal set of unit

three-vectors 8§ that provide a basis for a right-handed coordinate system. Explicitly,

§%.585 = 59 (C.1.24)
8% x 8° = ¢abege (C.1.25)

We shall identify
$3=3 (C.1.26)

as the quantization axis used in defining the third component of the spin of the fermion in its
rest frame. The unit vectors 8 and 42 are then chosen such that egs. (C.1.24) and (C.1.25)
are satisfied. To explicitly construct the §%, we begin with the orthonormal set {&, ¢, £}, and

employ the same rotation operator R used to define x,(8). That is,
(8',5%,38% = (R, Ry, R2), where R =R(¢,0,7), (C.1.27)

and ¢, 6 and 7 are the Euler angles used to define the spinor wave function in eq. (C.1.8).
From eq. (C.1.27), one can immediately derive the completeness relation (as a consequence of
RRT =1),

§918% = § | (C.1.28)

where 7 and j label the space components of the three-vector §%.

We can use the §% to extend the defining equation of s [eq. (C.1.2)]:

F-3%x(8) = 179 x4(8), (C.1.29)

D=

where the 72, are the matrix elements of the Pauli matrices.”® That is, %6’-(31 +is?) serve as

ladder operators that connect the spinor wave functions x; /2 and x_; /2 Using eq. (C.1.20), it

follows that eq. (C.1.29) is equivalent to:

XH(8) &-5%y(8) =14 . (C.1.30)

95We use the symbol 7 rather than o to emphasize that the indices of the Pauli matrices 7¢ are spin labels s, s’
and not spinor indices «, ¢. The first (second) row and column of the 7-matrices correspond to s = 1/2 (—1/2).

For example, 72, = 258, (no sum over s).
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It is instructive to prove eq. (C.1.30) directly. Employing eq. (C.1.8) and using the fact

that D is a unitary matrix,
X1(8) 7-8%x(8) = x1(2) [D(¢,0, )] '&-8*D(6,0, 7)xs (2) - (C.1.31)
The above result can be simplified by a repeated use of the following identity,
W 8/2 57 o= 105 /2 R*(7, 9)oF, (C.1.32)

which is valid for any fixed axis 72, where R(71, 0) is the rotation matrix defined in eq. (C.1.5).
It follows that
[D(@.0, ™' ! D(¢,0,7) =R¥(d,60, 7)o", (C.1.33)

where R(¢,0, 7) is defined in eq. (C.1.4). Since RT = R~!,
X1(8) & 38%xw(8) = x1(2) &+ [R715%] xv(2). (C.1.34)
Eq. (C.1.27) implies that (R™18!, R7182 , R~13%) = (&, 9, 2), and it follows that
& [R713%] = o0". (C.1.35)
Consequently, we end up with
X1(8) 580w (8) = X} (2)o X () = 72, (C.1.36)

which defines the matrix elements of the Pauli matrices, and our proof of eq. (C.1.30) is complete.

Using the completeness relation given by eq. (C.1.28), we can rewrite eq. (C.1.30) as

xh(3) olxe (8) = 72,57 . (C.1.37)

Taking the hermitian conjugate of eq. (C.1.37) is equivalent to interchanging s <> ', since the
o are hermitian matrices and (7%,)* = 7¢_. To evaluate expressions similar to eq. (C.1.37) that
contain products of o-matrices, it is sufficient to use the relation o'c? = §91 + ie*o* as many
times as needed to reduce the final expression to terms containing at most one o-matrix. For

example, using eqgs. (C.1.20) and (C.1.37), it follows that
xH(8) 0l 0T X (8) = 840 + i€k Te, 59 (C.1.38)

ss’

It is sometimes useful to have a more explicit representation of the §%. In the convention

where 7 = —¢, eq. (C.1.27) yields:
al 2 .92 0 . .92 0 .
8§t = (1 —2cos” ¢ sin 5,—51n2¢sm 5,—s1n900s¢),
~2 . ) 0 .9 ) o . .
§° = (—sin2¢ sin 5,1—2sm ¢ sin 5,—811198111(]5),
5% = (sinfcos ¢, sinfsin ¢, cosfh). (C.1.39)
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The explicit forms for the §% are somewhat simpler in the convention where v = 0. In this case,
egs. (C.1.18) and (C.1.27) yield:

51 = (cosfcos ¢, cosfsin ¢, —sinh),
5% = (—sin¢, cos ¢, 0),

5% = (sinf cos ¢, sin @ sin ¢, cos ) . (C.1.40)

C.2 Fixed-axis spinors in the non-relativistic limit

Consider an on-shell massive fermion of three-momentum p, mass m and spin quantum number s,
where s = i% are the possible projections of the spin vector (in units of /) along the fixed §
direction [cf. eq. (C.1.2)]. The spinor wave functions, x, y, and their hermitian conjugates are
given by egs. (3.1.19)—(3.1.22). In the non-relativistic limit,

m2ﬂ<ﬂ_@>7 \/p.—ag\/ﬁ<]1+%>, (C.2.1)

2m

where we keep terms only up to O(|p]/m). Inserting the above results into egs. (3.1.19)—(3.1.22)

yields:
20 (B, s) = V/m (1 - ﬂ) xs(8), (C.2.2)
2m
2% (P, 5) ~ —2sv/m x| ,(3) <]l + ‘;—WI;> : (C.2.3)
Ya(P, s) = 25y/m (11 - U—'p> X—-s(8), (C.2.4)
2m
y* (P, s) ~ Vmxi(8) <ll + %) : (C.2.5)
for the undotted spinor wave functions and
214 (p, s) ~ —2sy/m <]l + ;—;) X-s(8), (C.2.6)
) = v (1- 27) (2.1
- &0 A
y'(p,5) ~ vVm (11 + 2—p> Xs(8), (C.2.8)
m
. R o-p
yh (7. s) = 2sv/m x| (3) (11 - 27?) , (C.2.9)

for the dotted spinor wave functions.
In the computation of the S-matrix amplitudes for scattering and decay processes, one

typically must evaluate a bilinear product of spinors, i.e. quantities of the form
21(P1, 51) I 22(P%, s2) 5 (C.2.10)
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where z; and 2y represent one of the two-component spinor wave functions z, y, z! or y', and T’
is a 2 x 2 matrix (in spinor space) that is either the identity matrix, or is made up of alternating
products of o and &. In the non-relativistic limit, these bilinears take on rather simple forms.

In what follows, we work to first order in |p;|/m;. For example,
- _, A o-p 0o-°p A
B0 Bonsa) = Vi 1, 8) (14 22 - T8 s
— IZE ZIA
~ m1m2 [551752 + <2—7T2/1 — %> 'SaTgl’82:| 5 (C.2.11)

where we have used the results of egs. (C.1.20) and (C.1.37). Similarly,

; . 0 p1 0 P2 .
y* (p1.51)0" 3y (P2, 52) ~ mama x{, () {0“ * om0 T } Xs2(8)
/M1 251782(]5’1,]5’2), (0212)
where?0
2 D2 o

20,51, P) = S )
ss’ ’ 7 % J J
~ai P1 po 2 P1 - ijk sak__a .
§¥re, Oss —= — —= | ieY"8 by, forp=1i=1,2,3,
Tss + <2m1 + 2m2> 5 + <2m2 2m1> ¢ Tss H

(C.2.13)
is obtained after using the results of egs. (C.1.37) and (C.1.38).
In summary, we list the non-relativistic forms of the spinor bilinears. Referring to eq. (C.2.10),
if I' =1, then

.§%7¢ ] . (C.2.14)

ya(ﬁlvsl)ya(ﬁ%s?) ™ 2594/mimg |:5817—82 + <& - &> '§a7—517—52:| ) (0'2'15)
0

= ~ P IZRAW
l'a(pl,Sl)ya(pg,Sg) = ymims |:_ 52,81 + <2—7T11 — ﬁ) '8a732731:| s (0216)
Y (Br, 51) 0By, 52) = TS |Guyg + (2 — P2 ) gage | (C.2.17)
12 2771,1 2m2 1,82

where we have used
T, = —dss'T0, ., s,8 =+1, (C.2.18)

to arrive at the final forms given in egs. (C.2.14) and (C.2.16). However, in using the above
results, one must now pay close attention to the ordering of the subscript indices of the 7¢. The

corresponding formulae for dotted spinor wave function bilinears are obtained by taking the

9We also define Z", (P2,P1) as the expression given by eq. (C.2.13) with the interchange of {s, p1, m1} and
{8/ ) ﬁ2 ) m2} .
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hermitian conjugates of egs. (C.2.14)—(C.2.17), which complex-conjugates the 7% that appear on

the right-hand side of these equations. Since (7%,)* = 75, we obtain

s's?

- Vo P, Pp: .
xj;(phsl)xm(pg,SQ) =~ 2814/mimsa [552,—51 - <—1 - —2> -Sa7'§27_51] ,  (C.2.19)

— Y/ = ﬁ ﬁ a
yg(PbsﬁyTa(pg,sz) =~ 251y/m1msa [5_31,52 - (—1 - —2> -3“7381,32] ,  (C.2.20)

2’171,1 2m2

_ Y (e D D .

yi(p1731)x1‘a(p2732) = —y/mims [552,51 + <2—77i1 — 2—%) -8“7';’2781} , (C.2.21)
- Y P 2N

L (By, 51)y' (B, 82) = /g [551782 - (2—7711 - 2—7732) -3“731782} . (C.2.22)

Likewise, if I' = o#, then

z%(p1, 81)JZB:UTB(pz, s9) = ds1s9\/mimg Z" . . (P1,D2), (C.2.23)
Y (pros)ot syt (P, s2) = v/imiig 2L L, (B1,Pa) (C.2.24)
z%(p1, 81)05511”3(192, s9) ~ —2s1\/mimg 2", ., (P1,P2), (C.2.25)
y*(p1, 81)055:6“3(1)2, s9) = —2s9\/mima Z¢, _,(P1,P2), (C.2.26)

where Z" (1, P2) is defined in eq. (C.2.13). If T’ = @*, one can use zla“z; = zgﬁ“zl [i.e. eq. (2.60)
for commuting spinors] to obtain the corresponding formulae for the spinor wave function bilin-

ears (cf. footnote 96):

2l (p1,51)7" P spa, s0) = dsiso/mimz 2", (P2, P1) (C.2.27)
yh(p1,51)5Pys(pa, s2) =~ \/mimg ZL . (P2, B1) (C.2.28)
Yl (p1, 51)5" P2 5(pa, 52) = —2s9/ My Zt, < (P2, P1), (C.2.29)
ol (p1, 517 Pys(pa. 52) ~ —2s1y/mima Z%, _ (P2, P1) - (C.2.30)

These results can also be derived directly from egs. (C.2.2)—(C.2.9), after employing eq. (C.2.18).
It is straightforward to evaluate the spinor wave function bilinears when I is a product of
two or more o /d matrices. As the corresponding expressions are considerably more complicated,

we shall not write them out explicitly here.

C.3 Helicity spinor wave functions

All the results of Appendix C.1 apply to the helicity spinors x,, which are defined to be eigen-
states of %6"-15, ie.,
: (C.3.1)

D=

G px,(®) =, (D), A==
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where p = (sin 6, cos ¢, , sinf,sin ¢, , cosf,). It follows that:

VP o X,\(D) = w_\(P) x,\(P), \/ﬁXA wy (D) x,(P) , (C.3.2)

where
w\(P) = (E + 2\|p])Y2, E=/|p2 +m?2. (C.3.3)

As aresult, the explicit forms for the two-component helicity spinor wave functions [cf. egs. (3.1.19)—
(3.1.22)] simplify:

Ta(BA) = w_, x\(D) (BN = 22 w_yx \(B),  (C3.4)
Yo (P ,/\)ZQAW,\X A(P) Yy (P, ) = WAX,\( D) , (C.3.5)
2T N) = —20w_, x_,(B), 2L (B N) = w_\ xX\(B), (C.3.6)
Y4B, A) = wy xa(B) LN = 22w X, (), (C.3.7)

where w, , = w,,(P).
In analogy with the §¢, it is convenient to introduce an orthonormal set of unit three-vectors
@ such that p2 = p. Then, egs. (C.1.24)—(C.1.30) apply as well to the two-component helicity
spinors after taking §% = p@.

In scattering processes, it is often convenient to work in the rest frame of the incoming
particles, in which the corresponding incoming fermion three-momenta are denoted by p and
—p, respectively. The helicity spinor wave function of the second fermion depends on the
definition of x,(—p). In this review, we follow a convention®” in which y,(—p) is defined to be
the spinor wave function obtained from x,(£) via a rotation by a polar angle 7 — ¢, and an

azimuthal angle ¢, + 7 with respect to the 2-direction. Then,

XA(=P) =D(dp + 7, 7 —bp, 7(=D)) xA(2), (C.3.8)

where we have exhibited the possible dependence of v on the direction —p. Using the properties

of the spin-1/2 rotation matrices, one can derive

D(¢p+m, 7 —bp, v(=P)) = =D(dp, p, 7(P)) D(Z, —(p) —v(=P)) D(&,7).  (C.3.9)

Inserting this result in eq. (C.3.8) and using the relation

D(&,m)x,(2) = —io" x,(2) = —ix_,(2), (C.3.10)
we obtain

Xo(=P) = Ea(B)x_»(P) (C.3.11)

97 An alternative convention (called the second-particle convention) advocated by Jacob and Wick [257] is to
define x, (—pP) by starting with x_, (£) and then rotating the spinor by polar and azimuthal angles 0, and ¢,. In
this case, x,(—pP) = x_,(P), and the extra phase factors of eq. (C.3.11) is absent, i.e. & (p) =1 in eq. (C.3.11).
However, this convention is less suited to scattering processes involving final states with more than two fermions.
Hence, we do not adopt the second-particle convention in this review.
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where the phase factor {\(p) is given by

E(p) = ie"DPHPL A==l (C.3.12)
Since v is a real angle, it follows that:
1
§P) = 7= =€) (C.3.13)
A ,\(P) A
Using eq. (C.3.12), we note that x,(p) possesses the peculiar property that:
Xa(=(=P)) = —x,\(P) - (C.3.14)

This is a consequence of the fact that the result of two successive inversions is equivalent to
¢p — ¢p+2m, which yields an overall change of sign of a spinor wave function [cf. eq. (C.1.12)].9®

For example, corresponding to the two conventional choices for =,

_1)27 o-2irdy 5) — _ Ay —
\(p) = (—1) € for ~(p) ¢p, Y(—D) T+ ¢p, (C.3.15)

i for y(p) =~(-p) =0,
with the proviso that for p = £2, we define ¢, according to eq. (C.1.7).

Suppose that the two fermions considered above have equal mass. In the center-of-mass
frame, if the four-momentum of one of the fermions is p* = (F, p), then the four-momentum of
the other fermion is

pt=(E, —p). (C.3.16)
The following numerical identities are then satisfied: o-p = @-p and @-p = o-p. However, in
order to maintain covariance with respect to the undotted and dotted spinor indices, we shall
write these identities as:
Po,;= o0 (p-7P) O’;B , (C.3.17)
paf = aoaa(p-aaﬁ)ﬁoﬁﬁ. (C.3.18)

Taking the matrix square root of both sides of egs. (C.3.17) and (C.3.18) removes one of the
factors of 0¥ and @°, respectively [cf. egs. (2.108)(2.114)]. Thus, using egs. (3.1.19) and (C.3.11),

B,~A) = VD ox_\(=0) = */pTEB) xa(B) = 00, £B) v (B ). (C.3.19)
In this way, we can derive all relations of this kind for the helicity spinor wave functions:

-

Ta

13X gy i L A) = w &\ Xa (D) s
B Tﬁ(va):_ZAw )\g )\X A(ﬁ))

yB(P A) =22 w §_\ x_\ (D),

-
—A

(—p
Yo (=P
(—p

ke

)=
)=
)=
Yy (=P =

98 A slightly modified procedure (not adopted in this review) is to take the azimuthal angle of —p to be ¢, £,
where the £ sign is chosen according to which of the two conditions 0 < ¢, £ 7 < 27 is true. This procedure
would yield an extra minus sign in the definition of &, (p) when m < ¢, < 2m. In this convention, two successive
inversions are equivalent to the identity rotation so that x, (—(—p)) = x, (D).

f)\U xﬁ(ﬁa A) :W_A@\X)\(ﬁ)’
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where w, y = wy,(P) and &, = &, (P). Raising the undotted index and lowering the dotted index

yields:
(=P, —A) = y;( 5,0) €777 = 22w,y (D). (C.3.24)
y* (B, =N = b (B N) 6577 = w60 B). (C.3.25)
2l (=B, —X) = ¥ (B, ) £,0% = w6, XA (D), (C.3.26)
yh (=, -2 = 2P (BN €y 0% = —22w_, &, x'\(®). (C.3.27)

Egs. (C.3.20)—(C.3.27) can also be obtained directly from egs. (C.3.4)—(C.3.7).

Appendix D: Matrix decompositions for mass matrix diagonal-
ization

In scalar field theory, the diagonalization of the scalar squared-mass matrix M? is straightfor-
ward. For a theory of n complex scalar fields, M? is an hermitian n x n matrix, which can be

diagonalized by a unitary matrix W:

WIM*W = m? = diag(m3,m3,...,m2). (D.1)

n

For a theory of n real scalar fields, M? is a real symmetric nxn matrix, which can be diagonalized

by an orthogonal matrix Q:

TM2Q = m? = diag(m?.m2,... ,m2). D.2
Q Q g 1> 2 ) ) ( )

n

In both cases, the eigenvalues mi of M? are real. These are the standard matrix diagonalization
problems that are treated in all elementary linear algebra textbooks.

In spin-1/2 fermion field theory, the most general fermion mass matrix, obtained from the
Lagrangian, written in terms of two-component spinors, is complex and symmetric [cf. Sec-
tion 3.2]. If the Lagrangian exhibits a U(1) symmetry, then a basis can be found such that
fields that are charged under the U(1) pair up into Dirac fermions. The fermion mass matrix
then decomposes into the direct sum of a complex Dirac fermion mass matrix and a complex
symmetric neutral fermion mass matrix. In this Appendix, we review the linear algebra theory
relevant for the matrix decompositions associated with the general charged and neutral spin-1/2
fermion mass matrix diagonalizations. The diagonalization of the Dirac fermion mass matrix is
governed by the singular value decomposition of a complex matrix, as shown in Appendix D.1.
In contrast, the diagonalization of a neutral fermion mass matrix is governed by the Takagi

diagonalization of a complex symmetric matrix, which is treated in Appendix D.2.79 These two

990ne may choose not to work in a basis where the fermion fields are eigenstates of the U(1) charge operator.
In this case, all fermions are governed by a complex symmetric mass matrix, which can be Takagi-diagonalized
according to the procedure described in Appendix D.2.
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techniques are compared and contrasted in Appendix D.3. Dirac fermions can also arise in the
case of a pseudo-real representation of fermion fields. As shown in Section 3.2, this latter case
requires the reduction of a complex antisymmetric fermion mass matrix to real normal form.

The relevant theorem and its proof are given in Appendix D.4.

D.1 Singular value decomposition

The diagonalization of the charged (Dirac) fermion mass matrix requires the singular value
decomposition of an arbitrary complex matrix M.
Theorem: For any complex [or real] n x n matrix M, unitary [or real orthogonal] matrices

L and R exist such that
LTMR = Mp = diag(my,ma, ..., my,), (D.1.1)

where the m;, are real and non-negative. This is called the singular value decomposition of the
matrix M (e.g., see refs. [147,258]).

In general, the my are not the eigenvalues of M. Rather, the my are the singular values
of the general complex matrix M, which are defined to be the non-negative square roots of
the eigenvalues of MTM (or equivalently of MMT). An equivalent definition of the singular
values can be established as follows. Since MTM is an hermitian non-negative matrix, its
eigenvalues are real and non-negative and its eigenvectors, v, defined by MTMuv, = m%vk, can
be chosen to be orthonormal.'® Consider first the eigenvectors corresponding to the non-zero
eigenvalues of MTM. Then, we define the vectors wy, such that Muvy, = mywy. It follows that
mivk = MTMuv, = mkMTw;;, which yields: MTwZ = myvE. Note that these equations also imply
that MM Tw,’; = miwz The orthonormality of the v implies the orthonormality of the wy, and

vice versa. For example,

Miw | MTw;) = wi| MMy = 2 (¥ , D.1.2
jmk< 7 1M Twg) ; k< il 9 mj( ilwg) (D.1.2)

Ok = {vjlve) = —
which yields (wg|w;) = ;5. If M is a real matrix, then the eigenvectors v;, can be chosen to be
real, in which case the corresponding w;, are also real.

If v; is an eigenvector of MTM with zero eigenvalue, then 0 = v;f M Mwv; = (Muv;|Muv;),
which implies that Mv; = 0. Likewise, if w] is an eigenvector of M M t with zero eigenvalue, then
0 =w] MMw; = (MTw;|MTw;)*, which implies that M Tw; = 0. Because the eigenvectors of
MM [MMT] can be chosen orthonormal, the eigenvectors corresponding to the zero eigenvalues
of M [M?1] can be taken to be orthonormal.'®’ Finally, these eigenvectors are also orthogonal

to the eigenvectors corresponding to the non-zero eigenvalues of MTM [MMT]. That is, if the

100%We define the inner product of two vectors to be (v|w) = vfw. Then, v and w are orthonormal if (v|w) = 0.
The norm of a vector is defined by ||v || = (v]v)'/2.

101 his analysis shows that the number of linearly independent zero eigenvectors of MTM [MMT] with zero
eigenvalue, coincides with the number of linearly independent eigenvectors of M [MT] with zero eigenvalue.
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indices 7 and j run over the eigenvectors corresponding to the zero and non-zero eigenvalues of
MM [MM?1], respectively, then

1 . 1,
(vjlv;) = E<Mij‘Ui> = Ej<wj‘MUi> =0, (D.1.3)
and similarly (w;|w;) = 0.

Thus, we can define the singular values of a general complex n x n matrix M to be the

simultaneous solutions (with real non-negative my) of:102
Muy, = mypwy, wi M = mkv};. (D.1.4)

The corresponding vy (wy), normalized to have unit norm, are called the right (left) singular
vectors of M. In particular, the number of linearly independent vy coincides with the number
of linearly independent wy and is equal to n.

Proof of the singular value decomposition theorem: Eqs. (D.1.2) and (D.1.3) imply
that the right [left] singular vectors can be chosen to be orthonormal. Consequently, the unitary
matrix R [L] can be constructed such that its kth column is given by the right [left] singular
vector vg [wg]. It then follows from eq. (D.1.4) that:

wi Mvy =m0, (no sum over k). (D.1.5)

In matrix form, eq. (D.1.5) coincides with eq. (D.1.1), and the singular value decomposition is
established. If M is real, then the right and left singular vectors, vy and wg, can be chosen to
be real, in which case eq. (D.1.1) holds for real orthogonal matrices L and R.

The singular values of a complex matrix M are unique (up to ordering), as they correspond
to the eigenvalues of MTM (or equivalently the eigenvalues of MMT). The unitary matrices L

and R are not unique. The matrix R must satisfy
RIMTMR = M3, (D.1.6)

which follows directly from eq. (D.1.1) by computing M})M D = M12)- That is, R is a unitary
matrix that diagonalizes the non-negative definite matrix MTM. Since the eigenvectors of MTM
are orthonormal, each v corresponding to a non-degenerate eigenvalue of MM can be multi-
plied by an arbitrary phase e?%. For the case of degenerate eigenvalues, any orthonormal linear
combination of the corresponding eigenvectors is also an eigenvector of MTM. It follows that
within the subspace spanned by the eigenvectors corresponding to non-degenerate eigenvalues,
R is uniquely determined up to multiplication on the right by an arbitrary diagonal unitary ma-
trix. Within the subspace spanned by the eigenvectors of MTM corresponding to a degenerate

eigenvalue, R is determined up to multiplication on the right by an arbitrary unitary matrix.

1020ne can always find a solution to eq. (D.1.4) such that the my are real and non-negative. Given a solution
where my, is complex, we simply write my = |mk|629 and redefine wi — wkele to remove the phase 6.
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Once R is fixed, L is obtained from eq. (D.1.1):
L=(M""'R*Mp. (D.1.7)

However, if some of the diagonal elements of Mp are zero, then L is not uniquely defined.
Writing Mp in 2 x 2 block form such that the upper left block is a diagonal matrix with positive
diagonal elements and the other three blocks are equal to the zero matrix of the appropriate

dimensions, it follows that, Mp = MpW , where

wel 7 7 (D.1.8)

Wy is an arbitrary unitary matrix whose dimension is equal to the number of zeros that appear
in the diagonal elements of Mp, and 1 and O are respectively the identity matrix and zero
matrix of the appropriate size. Hence, we can multiply both sides of eq. (D.1.7) on the right
by W, which means that L is only determined up to multiplication on the right by an arbitrary
unitary matrix whose form is given by eq. (D.1.8).193

If M is a real matrix, then the derivation of the singular value decomposition of M is given
by Eq. (D.1.1), where L and R are real orthogonal matrices. This result is easily established by

replacing “phase” with “sign” and replacing “unitary” by “real orthogonal” in the above proof.

D.2 Takagi diagonalization

The mass matrix of neutral fermions (or a system of two-component fermions in a generic
basis) is complex and symmetric. This mass matrix must be diagonalized in order to identify
the physical fermion mass eigenstates and to compute their masses. However, the fermion mass
matrix is not diagonalized by the standard unitary similarity transformation. Instead a different
diagonalization equation is employed that was discovered by Takagi [111], and rediscovered many
times since [147].104

Theorem: For any complex symmetric n X n matrix M, there exists a unitary matrix {2

such that:

QM Q = Mp = diag(my,ma, ..., my), (D.2.1)

1030f course, one can reverse the above procedure by first determining the unitary matrix L. Eq. (D.1.1) implies
that LTMMTL* = M3, in which case L is determined up to multiplication on the right by an arbitrary [diagonal]
unitary matrix within the subspace spanned by the eigenvectors corresponding to the degenerate [non-degenerate]
eigenvalues of M M. Having fixed L, one can obtain R = M ~'L*Mp from eq. (D.1.1). As above, R is only
determined up to multiplication on the right by a unitary matrix whose form is given by eq. (D.1.8).

101qubsequently, it was recognized in Ref. [258] that the Takagi diagonalization was first established for nonsin-
gular complex symmetric matrices by Autonne [259]. In the physics literature, the first proof of eq. (D.2.1) was
given in ref. [149]. Applications of Takagi diagonalization to the study of neutrino mass matrices can be found in
refs. [5,260].
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where the mj, are real and non negative. This is the Takagi diagonalization'%® of the complex
symmetric matrix M.
In general, the my, are not the eigenvalues of M. Rather, the my are the singular values of

the symmetric matrix M. From eq. (D.2.1) it follows that:

QTMTMQ = M2 = diag(m?2,m3,...,m2). (D.2.2)

n

If all of the singular values mj, are non-degenerate, then one can find a solution to eq. (D.2.1)
for Q from eq. (D.2.2). This is no longer true if some of the singular values are degenerate.
For example, if M = (9 %), then the singular value |m| is doubly-degenerate, but eq. (D.2.2)
yields QfQ = 1,49, which does not specify Q. That is, in the degenerate case, the physical
fermion states cannot be determined by the diagonalization of MTM. Instead, one must make
direct use of eq. (D.2.1). Below, we shall present a constructive method for determining € that
is applicable in both the non-degenerate and the degenerate cases.

Eq. (D.2.1) can be rewritten as M = Q*Mp, where the columns of 2 are orthonormal. If
we denote the kth column of Q by vy, then,

Muvy, = myvy,, (D.2.3)

where the my are the singular values and the vectors v; are normalized to have unit norm.
Following Ref. [261], the vy are called the Takagi vectors of the complex symmetric n X n
matrix M. The Takagi vectors corresponding to non—degenerate non—zero [zero| singular values
are unique up to an overall sign [phase]. Any orthogonal [unitary| linear combination of Takagi
vectors corresponding to a set of degenerate non—zero [zero] singular values is also a Takagi
vector corresponding to the same singular value. Using these results, one can determine the
degree of non—uniqueness of the matrix 2. For definiteness, we fix an ordering of the diagonal
elements of Mp.1% If the singular values of M are distinct, then the matrix € is uniquely
determined up to multiplication by a diagonal matrix whose entries are either £1 (i.e., a diagonal
orthogonal matrix). If there are degeneracies corresponding to non—zero singular values, then
within the degenerate subspace, ) is unique up to multiplication on the right by an arbitrary
orthogonal matrix. Finally, in the subspace corresponding to zero singular values, () is unique
up to multiplication on the right by an arbitrary unitary matrix.

For a real symmetric matrix M, the Takagi diagonalization [eq. (D.2.1)] still holds for a
unitary matrix €2, which is easily determined as follows. Any real symmetric matrix M can be

diagonalized by a real orthogonal matrix Z,

Z'MZ = diag(eymy , eama, ..., epmy), (D.2.4)

19510 Ref. [147], eq. (D.2.1) is called the Takagi factorization of a complex symmetric matrix. We choose to refer
to this as Takagi diagonalization to emphasize and contrast this with the more standard diagonalization of normal
matrices by a unitary similarity transformation. In particular, not all compler symmetric matrices are diagonal-
izable by a similarity transformation, whereas complex symmetric matrices are always Takagi-diagonalizable.

106 permuting the order of the singular values is equivalent to permuting the order of the columns of €.
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where the my are real and non-negative and the epm; are the real eigenvalues of M with

corresponding signs e;, = +1.197 Then, the Takagi diagonalization of M is achieved by taking:

Q5 = 63/2Zij , nO sum over 4. (D.2.5)

Proof of the Takagi diagonalization. To prove the existence of the Takagi diagonaliza-
tion of a complex symmetric matrix, it is sufficient to provide an algorithm for constructing the
orthonormal Takagi vectors vy that make up the columns of €2. This is achieved by rewriting
the n x n complex matrix equation Mv = mv* [with m real and non—negative] as a 2n x 2n real

matrix equation [262,263]:

Rewv ReM —ImM Rewv Rewv
My = =m , where m >0.(D.2.6)
Imwv —ImM —ReM Imwv Imwv
Since M = M, the 2n x 2n matrix Mp = (_ﬁs% :{g%) is a real symmetric matrix.!%® In

particular, My is diagonalizable by a real orthogonal similarity transformation, and its eigen-
values are real. Moreover, if m is an eigenvalue of My with eigenvector (Rev, Imw), then —m
is an eigenvalue of My with (orthogonal) eigenvector (—Imwv, Rew). This observation implies
that Mp has an equal number of positive and negative eigenvalues and an even number of zero
eigenvalues.'®? Thus, eq. (D.2.3) has been converted into an ordinary eigenvalue problem for

a real symmetric matrix. Since m > 0, we solve the eigenvalue problem Mpu = mu for the
110

real eigenvectors u = (Rewv, Imwv) corresponding to the non—negative eigenvalues of Mg,
which then immediately yields the complex Takagi vectors, v. It is straightforward to prove
that the total number of linearly independent Takagi vectors is equal to n. Simply note that the
orthogonality of (Rewv;, Imwv;) and (—Imwv;, Rew;) with (Rewvy, Imwy) implies that 'UI'UQ =0.

Thus, we have derived a constructive method for obtaining the Takagi vectors vg. If there
are degeneracies, one can always choose the vy in the degenerate subspace to be orthonormal.
The Takagi vectors then make up the columns of the matrix Q in eq. (D.2.1). A numerical
package for performing the Takagi diagonalization of a complex symmetric matrix has recently
been presented in ref. [264] (see also refs. [261,265] for previous numerical approaches to Takagi

diagonalization).

D.3 Relation between Takagi diagonalization and singular value decomposition

The Takagi diagonalization is a special case of the singular value decomposition. If the complex

matrix M in eq. (D.1.1) is symmetric, M = M7, then the Takagi diagonalization corresponds to

'97In the case of my = 0, we conventionally choose the corresponding ), = +1.

108The 2n x 2n matrix My, is a real representation of the n X n complex matrix M.

1%9Note that (—Imwv, Rew) corresponds to replacing vy in eq. (D.2.3) by ivy,. However, for m < 0 these solutions
are not relevant for Takagi diagonalization (where the my are by definition non—negative). The case of m = 0 is
considered in footnote 110.

1O9For m = 0, the corresponding vectors (Rev, Imv) and (—Imwv, Rewv) are two linearly independent eigen-
vectors of Mp; but these yield only one independent Takagi vector v (since v and iv are linearly dependent).
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Q = L = R. In this case, the right and left singular vectors coincide (v = wy) and are identified
with the Takagi vectors defined in eq. (D.2.3). However as previously noted, the matrix €
cannot be determined from eq. (D.2.2) in cases where there is a degeneracy among the singular
values.!!'! For example, one possible singular value decomposition of the matrix M = (7?1 761)
[with m assumed real and positive] can be obtained by choosing R = (§9) and L = (9}), in
which case LTMR = (7(7} 7?1) = Mp. Of course, this is not a Takagi diagonalization because
L # R. Since R is only defined modulo the multiplication on the right by an arbitrary 2 x 2
unitary matrix O, then at least one singular value decomposition exists that is also a Takagi
diagonalization. For the example under consideration, it is not difficult to deduce the Takagi

diagonalization: QTMQ = Mp, where

Q= % . O, (D.3.1)
and O is any 2 x 2 orthogonal matrix.

Since the Takagi diagonalization is a special case of the singular value decomposition, it
seems plausible that one can prove the former from the latter. This turns out to be correct; for
completeness, we provide the proof below. Our second proof depends on the following lemma:

Lemma: For any symmetric unitary matrix V', there exists a unitary matrix U such that
V=UTU.

Proof of the Lemma: For any n xn unitary matrix V, there exists an hermitian matrix H
such that V = exp (¢H) (this is the polar decomposition of V). If V. = VT then H = H' = H*
(since H is hermitian); therefore H is real symmetric. But, any real symmetric matrix can
be diagonalized by an orthogonal transformation. It follows that V' can also be diagonalized
by an orthogonal transformation. Since the eigenvalues of any unitary matrix are pure phases,
there exists a real orthogonal matrix @ such that QTVQ = diag (el , €2, ... | ¢i%). Thus, the

unitary matrix,
U = diag (ei91/2, e2/2 ew”/z) Qr, (D.3.2)

satisfies V' = UTU and the lemma is proved. Note that U is unique modulo multiplication on
the left by an arbitrary real orthogonal matrix.

Second Proof of the Takagi diagonalization. Starting from the singular value de-
composition of M, there exist unitary matrices L and R such that M = L*MpR', where Mp
is the diagonal matrix of singular values. Since M = MT = R*MpL', we have two differ-
ent singular value decompositions for M. However, as noted below eq. (D.1.6), R is unique

modulo multiplication on the right by an arbitrary [diagonal] unitary matrix, V', within the

11This is in contrast to the singular value decomposition, where R can be determined from eq. (D.1.6) modulo
right multiplication by a [diagonal] unitary matrix in the [non-Jdegenerate subspace and L is then determined by
eq. (D.1.7) modulo multiplication on the right by eq. (D.1.8).

183



[non-|degenerate subspace. Thus, it follows that a [diagonal] unitary matrix V' exists such that
L = RV. Moreover, V = V1. This is manifestly true within the non-degenerate subspace where
V is diagonal. Within the degenerate subspace, Mp is proportional to the identity matrix so
that L*RT = R*LT. Inserting L = RV then yields VT = V. Using the Lemma proved above,
there exists a unitary matrix U such that V = UTU. That is,

L=RUU, (D.3.3)
for some unitary matrix U. Moreover, it is now straightforward to show that
MpU* =U*Mp . (D.3.4)

To see this, note that within the degenerate subspace, eq. (D.3.4) is trivially true since Mp is
proportional to the identity matrix. Within the non-degenerate subspace V is diagonal; hence
we may choose U = UT = V/2, so that eq. (D.3.4) is true since diagonal matrices commute.

Using egs. (D.3.3) and (D.3.4), we can write the singular value decomposition of M as follows
M = L*MpR' = R*U'U*MpR' = (RUT)*MpU*R" = Q*MpQF, (D.3.5)

where Q = RUT is a unitary matrix. Thus the existence of the Takagi diagonalization of an
arbitrary complex symmetric matrix [eq. (D.2.1)] is once again proved.

In the diagonalization of the two-component fermion mass matrix, M, the eigenvalues
of MTM typically fall into two classes—non-degenerate eigenvalues corresponding to neutral
fermion mass eigenstates and degenerate pairs corresponding to charged (Dirac) mass eigen-
states. In this case, the sector of the neutral fermions corresponds to a non-degenerate subspace
of the space of fermion fields. Hence, in order to identify the neutral fermion mass eigenstates, it
is sufficient to diagonalize MTM with a unitary matrix R [as in eq. (D.1.6)], and then adjust the
overall phase of each column of R so that the resulting matrix § satisfies QT MQ = Mp, where
Mp is a diagonal matrix of the non-negative fermion masses. This last result is a consequence
of egs. (D.3.3)~(D.3.5), where Q = RVY/? and V is a diagonal matrix of phases.

D.4 Reduction of a complex antisymmetric matrix to real normal form

In the case of two-component fermions that transform under a pseudo-real representation of a
compact Lie group [cf. eq. (3.2.35)], the corresponding mass matrix is in general complex and
antisymmetric. In this case, one needs the antisymmetric analogue of the Takagi diagonalization
of a complex symmetric matrix [147].

Theorem: For any complex [or real] antisymmetric n x n matrix M, there exists a unitary
[or real orthogonal] matrix U such that:

T ] 0 m 0 mo 0 my
U'MU = N = diag , e , Op—gp p, (D41

—mq 0 —my 0 —my 0



where N is written in block diagonal form with 2 x 2 matrices appearing along the diagonal,
followed by an (n — 2p) x (n — 2p) block of zeros (denoted by O,,_2,), and the m; are real and
positive. N is called the real normal form of an antisymmetric matrix [149,266,267].

Proof: A number of proofs can be found in the literature [148, 149, 266-268]. Here we
provide a proof inspired by ref. [266]. Following Appendix D.1, we first consider the eigenvalue
equation for MTM:

MMy, = miuy, my, >0, and MYMuy, =0, (D.4.2)

where we have distinguished the eigenvectors corresponding to positive eigenvalues and zero
eigenvalues, respectively. The quantities my are the positive singular values of M. Noting that
uLMTMuk = (Muy, | Muy) = 0, it follows that

Muy =0, (D.4.3)

so that the up are the eigenvectors corresponding to the zero eigenvalues of M. For each

eigenvector of MM with my, # 0, we define a new vector
L v (D.4.4)
wy = — M}, . 4.
L, k
It follows that mivk = MM, = mkMTw;;, which yields MTwZ = myvi. Comparing with

eq. (D.1.4), we identify vy and wy as the right and left singular vectors, respectively, corre-

sponding to the non-zero singular values of M. For any antisymmetric matrix, MT = —M*.
Hence,
Muy, = mywy, Muwy, = —myvy, (D.4.5)
and
M Muwy, = —m M v} = mp M* v}, = miwy, my > 0. (D.4.6)

That is, the wy, are also eigenvectors of MTM.
The key observation is that for fixed k the vectors vy and wy are orthogonal, since eq. (D.4.5)

implies that:

x 1 1
(wk\vk> = (vk]wk> = ——2(ka\ka> = ——2<wk’MTM’Uk> = — (wk\vk> N (D47)
mj, i,

which yields (wg|vg) = 0. Thus, if all the my are distinct, it follows that m% is a doubly
degenerate eigenvalue of MM, with corresponding linearly independent eigenvectors vy, and
wg, where k = 1,2,...,p (and p < %n) The remaining zero eigenvalues are (n — 2p)-fold
degenerate, with corresponding eigenvectors uy (for k =1,2,...,n — 2p). If some of the my, are
degenerate, these conclusions still apply. For example, suppose that m; = my, for j # k, which

means that m% is at least a three-fold degenerate eigenvalue of MTM. Then, there must exist
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an eigenvector v; that is orthogonal to vy, and wy, such that M M v = mivj. We now construct
w; = M*v;f/mk according to eq. (D.4.4). According to eq. (D.4.7), w; is orthogonal to v;. But,
we still must show that w; is also orthogonal to v and wy. But this is straightforward:
L1 L,
(wjlwe) = (wilw;)” = —5 (M| Mvj) = —5 (k| M Mv;) = (velvj) =0, (D.4.8)
k k

* 1 1
(wjlvg) = (|w;)” = —— (Mwg|Mv;) = ——2(wk|MTMvj> = — (wglv;) =0, (D.4.9)
my, my,

where we have used the assumed orthogonality of v; with vy, and wy, respectively. If follows that
v;, wj, v and wy, are linearly independent eigenvectors corresponding to a four-fold degenerate
eigenvalue m% of MTM. Additional degeneracies are treated in the same way.

Thus, the number of non-zero eigenvalues of MM must be an even number, denoted by
2p above. Moreover, one can always choose the complete set of eigenvectors {uy , vg, wy} of
MM to be orthonormal. These orthonormal vectors can be used to construct a unitary matrix

U with matrix elements:

Ur,ok—1 = (wi)e, Ur,2k = (Vk)es k=1,2,....,p,
Ut kt2p = (ur)e, k=1,2,... ,n—2p, (D.4.10)
for ¢ =1,2,... ,n, where e.g., (vg), is the fth component of the vector v with respect to the

standard orthonormal basis. The orthonormality of {uy, vg, wy} implies that (UTU)p = dp
as required. Eqgs. (D.4.3) and (D.4.5) are thus equivalent to the matrix equation MU = U*N,
which immediately yields eq. (D.4.1), and the theorem is proven. If M is a real antisymmetric
matrix, then all the eigenvectors of MM can be chosen to be real, in which case U is a real
orthogonal matrix.

Finally, we address the non-uniqueness of the matrix U. For definiteness, we fix an ordering
of the 2 x 2 blocks containing the my in the matrix N. In the subspace corresponding to a
non-zero singular value of degeneracy d, U is unique up to multiplication on the right by a

2d X 2d unitary matrix S that satisfies:

STJS =17, (D.4.11)
where the 2d x 2d matrix .J, defined by
0 1 0 1 0 1
J = diag , sy , (D.4.12)
-1 0 -1 0 -1 0

is a block diagonal matrix with d blocks of 2 x 2 matrices. A unitary matrix S that satisfies
eq. (D.4.11) is an element of the unitary symplectic group, Sp(d). If there are no degeneracies

among the my, then d = 1. Identifying Sp(1)=SU(2), it follows that within the subspace
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corresponding to a non-degenerate singular value, U is unique up to multiplication on the right
by an arbitrary SU(2) matrix. Finally, in the subspace corresponding to the zero eigenvalues

of M, U is unique up to multiplication on the right by an arbitrary unitary matrix.

Appendix E: Lie group theoretical techniques for gauge theories
E.1 Basic facts about Lie groups, Lie algebras and their representations

Consider a compact connected Lie Group G [269]. The most general form for G is a direct
product of compact simple groups and U(1) groups. If no U(1) factors are present, then G is
semisimple. For any U € G,

U = exp(—10T?), (E.1.1)

where the T'® are called the generators of GG, and the 6 are real numbers that parameterize the
elements of G. The corresponding real Lie algebra g consists of arbitrary real linear combinations

of the generators, #*T'*. The Lie group generators T'* satisfy the commutation relations:
[T% T = ifoT°, (E.1.2)

where the real structure constants f% define the compact Lie algebra. The generator indices
run over a, b, ¢ = 1,2,...,dg, where dg is the dimension of the Lie algebra. For compact
Lie algebras, the Killing form ¢ = Tr(TT?) is positive definite, so one can always choose a
basis for the Lie algebra in which ¢® o % (where the proportionality constant is a positive
real number). With respect to this new basis, the structure constants fo¢ = g2 fcll’c are totally
antisymmetric with respect to the interchange of the indices a, b and ¢. Henceforth, we shall
always assume that such a preferred basis of generators has been chosen.

The elements of the compact Lie group G act on a multiplet of fields that transform under
some dp-dimensional representation R of G. The group elements U € G are represented by
dr x dp unitary matrices, Dr(U) = exp(—i#*T§), where the Ty are dg X dp hermitian matrices
that satisfy eq. (E.1.2) and thus provide a representation of the Lie group generators. For any
representation R of a semisimple group, Tr T = 0 for all a. A representation R’ is unitarily
equivalent to R if there exists a fixed unitary matrix S such that D/ (U) = S71Dg(U)S for all
U € G. Similarly, the corresponding generators satisfy T'%, = S _1TES foralla=1,2,...,dg.

For compact semisimple Lie groups, two representations are noteworthy. If G is one of
the classical groups, SU(NV) [for N > 2], SO(N) [for N > 3] or Sp(N/2) [the latter is defined
by egs. (D.4.11) and (D.4.12) for even N > 2], then the N x N matrices that define these
groups comprise the fundamental (or defining) representation F, with dp = N. For example,
the fundamental representation of SU(N) consists of N x N unitary matrices with determinant

equal to one, and the corresponding generators comprise a suitably chosen basis for the N x N
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traceless hermitian matrices. Every Lie group G also possesses an adjoint representation A, with

ds = dg. The matrix elements of the generators in the adjoint representation are given by'!?

(T2)be = —jfabe (E.1.3)

Given the unitary representation matrices Dg(U) of the representation R of G, the ma-
trices [Dr(U)|* constitute the conjugate representation R*. Equivalently, if the T comprise a
representation of the Lie algebra g, then the —(T8)* = —(T&)" comprise a representation R* of
g of the same dimension dgr. If R and R* are unitarily equivalent representations, then we say
that the representation R is self-conjugate. Otherwise, we say that the representation R is com-
plex, or “strictly complex” in the language of ref. [270]. However, the representation matrices
Dpr(U) of a self-conjugate representation can also be complex. We can then define two classes
of self-conjugate representations. If R and R* are unitarily equivalent to a representation R’
that satisfies the reality property [Dg/ (U)|* = [Dgr/(U)] for all U € G (equivalently, the matrices
iTg, are real for all a), then R is said to be real, or “strictly real” in the language of ref. [270].
If R and R* are unitarily equivalent representations, but neither is unitarily equivalent to a
representation that satisfies the reality property above, then R is said to be pseudo-real.

Henceforth, we drop the adjective “strictly” and simply refer to real, pseudo-real and com-
plex representations. Self-conjugate representations are either real or pseudo-real. An important
theorem states that for self-conjugate representations, there exists a constant unitary matrix W
such that [270]

[Dr(U)* = WDR(U)W ™!, or equivalently, (iTg)*=W(GTp)W™ !, (E.1.4)

where
WW*=1, wTh=w, for real representations, (E.1.5)
WW* = -1, Wl =—-w, for pseudo-real representations, (E.1.6)

and 1 is the dg x dg identity matrix. Taking the determinant of eq. (E.1.6), and using the fact
that W is unitary (and hence invertible), it follows that 1 = (—1)?%. Therefore, a pseudo-real
representation must be even-dimensional.

If we redefine the basis for the Lie group generators by Tf — V_lTI% V', where V is unitary,
then W — VTWV. We can make use of this change of basis to transform W to a canonical
form. Since W is unitary, its singular values (i.e. the positive square roots of the eigenvalues of

WTW) are all equal to 1. Hence, in the two cases corresponding to W T = W, respectively,

12Gince the £ are real, the ¢T'¢ are real antisymmetric matrices. The heights of the adjoint labels a, b and ¢
are not significant, as they can be lowered by the inverse Killing form given by g.p o d4p in the preferred basis.
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egs. (D.2.1) and (D.4.1) yield the following canonical forms (for an appropriately chosen V),

wW=1, for a real representation R, with €, = +1, (E.1.7)
W =J, for a pseudo-real representation R, with ¢, = —1, (E.1.8)
where J = diag{(_? (1)) , (_(1) (1)) S, ( _(1) (1))} is a dr x dr matrix (and dp is even).

There are many examples of complex, real and pseudo-real representations in mathematical
physics. For example, the fundamental representation of SU(N) is complex for N > 3. The
adjoint representation of any compact Lie group is real [cf. footnote 112]. The simplest example
of a pseudo-real representation is the two-dimensional representation of SU(2),!'? where T® =
%T“ (and the 7% are the usual Pauli matrices). More generally, the generators of a pseudo-real
representation must satisfy

(iTR) = C~1(iTa)C, (E.1.9)

for some fixed unitary antisymmetric matrix C' [previously denoted by W~ in egs. (E.1.4) and
(E.1.6)]. For the doublet representation of SU(2) just given, C% = (i72)® = ¢% is the familiar
SU(2)-invariant tensor.

Finally, we note that for U(1), all irreducible representations are one-dimensional. The
structure constants vanish and any d-dimensional representation of the U(1)-generator is given
by the d x d identity matrix multiplied by the corresponding U(1)-charge. For a Lie group that is
a direct product of a semisimple group and U(1) groups, Tr T'§ is non-zero when a corresponds
to one of the U(1)-generators, unless the sum of the corresponding U(1)-charges of the states of

the representation R vanishes.

E.2 The quadratic and cubic index and Casimir operator

In this section, we define the index and Casimir operator of a representation of a compact

semisimple Lie algebra g. The index I5(R) of the representation R is defined by [269,271-273]
Te(TRTE) = I(R)6™, (E.2.1)

where I5(R) is a positive real number that depends on R. Once I2(R) is defined for one represen-
tation, its value is uniquely fixed for any other representation. In the case of a simple compact
Lie algebra g, it is traditional to normalize the generators of the fundamental (or defining)
representation F according to''4

Tr(TgTp) = 167 (E.2.2)

H3No unitary matrix W exists such that the Wir®W ! are real for all @ = 1,2,3. Thus, the two-dimensional
representation of SU(2) is not real. However, (it%)* = (i72)(it®)(ir?)"" for @ = 1,2, 3, which proves that the
two-dimensional representation of SU(2) is pseudo-real.

11n the literature, the index is often defined as the ratio I>(R)/I2(F), where I2(F) is fixed by some convention.
This has the advantage that the index of R is independent of the normalization convention of the generators. In
this Appendix, we will simply refer to I2(R) as the index.
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If the representation R is reducible, it can be decomposed into the direct sum of irreducible

representations, R = ), Ry. In this case, the index of R is given by
L(R) =) L(Ry). (E.2.3)
k
The index of a tensor product of two representations R; and Rj is given by [271]
I)(R1 ® Ry) = dp, I2(R2) + dr,I2(R1) . (E.2.4)
Finally, we note that if R* is the complex conjugate of the representation R, then
I,(R") = I2(R). (E.2.5)

A Casimir operator of a Lie algebra g is an operator that commutes with all the generators
T*. If the representation of the T'® is irreducible, then Schur’s lemma implies that the Casimir
operator is a multiple of the identity. The proportionality constant depends on the representation

R. The quadratic Casimir operator of an irreducible representation R is given by
(TR)i = (Tg)" (T = Créi (E.2.6)

where the sum over the repeated indices are implicit and 7, 7, k = 1,2...dgr. A simple compu-

tation then yields the eigenvalue of the quadratic Casimir operator, Cg,

Oy = UG (£.2.7)
dr
For a simple Lie algebra (where the adjoint representation is irreducible), it immediately follows
that C4 = I3(A). For a reducible representation, T2 is a block diagonal matrix consisting of
dg, x dg, blocks given by Cg, 1 for each irreducible component R}, of R.

The example of the simple Lie algebra su(N) is well known. The dimension of this Lie
algebra (equal to the number of generators) is given by N?2—1. As previously noted, dr = N and
I(F) = 1. It then follows that Cp = (N?—1)/(2N). One can also check that C4 = I(A) = N.

The Lie algebras su(N) [N > 3] are the only simple Lie algebra that possesses a cubic

Casimir operator. First, we define the symmetrized trace of three generators [273,274]:
D = Str (T*T*T®) = L Te(T*T*T* + perm.), (E.2.8)

where “perm.” indicates five other terms obtained by permuting the indices a, b and ¢ in all

possible ways. Due to the properties of the trace, it follows that for a given representation R,
D(R) = L Ty [{T“,T};}Tﬁ] . (E.2.9)
For the N-dimensional defining representation of su(N), it is conventional to define

dabe = 2Ty [{T“, T}}Tlﬁ} . (E.2.10)
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One important property of the d* is [275,276]:

2 1\(N2
gabe gave _ (N %N 4) (E.2.11)

In general, D“bC(R) is proportional to d®*. In particular, the cubic index I3(R) of a representa-
tion R is defined such that [273,275,277],

D™ (R) = I3(R)d™. (E.2.12)

Having fixed I3(F) = i, the cubic index is uniquely determined for all representations of
su(N) [275,277-279]. As in the case of the quadratic index Iy(R), we have:

L(R) = Is(Ry), (E.2.13)
k

for a reducible representation R = )", Rj. The cubic index of a tensor product of two represen-

tations Ry and Ry is given by [277]
[3(R1 & Rg) = defg(Rg) + dR213(R1) . (E.2.14)

If the generators of the representation R are T, then the generators of the complex conjugate

representation R* are —TET. It then follows that
I5(R*) = —I3(R). (E.2.15)

In particular, the cubic index of a self-conjugate representation vanishes. Note that the converse
is not true. That is, it is possible for the cubic index of a complex representation of su(N) to
vanish in special circumstances [279)].

One can show that among the simple Lie groups, D% = 0 except for the case of SU(N),
when N > 3 [275]. For any non-semisimple Lie group (i.e., a Lie group that is a direct product
of simple Lie groups and at least one U(1) factor), D¢ is generally non-vanishing. For example,
suppose that the T constitute an irreducible representation of the generators of G xU(1), where
G is a semisimple Lie group. Then the U(1) generator (which we denote by setting a = Q) is
Tg = ¢1, where ¢ is the corresponding U(1)-charge. It then follows that D?%® = ¢Iy(R)§®.
More generally, for a compact non-semisimple Lie group, D¢ can be non-zero when either one
or three of its indices corresponds to a U(1) generator.

In the computation of the anomaly [cf. Section 6.26], the quantity Tr(TﬁTETI%) appears.
We can evaluate this trace using eqs. (E.1.2) and (E.2.12):

To(TRTRTE) = I3(R)d™ + %IQ(R) fabe, (E.2.16)
The cubic Casimir operator of an irreducible representation R is given by
(T3 = d™(TRTETE) = C3rdéi . (E.2.17)
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Using egs. (E.2.11) and (E.2.12), we obtain a relation between the eigenvalue of the cubic Casimir
operator, Csg and the cubic index [275]:

(N? - D(N2 — 4)I5(R)

C3g = Nin

(E.2.18)

Again, we provide two examples. For the fundamental representation of su(N), I3(F) = %
and C3p = (N? —1)(N? — 4)/(4N?). For the adjoint representation, I3(A) = C34 = 0, since
the adjoint representation is self-conjugate. A general formula for the eigenvalue of the cubic
Casimir operator in an arbitrary su(/V) representation [or equivalently the cubic index I3(R),
which is related to Cs3g by eq. (E.2.18)] can be found in refs. [275,277-279].

Appendix F: Path integral treatment of two-component fermion
propagators

In Section 4.2 we derived the two-component fermion propagators in momentum space, which
are the Fourier transforms of the free-field expectation values of time-ordered products of two

two-component fermion fields, for example,
O\ T6a@6}) 0y = [ ' OITE@EL W10, w=o—y, (P

where the (translationally invariant) expectation values such as (0| T fa(az)gg(y) |0) are functions
of the coordinate difference w = x — y. In Section 4.2, the Fourier transforms of these quantities
were computed by using the free-field expansion obtained from the canonical quantization pro-
cedure, and then evaluating the resulting spin sums. In this Appendix, we provide a derivation
of the same result by employing path integral techniques. We follow the analysis given in Ap-
pendix C of ref. [280] (with a few minor changes in notation). For a similar textbook treatment
of two-component fermion propagators see for example ref. [220]. For the analogous treatment
of the four-component fermion propagator, see for example ref. [114].

We first consider the action for a single massive neutral two-component fermion &, (x),

coupled to an anticommuting two-component fermionic source term J,(z) [cf. eq. (3.1.1)]:

S = / da (L + Je+ et gt = / dix {% [iﬁﬁ“aﬂé +igord,et — m(ee + 5*5*)] + e+ ¢t JT} :

(F.2)

where we have split the kinetic energy term symmetrically into two terms. The generating
functional is given by

wiJ, J] = N/D{D{T eiSIEEn LT (F.3)

where N is a normalization factor chosen such that W[0,0] = 1 and DEDET is the integration

measure. It is convenient to Fourier transform the fields ¢(x), £7(z) and sources J(x), Ji(z) in
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eq. (F.3), and rewrite the action in terms of the corresponding Fourier coefficients E (p), ET (p), J (p)
and J1 (p):

d4p . -~ d4p . ~
= —ipw T(2) = [ —¢Pog! F.4
ole) = [ G ). &)= [ g e, (F.4)
L(x) = P (p), )= | —=€eP*T!(p). F.
Tow) = [ e R, e = [ e le) (F.5)
Furthermore, we introduce the integral representation of the delta function:
@) (p_ o D ip-(@-a)
0N —2a") = (277)46 . (F.6)
In order to rewrite eq. (F.3) in a more convenient matrix form, we introduce the following
definitions:
C) Jo(p) poy  —m”
Q(p) = , X(p) = ;M) =

&a(p) Tt (=p) -md*,  po’
(F.7)
Note that M is an hermitian matrix. We can then rewrite the action [eq. (F.2)] in the following

matrix form [after using eqgs. (2.58) and (2.59) to write the product of the spinor field and the

source in a symmetrical fashion]:

g1 / d'p (QTMQ +ofx + XTQ) (F.8)
2 ) (2n)* ) '
The linear term in the field 2 can be removed by a field redefinition
Q=0+ MX. (F.9)
In terms of €/, the action now takes the convenient form:
1 d*p
§S=- [ &P (Q’T o~ XtMmlx), F.10
2 / (2m)4 M M ) ( )
where the inverse of the matrix M is given by
.58 §a
1 po mo-g
-1 _

m P PO
The Jacobian of the field transformation given in eq. (F.9) is unity. Hence, one can insert

the new action, eq. (F.10), in the generating functional, eq. (F.3) to obtain (after dropping the

primes on the two-component fermion fields):

WlJ, J1 :N/DngTeXp{%/ (3;1;4 <QTMQ—XTM‘1X)} (F.12)
_N UDngT exp{%QTMQ}} exp{—%/ (3;7;4 XTM_lX} (F.13)
:exp{—%/ (;1;?;4 XTM—lX} , (F.14)
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where we have defined the normalization constant N such that W[0,0] = 1. Inserting the explicit

forms for X and M into eq. (F.14), we obtain

~ ~ 1 dp [~ ipo ingdB -
t_ 1 o aﬁ T8/ _ T D:

p? — p -
+J (—p)mjﬁ(p)+Ja( )HJ (~p) | p.  (F.15)

Using eq. (2.60), it is convenient to rewrite the first two terms of the integrand on the right-hand
side of eq. (F.15) in two different ways:

4 . o ~ ip-aP -
%/(d_? [Ja(—p) v aﬁ T (—p) + T )22 ] (p)}

2m)4 p2 — 2 —m2 8
d4p -~ ip-aaB —~ d4p ~t ip-ﬁdﬁ N
:/(271)4J (—p)pQ_m2JT5(_p):/(2ﬂ)4 Jd(p)p2_m2‘]5(p)= (F.16)

where we have changed integration variables from p — —p in relating the two terms above. The

vacuum expectation value of the time-ordered product of two spinor fields in configuration space
is obtained by taking two functional derivatives of the generating functional with respect to the
sources J and JT and then setting J = JT = 0 at the end of the computation (e.g., see ref. [114]).

For example,

<_175Ja(a:1)> WJ, J'] <_175JT5(3:2)>
= (0T €a(@1)€} (22)[0), (F.17)

where the functional derivatives act in the indicated direction (which ensures that no extra

=N [ DeDE! o€l (an)enp ( / d4x.z>

J=J1=0

minus signs are generated due to the anticommutativity properties of the sources and their
functional derivatives). To obtain the two-point functions involving the product of two spinor
fields with different combinations of dotted and undotted spinors, it may be more convenient
to write J¢ = £J and/or £1JT = Ji¢t in eq. (F.3). One can then easily verify the following

expressions for the four possible two-point functions:

(0T €a(21)€] (22)|0) = <—zmi(xl)> WiJ, J7] <—25ﬂﬁi(w2)) i (F.18)
(OITE" (21)€” (22)[0) = (—z ; J§$1)> 7.1 (—z 5 Jf(m)) e
(OTEM (21)€] (42)[0) = ( i J§x1)> W JT <—zwﬁi@2)> L (F.20)
(01T (x1)€” (2)[0) = (—z 5 J§x1)> WiJ,J7 <—z 5 Jf(@)) L (F.21)




As an example, we provide details for the evaluation of eq. (F.18). Using egs. (F.15) and
(F.16), we obtain:

. —
r dp - DO 5
TE, 1 = (- T (—p) ) ———. F.22
O ()e}02)0) = 570 ([ o PP TP on)) s (P22
The chain rule for functional differentiation and the inverse Fourier transforms of eq. (F.5) yield:
g / 4 5jﬁ(—P1) g / 4, —ip1- g
= [dp — = | d'ppe™? T ——— F.23
5Ja(x1) ' 5J04(x1) (5JB(—p1) ! 5Ja(—p1) ( )
JACTe .
.L = /d4p2 0J ( p2) = 5 = /d4p2 61102.%2,\.#. (F24)
0I5 (x2) 0.J1P (x2) 0.7 1%(=p2) 6.J 19 (=pa)
Applying egs. (F.23) and (F.24) to eq. (F.22), we obtain:
4 ' ip-o_
+ o d P _ip (z1—=z2) af
0T en)el @)l0) = [ 2 S (F.25)

which is equivalent to eq. (4.2.1) of Section 4.2. With the same methods applied to eqs. (F.19)-
(F.21), one can easily reproduce the results of eqs. (4.2.2)—(4.2.4).
We next consider the action for a single massive Dirac two-component fermion. We shall

work in a basis of fields where the action, including external anticommuting sources, is given by
She. xTomnt, Iy, L gy, Tl = /d4ﬂc [ZXTE“%X +in'e"d,n — m(xn + x'n')
+Jyx + XTJJ< +Jyn + nTJ; . (F.26)

Following the techniques employed above, we introduce Fourier coefficients for all the fields and

sources and define

~

ﬁTd(_p) Jna(p)
Qe(p) = : Xe(p) = - (F.27)

Ra(p) K (=p)
The action functional, eq. (F.26), can then rewritten in matrix form as before (but with no

overall factor of 1/2):
s/

where M is again given by eq. (F.7). The remaining calculation proceeds as before with

4
gﬂ@ (QZMQC L Oix, + XCTQC) , (F.28)

few modifications, and yields the Dirac two-component fermion free-field propagators given
in egs. (4.2.7)—(4.2.10).

Appendix G: Correspondence to four-component spinor notation
G.1 Dirac gamma matrices and four-component spinors

In four-dimensional Minkowski space, four-component spinor notation employs four-component

Dirac spinor fields and the 4 x 4 Dirac gamma matrices, whose defining property is:

(7", 4"} = 2g"1 (G.1.1)
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where 1 is the 4 x 4 identity matrix.
The correspondence between the two-component spinor notation and the four-component

Dirac spinor notation is most easily exhibited in the basis in which 5 is diagonal (this is called

the chiral representation'!®). In 2x2 blocks, the gamma matrices are given by:!16
0 o —57 0
,Yu = af , Y5 = Z‘,YO,Yl,.YQ,-Y?’ = @ , (G12)
s 0 0 5 F
and the 4 x 4 identity matrix that appears in eq. (G.1.1) can be written as:
5o’ 0
1= . . (G.1.3)
@,
0 ¢ F
In addition, we identify the generators of the Lorentz group in the (%, 0)®(0, %) representation: 7
i ot B 0
IS = Z[’y”,’y"] = - , (G.1.4)
0 C

where Y*” satisfies the duality relation,
V2 = Lie TS, . (G.1.5)

A four-component Dirac spinor field, ¥(z), is made up of two mass-degenerate two-component
spinor fields, y,(x) and n,(x), of opposite U(1)-charge as follows:
Xa(2)
U(z) = . (G.1.6)
' (x)

We next introduce the chiral projections operators,

) 5”0 . 0 0
Pp=351—n) = , and Pr=5147s) = , ) (G.1.7)
0 0 0 0%

and the (left and right-handed) Weyl spinor fields, W (x) and Wp(x), which are defined by:!!8

Xa(T) 0
Up(x)=PLV(z) = , Ugr(z) = Pr¥(z) = . (G.1.8)

0 n'%(x)

H5For a review of other representations of the Dirac gamma matrices and their properties, see e.g. refs. [281,282].

HSEmploying the conventions for the sigma matrices described in Appendix A, it follows that the definition of
~" is independent of the choice of metric signature, whereas v, = g..7y"” changes sign under a reversal of the
metric signature. In the metric signature convention with goo = +1, our gamma matrix conventions follow those
of ref. [114], whereas in the convention with goo = —1, our gamma matrix conventions follow those of ref. [65].

170 most textbooks, ¥4 is called o*”. Here, we use the former symbol so that there is no confusion with
definition of o ,” given in eq. (2.69).

18Ty the earlier literature, a different set of conventions for the sigma matrices in which the roles of ¢ and &
were reversed [e.g, as in egs. (A.11) and (A.12)] resulted in 7, = diag(l2x2, —l2x2) in the chiral representation,
which differs from our convention by an overall sign [cf. eq. (G.1.2)]. As a result, in this latter convention, Pr,
[Pr] projects out the raised dotted [lowered undotted] two-component spinor field. This latter convention is still
prevalent in the literature of the spinor helicity method (see footnote 156 in Appendix 1.2).
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Equivalently, one can define the Weyl spinors ¥ and Wi as the four-component spinor eigen-
states of 75 with corresponding eigenvalues —1 and +1, respectively (i.e., 7% r = FVL R).
The Dirac conjugate field U(z) and the charge conjugate field ¥¢ (x) are defined by:

U(z) = uig = <77a(x), XL(QL’)) , (G.1.9)
Vo (a) = CT T (z) = el) , (G.1.10)
x'%(x)

where the Dirac conjugation matrix A and the charge conjugation matrix C' satisfy [283-285]:

Ay A7t =4, Cly,C =—v,. (G.1.11)
It is convenient to introduce a notation for left and right-handed charge-conjugated fields (which
are also Weyl spinor fields) following the conventions of refs. [67,286],!1
=T
U (z) = PLYC (2) = CUg(z) = [Vh(2)]°, (G.1.12)
=T
U5 (z) = PRI (z) = Cp(2) = [V, (2)]° . (G.1.13)

To fix the properties of A and C, it is conventional to impose two additional conditions:
U= AT (WO = . (G.1.14)

The first of these conditions together with eq. (G.1.9) is equivalent to the statement that U
is hermitian. The second condition corresponds to the statement that the (discrete) charge
conjugation transformation applied twice is equal to the identity operator. Using egs. (G.1.11)
and (G.1.14) and the defining property of the gamma matrices [eq. (G.1.1)], one can show

(independently of the gamma matrix representation) that the matrices A and C' must satisfy:

AT =A, cT=-cC, (AC)™! = (A0)*. (G.1.15)
Following ref. [135], it is convenient to introduce a matrix D such that
D=CAT, D™'y,D = -, (G.1.16)
and D*D = DD* = 1. The charge-conjugated four-component spinor is then given by:

v (z) = DU*(z). (G.1.17)
A four-component Majorana spinor field, W/ (x), is defined by imposing the constraint W (z) =

U(z) on a four-component Dirac spinor, which sets n = x. That is, the Majorana condition is

o) = D) = | ) (G.1.18)

x'%(x)

19T he reader is warned that the opposite convention is often employed in the literature (e.g., see ref. [287]) in
which ¥¢ is a right-handed field and ¥§ is a left-handed field.
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For a review of the Majorana field and its properties, see e.g. refs. [143,144].

For completeness, we also introduce a matrix B that satisfies [283-285,288]:
= -C 1y, By,B™ ! = 7; . (G.1.19)

The matrix B arises in the study of time reversal invariance of the Dirac equation. In the chiral

representation, A, B, C and D are explicitly given by

0 &% €p 0
A= , C= ] (G.1.20)
5.5 0 0 b
s 0 0 e
B = ; D={ . (G.1.21)
0 —€p5 B0

Note the numerical equalities, A = 7°, B = v'43, C = i7°y? and D = —iy?. However these iden-
tifications do not respect either the structure of the undotted and dotted spinor indices specified
in egs. (G.1.20) and (G.1.21), or the four-component spinor index structure introduced below
[cf. eqs. (G.1.46) and (G.1.47)].12° In translating between two-component and four-component
spinor notation, eqs. (G.1.20) and (G.1.21) should always be used. In practical four-component
spinor calculations, there is often no harm in employing the numerical values for A, B, C' and D.

Using egs. (G.1.11)—(G.1.19), the following results are easily derived:

1 for =1, ~*, v* pIad
ATA™ = pArt, o T S (G.1.22)
-1, for I' =~y , X, ,
- +1,  forI'=1, 5, 9",
Brp~' =TT, 0y :{ for T' = A# ’ v (G.1.23)
-1, or I =" vy, s Vs
. +1,  forI'=1, 5, 775,
C'rC =STT, ¢ = { e (G.1.24)
-1, for I' = ~H XKV | XV,
1 forI'=1,~+* v
D'TD = 5T, gD = o SURCEESE (G.1.25)
r r -1, for I' = # | 5, .

The Lorentz transformation properties of the four-component spinor field can be determined
from those of the two-component spinor fields given in Section 2. The 4 x 4 representation

matrices of the Lorentz group in the (%, 0) @ (0, %) representation are given by

M 0 7 1
M = — exp <——9W2W> o Lysq — 16,5 (G.1.26)
0 (M 4

120When treated as ordinary 4 x 4 matrices A, B, C' and D are unitary. But when written in 2 x 2 block
form [noting that 5d5 = (6%5)" and €*? = (¢*#)*, as indicated below eqgs. (2.19) and (2.23)], the products AAT,
BBT, CC" and DD are not covariant with respect to the dotted and undotted two-component spinor indices.
Similarly, these matrix products are not covariant with respect to the four-component spinor indices. In practice,
only covariant combinations of A, B, C, D and the four-component spinor fields arise in typical calculations.

198



where the infinitesimal forms of M and (M ~!)T are given in egs. (2.99) and (2.100). Two useful
identities that follow from eqs. (G.1.22), (G.1.24) and (G.1.26) are:'?!

AMA™ = (M HT, (G.1.27)
CTIMe = (YT, (G.1.28)

The four-component Dirac or Majorana spinor, ¥, , is assigned a lowered spinor index a,
and is defined in terms of two-component spinors by egs. (G.1.6) or (G.1.18), respectively. Four-
component spinor indices, which will be chosen in general from the beginning of the lower case
Roman alphabet, a, b, ¢, . .., can assume integer values 1,2, 3,4. Under a Lorentz transformation,
¥, transforms as

T, — M, 0. (G.1.29)
In analogy with the conventions for two-component spinor indices, we sum implicitly over a pair
of repeated indices consisting of a raised and a lowered spinor index. The transformation law for

the Dirac conjugate spinor (often called the Dirac adjoint spinor), ¥ = UTA, is obtained from
eq. (G.1.29) after employing AT = A and eq. (G.1.27),

T T (M. (G.1.30)
In particular, VW = ¥ W, is a Lorentz scalar, which justifies the assignment of a raised spinor

index for the Dirac conjugate spinor ¥ “.

It is convenient to introduce barred four-component spinor indices [289] in the transforma-

tion laws of the hermitian-conjugated four-component spinors, %
AR ARG (G.1.31)
Tl (i), ot (G.1.32)

where there is an implicit sum over the repeated lowered and raised barred spinor indices, and
Ul = (p,)f, yte = (ot (G.1.33)

The spinor index structure of the Dirac conjugation matrix A is then fixed by noting that the
Dirac conjugate spinor, vl = \I/EA‘_“’, has a raised unbarred spinor index, whereas the hermitian-
conjugated spinor has a lowered barred spinor index.

The charge conjugation matrix can be used to raise and lower four-component spinor in-
dices [289], which we shall employ in defining the spinors ¥®, e W, and @g 123

\Ija = ab\I’by U = (C_l)abqu, (G134)
\Pg = CEB\IITba \PTZ_I — (C—l)ﬁ,bqlg’ (G135)

121Note that eq. (G.1.28) is a direct consequence of the identities in two-component spinor notation given in
egs. (2.101) and (2.102).

220f course, eqs. (G.1.29)—(G.1.32) can also be derived directly from the corresponding two-component spinor
transformation laws of Section 2.

12311 contrast to the epsilon symbols of the two-component spinor formalism, here we prefer to explicitly exhibit
the inverse symbols in (C™)** and (C™1)% [cf. footnote 7).
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where

Cp = (C)*, (C™Hab = [(c~1)eb]* (G.1.36)

Egs. (G.1.34) and (G.1.35) also apply to U“, ¥, and their hermitian conjugates. In particular,
one can identify the Dirac conjugate spinor with a lowered spinor index (¥,) as the charge-
conjugated spinor, U¢ = CU T, and the Dirac spinor with a raised spinor index () as the

Dirac conjugate of the charge-conjugated spinor, ¥C = —¢T ¢! That is, 124

O =T, =Cp0°, O =g = (1w, . (G.1.37)

The rules for raising and lowering spinor indices are consistent with the Lorentz transformation

properties of eqs. (G.1.29)—(G.1.32), as a consequence of eq. (G.1.28). In particular, the condition
for a self-conjugate four-component (Majorana) spinor, ¥, = ¢ = ¥, is Lorentz covariant.

Using egs. (G.1.15), (G.1.34), (G.1.35), and the definition of the Dirac conjugate spinor, it

then follows that:

U, = (A1) ;0T T =gl At (G.1.38)

U =Tb(A Y, gte = 4207, (G.1.39)

One can check that eqs. (G.1.38) and (G.1.39) are consistent with the Lorentz transformation

properties of egs. (G.1.29)—(G.1.32), as a consequence of eq. (G.1.27).

In addition to the Lorentz scalar UW = W %W, one can construct two additional independent

Lorentz scalar quantities,!?®
—UTCt Y = v, (TP, = vy, (G.1.40)

and its hermitian conjugate,
VCUT=T0C, 00 =T, = Ulwie = (gey,)f (G.1.41)

after using C~! and C to raise and lower the appropriate spinor indices, respectively. The
penultimate equality in eq. (G.1.41) is a consequence of eq. (G.1.39). The Lorentz invariance of
W, ¥, and \IJ:%\IJW =0 U, is manifest and demonstrates the power of the four-component
spinor index notation developed above. After invoking eq. (G.1.37), we note that [analogous
to eq. (2.35)] descending contracted unbarred spinor indices and ascending contracted barred

spinor indices can be suppressed in spinor-index-contracted products. For example,

oy, = TU Uy, = 0C ", = UCU TP, = TopY = gy, G.1.42
a

where the suppression of barred spinor indices is implicit in the definition of T® = \I':[lAab.

124For a Dirac spinor field defined in eq. (G.1.6), W, (x) = U (z) is given in terms of two-component spinors by
eq. (G.1.10), and ¥ (z) = ¥° *(z) = (XO‘(:E)7 nh (:c))

125 A fourth possible Lorentz scalar, U0, = (C’fl)“bC’ac\I’b@c = P9 U = @207 is not independent. Here,
we have used C7 = —C' and the anticommutativity of the spinors. Equivalently, WCWC = U,
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The charge-conjugated spinor can also be written as ¥¢ = DaE\IIZ- [cf. eq. (G.1.17)]. The

spinor index structure of D (and its inverse) derives from:
Do = Cop (AT = Oy A? (D™ 1)¢ = (C*A)y¢ = Cp AP, (G.1.43)

where we have used D~! = D*. Combining the results of eqs. (G.1.34), (G.1.35), (G.1.38) and
(G.1.39) then yields:

T, = D, 0!, vl = (D¢ 7., (G.1.44)
fa

U= -—wiep)e, Uit =—v°D.1. (G.1.45)

In summary, a four-component spinor ¥, and its charge-conjugated spinor \Ifac possess
a lowered unbarred spinor index, whereas the corresponding Dirac conjugates, ¥® and WC
possess a raised unbarred spinor index. The corresponding hermitian-conjugated spinors exhibit
barred spinor indices (with the height of each spinor index unchanged). Following eqs. (G.1.34)
and (G.1.35), one can also lower or raise a four-component unbarred or barred spinor index by
multiplying by the appropriate matrix C, C~1, C* or (C~1)*, respectively.

The identity matrix, the gamma matrices and their products are denoted collectively by I'.

The spinor index structure of these matrices and their inverses is given by:
&, T, (M7, (G.1.46)

where the 6% are the matrix elements of the identity matrix 1. In this case, the rows are labeled
by the lowered index and the columns are labeled by the raised index. Note that the quantities
U0, UoT,b W, and ¥* Fab@b transform as Lorentz tensors, whose rank is equal to the
number of (suppressed) spacetime indices of I'.

For the matrices A, B, C, D and their inverses, the spinor index structure is given by:
A® (A7, B, (B e, Cap, (C7H%, DY (DY) (G.1.47)

The corresponding complex-conjugated matrices exhibit the analogous spinor index structure
with unbarred spinor indices changed to barred spinor indices and vice versa. Matrix transpo-

sition interchanges rows and columns. For example,
N4 =T, (ANP =4 (N =Cha, (DT = D,°. (G.1.48)
Hermitian conjugation is complex conjugation followed by matrix transposition. For example,
fya_ — a\* tyab — ba * o * tya_ — a\*
= = ah = , = . 1.
I =d"" (AN =", (CNa = (Cra) (D)% = (Dp")*.  (G.1.49)

Using the above results, it is straightforward to identify the four-component spinor index struc-
ture of egs. (G.1.1)—(G.1.28). For example, specifying the four-component spinor indices of
eq. (G.1.28) yields:

(C™)™M Ceg = (M) )% = (M 1)y" . (G.1.50)
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To complete the spinor index formalism, we introduce hybrid quantities L, L, R and R that
contain an unbarred four-component spinor index and a two-component undotted or dotted

spinor index [290]:

L’ = (Taxa  Oaxa) , RPY = (Dayg Taxa), (G.1.51)

_ 1 _ O

L= %), Ry=| 7. (G.1.52)
®2><2 ﬂ2><2

These quantities satisfy:

Lo“Lo" = (Pr).", LoLP =647, (G.1.53)
RaaRYY = (PR).", RYR, ;=0 (G.1.54)
where Pr, and Pg are the chiral projection operators defined in eq. (G.1.7). It then follows that:
Lo%(Pp)s® = La°, (PL)o"Ly’ = L7, (G.1.55)

RY%(Pg)," = R, (Pr)a"Rys = Ry - (G.1.56)

The hybrid quantities L, L, R and R connect objects with four-component and two-

component spinor indices. For the Dirac spinor defined in eq. (G.1.6), it follows that:

Xo = Lo U5, n* =¥ L,*, (G.1.57)
= R0y, XL =T Ry (G.1.58)
The corresponding inverse relations are:
(Pr)a” Uy = Lo x4, U(PL)." =n"Lg", (G.1.59)
(Pr)a" Wy = R 0™, T (Pr)s" = x 61?/3 b (G.1.60)

One can use egs. (G.1.2), (G.1.4) and (G.1.20) to identify:

oy =La"(1")a "Ry, B = RY(41) VTP (G.1.61)
oo = La"(35"), L7 oy = RY($54), Ry, (G.1.62)
60" = —La(75)a L, 0%5 = R**(v5)a"Ry5, (G.1.63)
€ap = Lo"CapLg" ? = RY°C,RPY (G.1.64)
P = T,2(C~H)?PL,P = Raa(CT")" R, (G.1.65)
Inverting these results yields:
(Y Pp)? = Resa P Lg? (Y*PR)d = Lo0" Rﬁd (G.1.66)
(2Pt =L o  Lg* (S PR)" = Ecdaw SR (G.L6T)
(APp).* =R L, (APg).* =T 3R, (G.1.68)
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(PLC)ed = €apLe™La” (PRC)ca = EdBRcaRdg, (G.1.69)
(C71P) = eBL, Ly (C~1PR)*! = ¢,4R¥ R . (G.1.70)
Likewise, one can introduce LT, I, RT and R, which are hybrid quantities that contain a

barred four-component spinor index and a two-component undotted or dotted spinor index:
(L1 = (L"), (RT3 = (RO)* (G.1.71)
(Lhs = (L) (BMga = (R,5)" - (G.1.72)

In particular, using egs. (G.1.59) and (G.1.60), one can relate the quantities L, L, R and R and
their hermitian conjugates:
(LN 5 = AR, (R1)3P = AT,P (G.1.73)
(L)% = R™(A V)a, (RMga = Lg"(A s, (G.1.74)
after employing AP, = P;A [cf. eq. (G.1.22)] and AT = A. The set of equations analogous to
egs. (G.1.53)—(G.1.70) involving the corresponding hermitian-conjugated quantities can also be
obtained. However, such formulae will rarely be needed in practice.

Egs. (G.1.53)—(G.1.70) [and their hermitian conjugates| can be employed to translate any
expression involving two-component spinors into the corresponding expression involving four-
component spinors, and vice versa. With a little practice, both two-component and four-
component spinor indices can be suppressed, which greatly simplifies the manipulation of the
spinor quantities. In particular, by treating the four-component spinors ¥, and \I/g as column
vectors and their hermitian (Dirac) conjugates ¥l and \Ifa(’“r (T and UC?) as row vectors, all
equations in the four-component spinor formalism have a natural interpretation as products of
matrices and vectors. Henceforth, we shall suppress all four-component spinor indices.

Multiple species of fermions are indicated with a flavor index such as 7 and j. Dirac fermions
are constructed from two-component fields of opposite charge, x, and n® (hence the opposite
flavor index heights). Thus, we establish the following conventions for the flavor indices of

four-component Dirac fermions:

v = [ Ti(a) = (1), @), v) = 7)) )

0} (@) X ()
Note that x? = (x;)" and 77;-[ = (n")T following the conventions established in Section 3.2. Raised
flavor indices can only be contracted with lowered flavor indices and vice versa. In contrast,
Majorana fermions are neutral so that there is no a priori distinction between raised and lowered
flavor indices. That is,

5042‘(517) — —

Vari(z) = Wy () = Uip() = ¥ () g v Yani(e) = Wiy(x)
M (@)

(@), @)
(G.1.76)
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In this case, the contraction of two repeated flavor indices is allowed in all cases, irrespective of
the heights of the two indices. In the convention adopted in Section 3.2, in which all neutral
left-handed (3,0) [right-handed (0, 3)] fermions have lowered [raised] flavor indices, the height
of the flavor index of a four-component Majorana fermion field is meaningful when multiplied
by a left-handed or right-handed projection operator. Thus, the height of the flavor index for

Majorana fermions can be consistently chosen according to one of the following four cases:
PLUyi,  WanPr, PRWS,, Wi Pg. (G.1.77)

Bilinear covariants are quantities that are quadratic in the spinor fields and transform irre-
ducibly as Lorentz tensors. We first construct a translation table between the two-component
form and the four-component form for the bilinear covariants made up of a pair of Dirac fields.
Using egs. (G.1.59) and (G.1.60) to convert the four-component spinor fields into the correspond-
ing two-component spinor fields, and employing the appropriate identities involving products of

the hybrid quantities L, L, R and R, the following results are then obtained:

VP, =n'x;, (G.1.78)

T PR = il (G.1.79)
Wiyt P, = xTigty;, (G.1.80)
Wi’y“PR\I/j = nia“n} ) (G.1.81)
'S PRl =200y, (G.1.82)
T Pr; = 2y it (G.1.83)

The first two results above follow immediately after using eqs. (G.1.53) and (G.1.54), respec-
tively, and the last four results are a consequence of egs. (G.1.61) and (G.1.62).

Egs. (G.1.78)—(G.1.83) apply to both commuting and anticommuting fermion fields.!?6
These results can then be used to express the standard four-component spinor bilinear covariants

in terms of two-component spinor bilinears:

T, =iy, + yhint (G.1.84)
Tos ¥, = iy 4 1] (G.1.85)
@iy“\lfj _ XTiEqu + niJHnT (G.1.86)

Ty ¥y = —x' 5 + n'ot'n) (G-1.87)
T, = 2n'o ™, + o) (G.1.88)
TS 505 = 2(—nio v + X“EW%T') . (G.1.89)

12611 the case of anticommuting spinors, it is often useful to apply eq. (2.60) to egs. (G.1.81), (G.1.86) and
(G.1.87) and rewrite 7710“7]; = —7]}6“771.
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Additional identities can be derived that involve the charge-conjugated four-component

Dirac fermion fields. As an example, we may use CT = —C and ¥C = —¥TC~! to prove that
YO ve = —(—)ATICTT My = (- )AC T T Y, (G.1.90)

where the sign 771(; is given in eq. (G.1.24). The factor of (—1)4 = £1 [for commuting/anticommut-
ing fermion fields, respectively] arises at the second step above after reversing the order of the
terms by matrix transposition. Identities involving just one charge-conjugated four-component

field can also be easily obtained. For example, using egs. (G.1.57) and (G.1.70),

UOPLY; = —W[CT PLW; = —Waie* Lo "L Wh; = —€* XX = XiX; - (G.1.91)

In general, if one replaces W;, with WCF in eqs. (G.1.78)(G.1.89), then in the corresponding
two-component expression one simply interchanges x;, <+ n* and x'* < 77;2.

Eqgs. (G.1.78)—(G.1.89) also apply to four-component Majorana spinors, Wy, by setting
xi=1n"=¢&, and I = n;.r = ¢, This implements the Majorana condition, ¥y = Dy, and
imposes additional restrictions on the Majorana bilinear covariants. For example, eqs. (G.1.24)

and (G.1.90) imply that anticommuting Majorana four-component fermions satisfy:27

Uiy = Y War,
UnrivsUnj = Uarjys Ui,
Uariv" Uy = =W Wag

Uariv* s Wary = Uy v Wi s
WS Wy = =W S Wy,

U Sy W = =W Sy Uy

By setting i = j, it follows that Wy "W, = Wy S0, = WMZ“”VS\I/M = 0. One additional
useful result is:
VYA PL g = =y PRUY, (G.1.98)

which follows immediately from egs. (G.1.94) and (G.1.95). Note that in eq. (G.1.98), the heights
of the flavor indices follow the convention established in eq. (G.1.77).

In the four-component spinor formalism, Fierz identities (first introduced in ref. [291])
consist of relations among products of two bilinear covariants, in which the fermion fields appear
in two different orders. The corresponding two-component spinor Fierz identities are treated in
detail in Appendix B.1. In principle, the latter can be converted into four-component spinor
Fierz identities using the techniques developed in this Appendix. However, it is easier to derive
the four-component spinor Fierz identities directly using the properties of the gamma matrix
algebra [281, 288].

12THere, one is free to choose all flavor indices to be in the lowered position [cf. eq. (G.1.76)].

205



Instead of egs. (B.1.5)—(B.1.7), the equivalent identity relevant for four-component spinors is:
o131 = 1 [3981 + ()a"08)e + () )" — (95)a (s + HE)A(B)e!] - (G.1.99)

This is the fundamental identity from which many other such identities can be derived
(cf. the Appendix of ref. [285]). One of many possible Fierz identities can be obtained by
multiplying eq. (G.1.99) by Wi Wy Uslyy = (—1)4 U W T50y;, where (—1)4 = +1 [~1] for

commuting [anticommuting] Dirac, Majorana or Weyl spinors. More generally [281,292,293],

5
(T TP ) (T wy) = (-1)A Y FF, (0007 0,) (50 0,), (G.1.100)

n=1

where the sum is taken over the 4 x 4 matrices, ™ e I', which have been ordered as follows,!28
D=A{1,", 5" (u<v), 75, %5}, (G.1.101)

I, J represent zero, one or two spacetime indices (sums over repeated I and J are implied), and

1 1 3 -1 1
4 =2 0 -2 —4
1
F:Z 12 0 —2 0 12| . (G.1.102)

-4 -2 0 -2 4

1
1 -1 5 1
For example, taking k£ = 1 in eq. (G.1.100) yields a result equivalent to eq. (G.1.99):

(U1 W2)(T30y) = 2(—1) [(T104)(T3P2) + (T17504) (T35 V2) + (U199 Wy) (T3, V)
—(61’7“’75@4)(@3’7“’75\1’2) + %(@12“”\1'4)(33EW\IJ2)] . (G1103)

For a comprehensive treatment of all possible four-component spinor Fierz identities, see
ref. [294]. Simple derivations of generalized Fierz identities have also been given in refs. [293,295].

A Mathematica package for performing Fierz transformations is available in ref. [296].

G.2 Free-field four-component fermion Lagrangians

The free-field Lagrangian density in four-component spinor notation can be obtained from the
corresponding two-component fermion Lagrangian by employing the relevant identities for the
bilinear covariants given in eqgs. (G.1.78)—(G.1.89). First, consider a collection of free anticom-
muting four-component Majorana fields, Wy, = \I!(]\J/A,Z The free-field Lagrangian (in terms of
mass eigenstate fields) may be obtained from eq. (3.2.10) by converting to four-component spinor
notation using egs. (G.1.84) and (G.1.86) with y = n = &, which yields [3]:

& = 5i0ni" 0, Wari — 5miVari Vi, (G.2.1)

128The 16 matrices of I' constitute a complete set that spans the sixteen-dimensional vector space of 4 x 4
matrices.
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where the sum over 4 is implicit. The corresponding free-field equation for Wys; is the Dirac
equation:
(iv"0y —m)Wp = 0. (G.2.2)

For simplicity, we focus on a theory of a single four-component Majorana fermion field,
Uy (z) = ¥§,(z). One can rewrite the free-field Majorana fermion Lagrangian in terms of a
single Weyl fermion, ¥, (x) = PrV(x), where ¥(x) is a four-component fermion field whose
lower two components (in the chiral representation) are irrelevant for the present discussion.

The Majorana and Weyl fields are related by:
Uy () =V, () + 05 (), (G.2.3)

where W%(az) is defined in eq. (G.1.13). The corresponding Dirac conjugate field is given by
U, (z) =", () + \If—g(x), where
U, (z) = [PLV(z)]'A = T(2) Py, (G.2.4)

WO(z) = 0C(2) Py = 0T (2)C7 P, = — W) (2)C L. (G.2.5)

Using the identity:!2?

\I/—%y“(‘)u\llg = —\I/TC_IPLV“GMPRCWT = U, 79,V + total divergence, (G.2.6)

the Lagrangian for a single Majorana field can be written in terms of a single Weyl field:3°

L =09, 0y + im (qf{c—quL - ELOEI) . (G.2.7)
The corresponding free-field equation is
"9,V = mCT, , (G.2.8)

where we have used (U, C)T = —C’TZ and the anticommutativity of ¥, ¥y. The general-
ization of eqgs. (G.2.3)-(G.2.7) to the case of a multiplet of four-component Majorana fields is
straightforward and is left as an exercise for the reader.

Of course, one could have chosen instead to rewrite the four-component Majorana fermion
Lagrangian in terms of a single Weyl fermion, ¥ (z) = Pr¥(x), in which case the upper two
components (in the chiral representation) of ¥(z) are not relevant. In this case, the Majorana
and Weyl fields are related by:'3!

Uy () = Up(z) + ¥ (2), (G.2.9)

1291 deriving eq. (G.2.6), we have used eq. (G.1.24) and the anticommutativity of the spinor fields. The total
divergence can be dropped from the Lagrangian, as it does not contribute to the field equations.

139Using eq. (C.1.15), it follows that (FTC~'0)T = —FA~ICH* AT = TCTT.

1311f ¥ is an unconstrained four-component spinor, then ¥;, and U are independent Weyl fields, in which case
Uy, 4+ 0% and Ur + U§ are independent self-conjugate fields.
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where \Ifg(:n) is defined in eq. (G.1.12). The corresponding Dirac conjugate field is given by
U, (z) = Vp(z) + \I’—g(x), where

U,(z) = [PrY(2)]TA = T(2)P, (G.2.10)
UC(z) = WO (2)Pg = —0 " (2)0 1Py = — W (x)0 L. (G.2.11)

The corresponding Weyl fermion Lagrangian is given by eq. (G.2.7) with L replaced by R.

Thus, a Majorana fermion can be represented either by a four-component self-conjugate
field W,,(x) or by a single Weyl field [either W, (x) or Wy(x)]. Both descriptions are unitarily
equivalent [287,297]; i.e., one can construct a unitary similarity transformation that connects a
Majorana field operator and a Weyl field operator (and vice versa). Of course, this is hardly a
surprise in the two-component spinor formalism, where both the Majorana and Weyl forms of
the Lagrangian correspond to the same field theory of a single two-component spinor field &, (z).

For m # 0, the Weyl Lagrangian given by eq. (G.2.7) possesses no global symmetry, and
hence no conserved charge. In contrast, for m = 0 the Weyl Lagrangian exhibits a U(1) chiral
symmetry. In a theory of massless neutrinos, the U(1) chiral charge of the neutrino is correlated
with its lepton number L, and one is free to use either a Majorana or Weyl description. In
the former, the neutrino is a neutral self-conjugate fermion, which is not an eigenstate of L.
In the latter, ¥, (z) corresponds to the left-handed neutrino and \I’g(:n) corresponds to the
right-handed antineutrino, which are eigenstates of L with opposite sign lepton numbers. No
experimental observable can distinguish between these two descriptions.

We now consider a collection of free anticommuting four-component Dirac fields, ¥;. The
free-field Lagrangian (in terms of mass eigenstate fields) may be obtained from eq. (3.2.34) by

converting to four-component spinor notation. We then obtain the standard textbook result:
L = iU A, T — m T, . (G.2.12)

By writing ¥ = W, + W, we see that the Lagrangian for a single Dirac field can be written in

terms of two Weyl fields:
¥ = z@L’y“(‘)N\I/L + z@R’y“GM\I/R -—m (@L\I/R + WR\I/L) . (G.2.13)
The corresponding free-field equations are:
iyt 0,V =mVYp, VM0, VR =mVp, . (G.2.14)

Summing these two equations yields the Dirac equation, (iy*d, —m)¥ = 0.
As a pedagogical example in which both Dirac and Majorana mass terms are present, we
perform the diagonalization of the neutrino mass matrix in a one-generation seesaw model'3? us-

ing the four-component spinor formalism. Following Appendix A of ref. [298], we first introduce

1321 Appendix J.2, the seesaw model of neutrino masses is introduced using the two-component spinor formalism.
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a four-component anticommuting neutrino field vp, and the corresponding Weyl fields,
vy = Prvp, yg = PLug, vgr = Prrvp, and I/g = PRVg. (G.2.15)
Note that egs. (G.1.12) and (G.2.5) imply that the anticommuting Weyl fermion fields satisfy:
EVLC = TVRVL, Eug =ULVR . (G.2.16)

A Dirac mass term for the neutrinos in the one-generation seesaw model couples vy, and I/g

(and by hermiticity of the Lagrangian, l/g and vg), and can be written equivalently as:

mD(l/ZC’_lyg + V}T% C'_ll/g) = —mD(ngg + El/g) = —mp(VrvL + VLVR) = —mpVUpVp ,
(G.2.17)
after making use of eq. (G.2.16). The Majorana mass term for the neutrinos in the one-generation
seesaw model couples Vg to itself (and by hermiticity of the Lagrangian, vg to itself), and can

be written equivalently as:
%M(VETC_IVE +vpC7lug) = —%M(ﬁl/f + EVR) . (G.2.18)

We shall define the phases of the neutrino fields such that the parameters mp and M are real
and non-negative.
Thus, the mass terms of the one-generation neutrino seesaw Lagrangian, given in eq. (J.2.18)

in terms of two-component fermion fields, translates in four-component spinor notation to

1 — _ T.C 0.0\ g1, C LT
Lrnass = —3mp(VLVR + VRvL + Vi v +vivr) — sM (VR + vEvR)
0 0 G
_ 1(e — mDp VL 1(_— & o R
= —5 VR UR c ) vy, VL
mp M vy mp M VR
0 mp vy
=1 (VZ VLm) c! +hee., (G.2.19)
mp M ug

where we have used eq. (G.2.16) to write the first line of eq. (G.2.19) in a symmetrical fashion
and egs. (G.1.12) and (G.2.5) to obtain the final form above. Note that if M = 0, then one can
write Zmass = —mpPprp and identify vp as a four-component massive Dirac neutrino.

The Takagi diagonalization of the neutrino mass matrix yields two mass eigenstates, which
we designate by v, and v;, where ¢ and h stand for light and heavy, respectively. The mass
eigenstate Weyl neutrino fields are related to the interaction eigenstate Weyl neutrino fields via

vy, Pry,

=U , (G.2.20)
VLC PLV}?
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where U/ is a 2 x 2 unitary matrix that is chosen such that

L{T 0 mp Y — m,,g 0
mp M 0 m,

(G.2.21)
h

For M # 0, the neutrino mass eigenstates are not Dirac fermions. In the seesaw limit of
M > mp, the corresponding neutrino masses are m,, =~ m2D/M and m,, ~ M + m%/M, with

my, < my, . In terms of the mass eigenstates, the neutrino mass Lagrangian is:
Lrnass = % m,,ZV;C_lPLVZ + ml,hygTC’_lPLyg +h.c., (G.2.22)

after using eq. (G.1.24). We now define four-component self-conjugate Majorana neutrino fields,

denoted by ¥, and U}, respectively, according to egs. (G.2.3) and (G.2.9),

U, = PLVZ + Pgr C?Z s @g = EZPR — V;C_lpL s (G.2.23)
\r— PRVh + PLCE;I; , Wh = thL — I/;{C_lPR . (G.2.24)

Then, eq. (G.2.22) reduces to the expected form:
Lnass = —% [m,,eﬁg\l’g + muhﬁh\l’h] . (G.2.25)

A comparison with the analysis of the neutrino mass matrix given in Appendix J.2 exhibits the
power and the simplicity of the two-component spinor formalism, as compared to the rather

awkward four-component spinor analysis presented above.

G.3 Gamma matrices and spinors in spacetimes of diverse dimensions and
signatures

The translation from two-component to four-component spinor notation given in Appendix G.1
is specific to 3 + 1 spacetime dimensions. In d = 4 Euclidean space dimensions (independently
of the choice of convention for the Minkowski metric), the Dirac gamma matrix algebra is
defined by {75, 7%} = 26"1, where 6" = diag(1, 1, 1, 1). Using eqgs. (A.23) and (G.1.2), the
Euclidean gamma matrices (defined for i, v =1, ..., 4) are hermitian and given by fy% = —ivk
(k =1,2,3), v = 1" and v = —v5V2vevE = 75 (e.g, see Appendix A.1.2 of ref. [299]).133
The four-dimensional reducible (Dirac) spinor representation corresponds to the (%, 0) ® (0, %)
representation of SO(4), although the (%, 0) and (0, %) representations are independent pseudo-
real representations of SO(4) not related by hermitian conjugation, as noted at the end of

Section 2. A complete treatment of Euclidean two-component spinors can be found in ref. [128].

1330ne can also choose to define the Euclidean Dirac algebra by {5, 76} = —20""1 (simply by multiplying
all gamma matrices by a factor of i), in which case the Euclidean gamma matrices, 75 = +* and v5 = i are
anti-hermitian, and v;, = —VEVEARNE = 75 is hermitian (e.g., see ref. [300]). These conventions arise more
naturally in the general treatment of gamma matrices in d spacetime dimensions as defined in eq. (G.3.1). The
corresponding Euclidean sigma matrices would then be defined as in footnote 88.
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The Euclidean space formalism for fermions is necessary for a rigorous definition of the
path integral in quantum field theory [121,122]. Using the Euclidean Dirac gamma matrices
introduced above, one can express the four-component Dirac Lagrangian directly in Euclidean

space [220]. Carrying out the same procedure for the four-component Majorana Lagrangian is

1
2

problematical. Because the (3,0) and (0, ) representations of SO(4) are not hermitian conju-
gates of each other, a self-conjugate Euclidean Majorana fermion does not exist. Nevertheless, it
is possible to devise a continuous Wick rotation from Minkowski spacetime to Euclidean space
for Dirac, Majorana and Weyl spinor fields and the gamma matrices. In particular, one can
construct a non-hermitian Euclidean action for a single Majorana or Weyl field whose Green
functions are related to the usual Minkowski space Green functions by analytic continuation and
a Wick rotation of the spinor fields. Further details can be found in refs. [126,127].134

The two-component spinor technology of this review is specifically designed to treat spinors
in three space and one time dimension. In theories of d spacetime dimensions (where d is any
positive integer), more general techniques are required. By considering spinors in this more
general setting, one gains insight into the concepts of Majorana, Weyl and Dirac spinors and
their distinguishing features.

The mathematics of spinors [130] in spacetimes of dimension d = ¢ + s (where ¢ is the
number of time dimensions and s is the number of space dimensions) is most easily treated by
introducing higher-dimensional analogues of the gamma matrices, I'*, which satisfy the Clifford

algebra [90,91,131-136, 140142, 289, 301],35

{TH, TV} =291, " =diag(++---+, —— - —), (G.3.1)

t s

where the identity matrix 1 and the T'* are 2092 x 21%/2] matrices, and [d/2] is the integer part
of d/2,

_)d/2, for d even,
472 = {(d —1)/2, for d odd. (¢.3.2)

The choice of (s,t) denotes the signature of the spacetime. One can choose T*T = T'* for
p=12 . tand i = T for p=t+1,t+2,...,d We identify %Z“” = %z’[P“, I'”] as
the generators of SO(s,t) in the spinor representation. Next, we introduce the [d/2]-component
(complex) Dirac spinor ¥ and its Dirac conjugate ¥ = UTA, where A = T''T'2...T? is a unitary

matrix that satisfies:136

ADHA™! = (=1)tFret Af = (—1)1t=D/24 (G.3.3)

134 Previous attempts in the literature to define Euclidean Majorana field theories can be found in ref. [125].

135 This includes the Euclidean case [139] corresponding to t = 0 and s = d [cf. footnote 133], and the Minkowski
case corresponding tot =1 and s =d — 1.

136Tn d-dimensional Euclidean space (where t = 0), '*t = " for all p = 1,2,...,d. As a result, we may
choose A = 1, in which case ¥ = ¥T.
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One can now build SO(s, t)-covariant bilinears, WI'W¥, where I is a product of gamma matrices.
Biquadratic spinor Fierz identities involving quantities such as (W11 Wy)(W3T',Wy) can also be
derived [302], where the TV = {1, ¥, T" (u < v), TFIYTA (p < v < A), ..., TT2...1204/2}
are a complete set of 2292 linearly independent matrices [which generalizes eq. (G.1.101)].

If d is even, one can also introduce the d-dimensional analogue of ~; by defining™”
Dgiq = iG02002... 104 (G.3.4)

which is hermitian and satisfies (I'y;1)? = 1 and {I'*, T'y.1} = 0. In the case of even-dimensional

spacetimes, there are two possible choices for the charge-conjugated spinor ¥¢ 138
C _ np—1lg* _
v =B, v, where n=+1, (G.3.5)
and the B, are unitary matrices that satisfy:
ByI#By "t =, n==£l. (G.3.6)

For even d, a convenient choice is By = B_T'g41 [135].

If d is odd with signature (s,t), then the 24=1/2 x 2(¢=1/2 gamma matrices I'* (p =
1,2,...,d) consist of {I‘l, 2. rét :I:z'I‘d+1} of the (d — 1)-dimensional theory of signature
(s —1,t). By assumption, u = d is a space index, so that ' = 444, is anti-hermitian. In the
case of odd d, only one sign choice for 77, namely = (—1)~*+1/2 s consistent with eq. (G.3.6)
as applied to I'*.139 Consequently, only one definition of the charge-conjugated spinor is viable,
namely ¥¢ = B~'¥* for s —t =1, 5 (mod 8) and ¥¢ = BJ:l\I/* for s —t =3, 7 (mod 8).

One important property of the B, is [131,134,140,141]:

BB, =&y, en = £1, (G.3.7)
for = £1 in even-dimensional spacetimes and 7 = (—1)(*~*+1)/2 in odd-dimensional spacetimes.
In particular [134],140

+1, fors—t=0,1,2 (mod 8), +1, fors—t=0,6,7 (mod 8),
E_ = EL =
—1, fors—t=4,56 (mod 8), - -1, for s—t=2,3,4 (mod 8).
(G.3.8)

Using the charge-conjugated spinor defined in eq. (G.3.5), one can define a self-conjugate

spinor, ¥¢ = W. Two cases arise depending on the sign of 7 [134,140-142],

Majorana spinor: U = B~ lor, (G.3.9)
pseudo-Majorana spinor: v = B;lklf* . (G.3.10)
137For t = 1 and d even, one traditionally takes 4 =0,1,2,...,d—1 (where 0 is the time index), in which case,

Tor: = 4(d=2/2 0Pl | pd—1
d+1 =1 .

'%5In four-dimensional Minkowski spacetime, we identify D = B~" [cf. eq. (G.1.17)] and v;D = B} ".

139The two sign choices for 'Y correspond to two inequivalent representations of the Clifford algebra [eq. (G.3.1)]
for d odd. Nevertheless, the corresponding 3*" yield equivalent spinor representations of SO(s,t).

0For d even, one can use By = B_Tqy1 and B,Tqy1B, "' = (=192, to derive ey = (—1)"7PD/2¢_.
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Due to the reality conditions [egs. (G.3.9) and (G.3.10)], the (pseudo-)Majorana spinor possesses
219/2 real degrees of freedom. Using eq. (G.3.7), one immediately sees that eqs. (G.3.9) and
(G.3.10) are respectively consistent if and only if €, = +1."1 The possible existence of Majorana
[pseudo-Majorana| spinors in d-dimensional spacetime depends on the choice of s — ¢ such that
e = +1 [e4 = +1]. Using eq. (G.3.8), it follows that Majorana spinors can only exist in
spacetimes where s — ¢t = 0, 1, 2 (mod 8), and pseudo-Majorana can only exist in spacetimes
where s—t = 0, 6, 7 (mod 8).!42 In particular, a Majorana spinor cannot exist in four-dimensional
Euclidean space.

Given a choice of sign for = £1, one can define a corresponding charge conjugation matrix

(', which is unitary and is defined by!43

C, = BJA, where C’nF“C’n_l =p(—=1)rHT, (G.3.11)

Eq. (G.3.5) then yields ¢ = Cy T'. The unitary matrices A, B, and (), satisfy the following
useful identities [134,140]:

By =e,B,,  CY=ep'(-1)!""Y20,,  A'B,=9'B,A, ATC,=n'C,A7".
(G.3.12)

In the case of even d, one can define left and right-handed chiral projection operators:
Pr=35(1-Ta1), Pr=5(1+Tap1), (G.3.13)
and introduce Weyl fermions, ¥, and W, which satisfy 'y, 1V g, = £V . Equivalently,

\I’L = PL\IJ, \IJR = PR\IJ, (G.3.14)

(@-2)/2 complex degrees of freedom. It is possible

so that ¥y (and likewise Wg) possesses 2
for a spinor to be simultaneously a (pseudo) Majorana and a Weyl spinor if the spinor and
its charge conjugate have the same chirality, in which case Byl'g11 B, e Iy, (for even d).
The latter condition holds when i*~* = 1 or equivalently s —¢ = 0 (mod 4). Combining this
requirement with the condition for the existence of a (pseudo) Majorana spinor, it follows that a

d-2)/2 real degrees of freedom, can only exist

(pseudo) Majorana-Weyl spinor, which possesses 2
in spacetimes where s — ¢t = 0 (mod 8). For further details, see refs. [91,131-134, 140-142,289].
As in Section 3.2, one can also consider a multiplet of fermions ¥; that transforms under a

complex, real or pseudo-real representation R of the flavor group G as

U; — (DR)i’ Yy, Dp = exp(—i0"Tg), i,j=1,2,...,dg, (G.3.15)

Y1If ¢, = —1 then one can introduce a generalized reality condition [cf. eq. (G.3.16)], which constrains the
structure of a multiplet of Dirac fermions that transforms under a pseudo-real representation of the flavor group. In
this case, the corresponding (generalized) self-conjugate spinors are called symplectic (pseudo-)Majorana spinors,
as discussed below eq. (G.3.20).

142 As shown in ref. [134,140], no SO(s, t)-invariant mass term is allowed for a pseudo-Majorana spinor.

1310 four-dimensional Minkowski spacetime, we identify C' = (CT)™' = C* [cf. eq. (G.1.10)] and B = Cy
[cf. eq. (G.1.19)]. In this case, one cannot use C to consistently define a self-conjugate spinor, as the corresponding
g4 = —1.
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where Dp is unitary and the corresponding generators T'g are hermitian. The dimension of R
is denoted by dg, which must be even in the pseudo-real case. In both the real and pseudo-
real cases, one can also impose a reality condition that generalizes the Majorana conditions of
egs. (G.3.9) and (G.3.10),

(U)* =0 =WYB,V;, (G.3.16)

where W is a unitary matrix and B, acts on the (suppressed) spinor indices of ¥;. Additional
constraints on the form of W are obtained as follows. First, taking the complex conjugate of

eq. (G.3.16) and inserting the result back into the same equation, it follows that
W*W = eyl (G.3.17)

after making use of eq. (G.3.7). Second, eq. (G.3.16) must hold true if ¥ is replaced by DrW¥
on both sides of the equation, in order to be compatible with the flavor symmetry group trans-

formation law [eq. (G.3.15)]. This latter requirement combined with eq. (G.3.17) yields:
Dp=e,W*DsW = W'D . (G.3.18)
Eq. (G.3.18) can be expressed in terms of the flavor group generators,
iTh =W (iTp)* W. (G.3.19)

Comparing with egs. (E.1.4)—(E.1.6), we conclude that the unitary matrix W satisfies:

W =e,WT,

1, Risareal tation,
- {—i— is a real representation (G.3.20)

—1, R is a pseudo-real representation .

When R is a real representation, W = W, and a basis for the flavor group generators can
be chosen such that W =1 [cf. eq. (E.1.7)], in which case Dy is a real orthogonal matrix. Since
en = +1, eq. (G.3.16) yields (pseudo-)Majorana spinors (depending on the sign of 1) as defined
previously in egs. (G.3.9) and (G.3.10).

When R is a pseudo-real representation, W = —WT, and a basis for the flavor group
generators can be chosen such that W = J = diag {(_(1) (1)) , (_(1) (1)) S ( _(1) (1))} isadpxdp
matrix, where dp is even [cf. eq. (E.1.8)]. In this case, D} JDg = J, which implies that Dp is
a unitary symplectic matrix [136]. Moreover, €, = —1, which was incompatible with the reality
conditions of egs. (G.3.9) and (G.3.10), but is compatible with the generalized reality condition
of eq. (G.3.16).

Therefore, we define symplectic (pseudo-)Majorana spinors [134, 136, 137, 142, 289] to be
spinors that transform as a pseudo-real representation under some flavor group and satisfy the
generalized reality condition of eq. (G.3.16), where W is a unitary antisymmetric matrix, de-
pending on the choice of n = £1 (with n = —1 yielding the “pseudo” designation). As suggested
by egs. (3.2.35)—(3.2.40), 2dgr symplectic (pseudo-)Majorana spinors are equivalent to dg Dirac
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fermions. The possible existence of symplectic (pseudo-)Majorana spinors in a d-dimensional
spacetime is governed by eq. (G.3.8). Requiring that €, = —1 implies that symplectic Majorana
spinors exist in spacetimes where s — ¢t = 4, 5, 6 (mod 8), and symplectic pseudo-Majorana
spinors exist in spacetimes where s —t = 2, 3, 4 (mod 8). Using this nomenclature, the fermions
described by the four-dimensional Minkowski space Lagrangian given in eq. (3.2.35) are sym-

plectic pseudo-Majorana spinors.

G.4 Four-component spinor wave functions

In four-dimensional Minkowski space, the free four-component Majorana field can be expanded
in a Fourier series; each positive [negative] frequency mode is multiplied by a commuting spinor

wave function u(p, s) [v(5,s)] as in eq. (3.2.11),144

d3_’ D, D. —ip-x - = ip-x
\I/MZ Z/ 27T 3/2 2E )1/2 U(pa S)Cli(p, 3)6 p —|—?}(p7 3)(],1(1)7 S)ep ] , (G41)

.I.

where E;p, = (|p]? +m?)'/?, and the creation operators a! and the annihilation operators a;

satisfy anticommutation relations:

{ai(P,s),al(B',s")} = 0°(F — )i , (G.4.2)
with all other anticommutation relations vanishing. We employ covariant normalization of the
one-particle states given by eq. (3.2.13). It then follows that

(01 War () 1B, 5) = u(B, s)e 7", 0 Tus(2) |5, 5) = 05, )7, (GA3)
(5.5 Tn () [0) = (B, )e™ ™ (55| s (0)]0) = v(Fs)e? ™. (G

These results are the four-component spinor versions of eqgs. (3.1.7) and (3.1.8).

Likewise, the free Dirac field can be expanded in a Fourier series,

dg_’ D. D. —ip-x =~ = ip-x
Z/ 2m)3/2 (2, )1/2 [u(p73)ai(p=3)€ T o, s)bl (5, 5)eP ] : (G.4.5)

T

where the creation operators a; and bj and the annihilation operators a; and b; satisfy anticom-

mutation relations:

{0i(B.5), 0} (5", 5)} = 6° (5~ 5)dur i (G.4.6)
{bl(ﬁ7 3)7 b}(ﬁlv 3,)} = 53(ﬁ_ ﬁ/)éss’(sij ) (G47)

with all other anticommutation relations vanishing. We employ covariant normalization of the
fermion (F) and antifermion (F') one-particle states given by eq. (3.2.22). It then follows that
(01 ¥(2) |5, 5 F) = u(F, s)e """ 01T () |55 F) = 6(F,5)e "%, (GAS)
(5.5 F| () 0) = a(F, )¢, (5,5 F| (@) 0) = v(@,)e? =, (GA9)

1445ome subtleties arise in the choice of relative phases of the creation and annihilation operators, which are
related to the C, CP and CPT transformation properties of the Majorana field. For further details, see ref. [303].
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and the four other single-particle matrix elements vanish. These results are the four-component
spinor versions of egs. (3.2.23)-(3.2.26). The Fourier expansion of the charge-conjugated free

Dirac field U¢' (z) = C@:(x) is given by:

d3ﬁ = = —ip-T = = ip-x
W)=Y / GrPRETE P ONB e v Bl B ] (Ga0)

where we have used eq. (G.4.13). That is, the charge conjugation transformation interchanges

the annihilation and creation operators, a; <+ b; and aZT- ~ bj. Thus, if ¥¢(z) = ¥(z), then we

must identify a = b and af = bT, corresponding to the free Majorana field given in eq. (G.4.1).
The two-component spinor momentum space wave functions are related to the traditional

four-component spinor wave functions according to:

. ) . . -
u(@,s) = ; u(p, s) = (y*(P,s), 4 (P.s)) (G.4.11)
y'(B, s)
. ya(ﬁ?‘g) PN — T/ =
v(@s)=| , 0(P, s) = (2°(P,5), y4(P,5)) (G.4.12)
14(p. 5)

where the u and v-spinors are related by

(P,s) = Cu(p,s)", u(p,s) = Co(p,s)", (G.4.13)
o(P,s) = —u(p,s)TC L, u(p,s) = —v(p,s)TCL. (G.4.14)

S

<

i

The spin quantum number takes on values s = i%, and refers either to the component of
the spin as measured in the rest frame with respect to a fixed axis or to the helicity (as discussed

in Section 3.1 and Appendix C). Note that the u and v-spinors also satisfy:

U(ﬁv 8) = _2875,“(13: _S) ) u(ﬁ) S) = 28752}(13: _S) ) (G415)

which follows from eq. (3.1.23). Explicit forms for the four-component spinor wave functions in
the chiral representation can be obtained using egs. (3.1.19)-(3.1.22), where x(8) is given in
eq. (C.1.11). For helicity spinors, further simplifications result by employing eqs. (C.3.4)—(C.3.7).

One can check that u and v satisfy the Dirac equations
(b —m)u(,s) = (p+m)v(P,s) =0, (G.4.16)
W5, 5) (p — m) = 0(B,5) (+m) =0, (C417)
corresponding to egs. (3.1.9)—(3.1.12), and
(25758 — 1) u(B, ) = (25758 — 1) v(F,5) = 0, (C418)
a(F,5) (25758 — 1) = 0(7, 5) (25758 — 1) = 0, (G.4.19)
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corresponding to egs. (3.1.24)(3.1.27), where the spin vector S* is defined in eq. (3.1.15).145

For massive fermions, egs. (3.1.46)—(3.1.49) correspond to
u(P, 8)u(P,s) = 5(1+ 25758) (P +m), (G-4.20)
v(B,5)0(P.5) = 3(1+ 257 8) (h —m). (G.4.21)

To apply the above formulae to the massless case we must employ helicity states, where s
is replaced by the helicity quantum number A, and S* is defined by eq. (3.1.16). In particular,
in the m — 0 limit, S* = p*/m + O(m/E). Inserting this result in egs. (G.4.18) and (G.4.19)

and using the Dirac equations, it follows that the massless helicity spinors are eigenstates of -,
5B, N) = 23, N) 150(B.A) = —2X0(B, ) - (G.4.22)
Combining these results with eq. (G.4.15) [with s replaced by A] yields:

v(p,A) = =2 y5u(p, —A) = u(p, —A), A=*£3, (G.4.23)

[N

and we see that the massless v and v spinors of opposite helicity are the same.
Applying the above m — 0 limiting procedure to eqgs. (G.4.20) and (G.4.21) and using the
mass-shell condition (pp = p> = m?), one obtains the massless helicity projection operators

corresponding to egs. (3.1.54)—(3.1.57):
u( (B, \) = 31+ 2)5) . (G4.24)
o(P, N)0(P,A) = (1 —2\y;) p. (G.4.25)

Summing over the spin degree of freedom, we obtain the spin-sum identities corresponding
to egs. (3.1.58)—(3.1.61),

Zs: u(P, s)u(P,s) = p+m, (G.4.26)
g o(P,s)o(P,s) = p—m, (G.4.27)
> (@ s (B, s) = (p+m)CT, (G.4.28)
; a' (B, s)0(F,s) = O~ (p—m), (G.4.29)
> v (Bs)aF.s) = C7 (P +m), (G-4.30)
> v sl (Fs) = (p—m)CT, (G4.31)

which are valid for both the massive case and the massless m — 0 limit.

15We use the standard Feynman slash notation: p = v,p" and § = ~,5".
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As previously noted, the results for the bilinear covariants obtained in eqs. (G.1.78)—(G.1.89)
can also be applied to expressions involving the commuting spinor wave functions. Various
relations among the possible bilinear covariants can be established by using eqs. (G.4.13) and
(G.4.14). As an example, for ' =1, 5, v*, Yy, , BH, B,

=
D
-
»
g
=
5
S
Y
»
N
Il

~0(By, 1) CTITCUPy, 52)" = —np 6B, 52)T0(Pi, 51) , (G4.32)
_U(ﬁb 81)T0_1F05(ﬁ27 SQ)T = _Ugﬁ(ﬁ2, SQ)FU(ﬁlv 51) ) (G433)
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=
=
=
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no
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Il

where the sign 77? [defined in eq. (G.1.24)] arises after taking the transpose and applying

eq. (G.1.24). In particular, the (commuting) v and v spinors satisfy the following relations:

u(py, $1)Pro(Py, s2) = —u(Py, s2) PLo(py, 1) , (G.4.34)
u(py, s1) Pro(Py, 52) = —u(Py, 52) Prv (P, 51) 5 (G.4.35)
u(py, s1)7" PLo(Py, s2) = U(Py, 52)v" Pro(Py, 51) (G.4.36)
a(py, s1)7" Prv(Dy, s2) = (P, s2)Y" Pru(py, s1) , (G.4.37)

and four si