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ABSTRACT

Baryon acoustic oscillations (BAO) provide a robust standard ruler with

which to measure the acceleration of the Universe. The BAO feature has so

far been detected in optical galaxy surveys. Intensity mapping of neutral hy-

drogen emission with a ground-based radio telescope provides another promising

window for measuring BAO at redshifts of order unity for relatively low cost.

While the cylindrical radio telescope (CRT) proposed for these measurements

will have excellent redshift resolution, it will suffer from poor angular resolution

(arcminutes at best). We investigate the effect of angular resolution on the stan-

dard ruler test with BAO, using the Dark Energy Task Force Figure of Merit as a

benchmark. We then extend the analysis to include variations in the parameters

characterizing the telescope and the underlying physics. Finally, we optimize the

survey parameters (holding total cost fixed) and present an example of a CRT

BAO survey that is competitive with Stage III dark energy experiments. The

tools developed here form the backbone of a publicly available code that can

be used to obtain estimates of cost and Figure of Merit for any set of survey

parameters.

Subject headings: cosmology — large scale structure of universe — baryon

acoustic oscillations — standard ruler test — 21cm intensity mapping

1. Introduction

A standard ruler test with Baryon acoustic oscillations (BAO) is considered the

most robust and systematics-free method to probe the dark energy equation of state

(Albrecht et al. 2006). The sound waves which propagated through a mixture of photons
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and baryons in the early Universe left a distinct oscillatory signature in the Cosmic

Microwave Background (CMB) and the large scale structure of matter (or galaxies) with

a characteristic scale set by the sound horizon at the epoch of recombination (Peebles &

Yu 1970; Holtzman 1989; Hu & Sugiyama 1996; Eisenstein & Hu 1998). Measurements of

the CMB provide this sound horizon scale, and we can then use the BAO in low-redshift

clustering as a standard ruler to measure the distances to various redshifts, and therefore

the equation of state of dark energy (Hu & White 1996; Eisenstein et al. 1998; Eisenstein

2003; Blake & Glazebrook 2003; Linder 2003; Hu & Haiman 2003; Seo & Eisenstein 2003).

While detections of BAO so far have used the optical band of the electromagnetic

spectrum, using spectroscopic or photometric techniques, there has been growing interest in

the feasibility of using 21cm emission from neutral hydrogen (Wyithe & Loeb 2008; Loeb &

Wyithe 2008; Wyithe & Loeb 2009; Visbal et al. 2009) to detect BAO at high (Mao et al.

2008; Wyithe et al. 2008) and medium (Chang et al. 2008; Ansari et al. 2008) redshifts.

Observing BAO from intensity mapping of 21cm emission, especially at medium redshift

near z ∼ 1, has several advantageous features. The BAO is a relatively weak feature on large

scales, and therefore very large survey volumes are needed. A ground-based cylindrical radio

telescope (CRT) with a large field of view can easily cover most of the sky in a relatively

short time. Second, the electronics required for frequencies near ν ∼ 1GHz are cheap and

easy to build. Digital electronics with precise timing offer high precision (better than ppm)

frequency and, hence, redshift measurements. Third, radio surveys rely on different tracers

of large scale structure (neutral hydrogen) than do optical survey (luminous galaxies).

Seeing the signal in two different sets of mass tracers would be compelling evidence for its

robustness.

A disadvantage of radio waves is their longer wavelengths, making it more difficult

to obtain high angular resolution. For example, a 100m by 100m telescope will have an
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angular resolution of (λ/L) ∼ 15 arcminutes at z ∼ 1. Radio observations of cosmological

hydrogen are severely contaminated by foreground sources, primarily Galactic synchrotron

radiation. We will not consider the problem of foreground removal here, but will show that

foregrounds are smooth at the BAO scale and then assume that they can be eliminated to

the accuracy of the statistical errors.

In this paper, we consider a ground-based 21cm intensity mapping with a CRT

targeting a redshift range of 0.2-2, motivated by the study of Chang et al. (2008). In

§ 2, we derive the signal-to-noise of the power spectrum for a given set of radio telescope

configuration parameters, discuss galactic shot noise and the effect of foregrounds, and

explain the assumptions used in our method of Fisher matrix projections. We model the

effects of angular resolution with a window function that approximates the effects of a

typical CRT telescope response function on the power spectrum. Using both Fisher matrix

analysis and Monte Carlos, we study the issue of angular resolution in detail in § 3, focusing

on the impact of resolution on the determination of dark energy parameters. Then in

§ 4, we consider a simple compact CRT telescope, and investigate the Dark Energy Task

Force (DETF) Figure of Merit (FoM) (Albrecht et al. 2006) as a function of telescope

parameters. The main result of the paper is captured in Fig. 6 where the FoM is plotted as

a function of these parameters. In § 5, we optimize the telescope configuration parameters

for the maximum FoM and show that an inexpensive CRT BAO survey can be competitive

with Stage III dark energy experiments (for optimazation studies in optical surveys, see

Parkinson et al. 2007, 2009). In § 6 we summarize the results.

2. Ingredients for Projections in a Radio telescope

In this section, we derive the signal-to-noise ratio in the power spectrum for a given

configuration of a cylindrical radio telescope. Once the signal-to-noise ratio per Fourier
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mode is determined, it is straightforward to propagate this to the errors on the acoustic

scale and ultimately on dark energy parameters.

2.1. Signal to Noise Ratio

In a radio telescope, the measurement is power (i.e., Watts) received by the antenna,

and we denote this with a lower case p to distinguish it from the power spectrum P (k)

in wavenumber space. The average and the standard deviation of power received by an

antenna per bandwidth ∆f due to the instrumental and sky noise are

pN = kB(gT̄sky + T̄a)∆f, (1)

σpN
= pN , (2)

where kB is Boltzmann’s constant, g is the gain, T̄sky is the average sky temperature (e.g.,

due to foregrounds), and T̄a is the average antenna noise temperature or the amplifier noise

temperature. After M such measurements, the uncertainty associated with pN per pixel for

a compact array telescope is

σpN
=

kB(gT̄sky + T̄a)∆f√
M

=
kB(gT̄sky + T̄a)∆f√

tint∆f
, (3)

where tint is the integration time per pixel per bandwidth.

Meanwhile, the BAO signal is the spatial temperature variation due to the clustering

of neutral hydrogen, δpS
(n̂, z) = pSδHI(n̂, z) where δHI(n̂, z) is the fractional overdensity of

neutral hydrogen at angular position n̂ and at redshift z. The average power (again in, e.g.,

Watts) due to the 21cm line is

pS = kBgT̄sig∆f, (4)

with T̄sig the average brightness temperature due to the 21cm line. This has been estimated
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(Barkana & Loeb 2007; Chang et al. 2008) to be

T̄sig = 0.3K
ΩHI

10−3

[

Ωm(1 + z)3 + ΩΛ

0.29(1 + z)3

]−1/2 [

1 + z

2.5

]1/2

(5)

where ΩHI is the ratio of the HI mass density to the critical density.

The measured power spectrum of the 21cm intensity P̂ (k, µ) will include both signal

and noise:

P̂ (k, µ) = p2
SPHI(k, µ) + VRσ2

pN
, (6)

where PHI(k, µ) is the power (in units of h−3Mpc3) due to the large scale structure of

the neutral hydrogen (i.e., the signal) and VR is the volume of a pixel (also with units of

h−3Mpc3). We present a simple derivation of this equation in Appendix A. Since we are

interested in structure on large scales, we assume that PHI(k, µ) = b2P (k, µ) where P (k, µ)

is the underlying matter power spectrum with linear theory redshift distortions (Kaiser

1987), µ is the cosine of the angle between the wavevector ~k and the line of sight, and b is a

constant bias factor.

Additionally, there will be a galactic shot noise contribution due to the discreteness

of the HI sources with an effective number density n̄. Adding this noise leads to our final

expression for the signal to noise per Fourier mode:

S

N
=

PHI

PHI +
[

(gT̄sky+T̄a)

gT̄sig

√
tint∆f

]2

VR + 1
n̄

, (7)

where
(T̄sky+T̄a/g)
√

tint∆f
is the sensitivity per pixel. As will be explained in § 2.3, we approximate

Pshot = 1/n̄ = 100h−3 Mpc3. Assuming our fiducial CRT configuration as explained in § 2.2,

PHI(k, µ = 0) ∼ 900h−3 Mpc3 and
[

(gT̄sky+T̄a)

gT̄sig

√
tint∆f

]2

VR ∼ 1800h−3 Mpc3 at z ∼ 1.

For a power spectrum averaged over a wavenumber range of width dk, the signal to
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noise is increased by the square root of the number of modes, so

S

N
=

√

2πk2dkdµVsur

2(2π)3

PHI(k, µ)

PHI(k, µ) +
[

(gT̄sky+T̄a)

gT̄sig

√
tint∆f

]2

VR + 1
n̄

,

(8)

where Vsur is the total volume of the survey.

We modify this equation further by including a window function Ŵ that approximates

the effect of an instrument response function.

S

N
=

√

2πk2dkdµVsur

2(2π)3

PHI(k, µ)Ŵ 2

PHI(k, µ)Ŵ 2 +
[

(gT̄sky+T̄a)

gT̄sig

√
tint∆f

]2

VR + 1
n̄

.

(9)

We discuss details of Ŵ in § 2.5.

2.2. Telescope parameters for our fiducial compact array CRT

The input parameters required to achieve a given signal to noise (Eq. 9) depend on

the configuration of the telescope. The important parameters are the length of the cylinder

Lcyl, the width of the cylinder Wcyl, the spacing of receivers dF (or the number of receivers

Nfeed = Lcyl/dF ), and the total survey time Nyear. We consider a rectangular compact array

so that Ncyl = Lcyl/Wcyl. Fig. 1 shows the general configuration for the compact array. For

this configuration,

Resolution of the beam width, ∆θres ≈
λ

Lcyl
, (10)
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Area of the survey, Asurvey =

∫ 2π

0

dφ

∫ θlat+∆θ/2

θlat−∆θ/2

cos(θ)dθ

θlat=0
=⇒ 4πsin

(

∆θ

2

)

≈ 2π
λ

dF
= 2πλ

Nfeed

Lcyl
, (11)

Integration time per pixel, tint ≈ NyearDf
1

2π

λ

Wcyl
.

(12)

Above and throughout, we have made the small angle approximation, assumed critical

sampling, and neglected side lobes. We also assume a CRT telescope at the equator as our

fiducial configuration for simplicity, which, according to equation (11), affords all steradian

sky coverage in the limit of half-wavelength feed spacing resulting in coverage to the horizon.

We consider the perhaps more likely case of a telescope at a latitude of ∼ 30 degrees in

section § 5. The angular resolution determines3 the pixel size, and therefore VR, and Asurvey

determines Vsur. We fix the remaining parameters such as the antenna temperature, sky

temperature, gain, and the observing duty factor to be T̄a = 50K, T̄sky = 10K, g = 0.8, and

Df = 0.5.

Table 1 lists the telescope parameters for a fiducial CRT survey. For technical reasons

4, the redshift range will likely be covered by two distinct configurations of the telescope:

in our fiducial survey, the first configuration covers 0.60 < z < 1.24 and the second

configuration covers 1.22 < z < 2.11. These will be combined to obtain estimates of the

3If we let the frequency resolution ∆f determine the pixel size along the line of sight in

VR, the effect of the resolution bandwidth ∆f cancels out, as it appears both in
√

tint∆f

and VR.

4It is difficult to design an array with large fractional bandwidths (> 50%). By dividing

the design into two configurations, the fractional bandwidth of our fiducial CRT falls into a

reasonable range of about 30%.
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power spectrum in a series of redshift bins of size ∆z = 0.1. The signal to noise on the

power spectrum will depend on the redshift bin under consideration. Figure 2 shows the

power spectrum at z = 1 with associated errors derived from equation (9) for the fiducial

survey. To give a sense of the constraining power of 21 cm surveys, the error bars in this

figure assume that the total volume of the survey is concentrated at z = 1.

2.3. Galactic shot noise estimation

In 21cm intensity mapping we are only able to probe the mean 21cm emission in fairly

large volumes of space. While intensity mapping has the advantage that it includes the

emission from all the galaxies, no matter how dim, it has the disadvantage that, due to the

luminosity weighting, the random sampling of the density field is dominated by a relatively

small number of the bright galaxies. This sampling noise is known as galactic shot noise, and

is often calculated under assumption that the galaxy position and luminosity is randomly

selected with probability proportional to 1 + b δm where b is the bias and δm is the mass

overdensity. Under these assumptions the shot noise adds a scale independent 1/n̄(z) term

to the observed overdensity power. Using the Schechter function fit to the HIMF (neutral

hydrogen mass function) by Zwaan et al. (2005) we find n̄ = θ∗
ln10

Γ(2+α)
2+α

= 0.01h3 Mpc−3

which we use in our calculations without evolution. The evolution of n̄(z) is uncertain but

shot noise is not the dominant source of noise.

2.4. Foregrounds

At the frequencies relevant for this study 21cm emission is far from the dominant

source of emission. Synchrotron (plus a smaller contribution of free-free) emission will

dominate the 21 cm signal by a factor ∼ 104. This includes emission from our Galaxy and
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from extra-Galactic sources. However as noted by a number of authors (Di Matteo et al.

2002; Zaldarriaga et al. 2004; Wang et al. 2005; Morales et al. 2006; Chang et al. 2008)

synchrotron (and free-free) emission will have a very smooth spectrum unlike the BAO

wiggles and one can therefore distinguish the two. In fact from the intensity maps one can

extract “modes” which will be largely uncontaminated by foregrounds. Furthermore these

uncontaminated modes are the ones which are relevant for BAO analysis, and this is why

one can calculate the Fisher information without taking account of the foregrounds. This

result is apparent in Figure 3 of Chang et al. (2008) which shows a residual foreground

contamination only for k < 0.04h Mpc−1, i.e. on scales much larger than the BAO scale.

To further justify this statement we give an outline of how we have set model-independent

lower limits for just how smooth the synchrotron spectrum must be and also present

numerical results. More specifics can be found in Stebbins (2010). We decompose the

observed intensity pattern into modes:

δ̂I(~k) =

∫

d2n̂

∫

dν m~k(n̂, ν) Iν(n̂) . (13)

For the BAO analysis one will want to use modes which are localized in the spatial

wavenumber, k, describing the spatial pattern of 21cm emission. One will furthermore want

these modes localized in angular wavenumber, l, allowing one to distinguish modes whose

variation is primarily radial or angular.

The synchrotron intensity is given by

Isync
ν (n̂) =

∫ ∞

0

dNe

dǫ
W (

ν

ǫ
) dǫ (14)

where ǫ = E2
e |n̂ × B|, Ee is the electron energy, B the magnetic field, and dNe

dǫ
gives the

distribution of ǫ along line-of-sight n̂. W is a function that describes synchrotron emission

for given electron (Rybicki & Lightman 1985). This convolution means that small-scale

wiggles in the dNe

dǫ
distribution function show up as wiggles in the spectrum of Isync

ν . Since
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W ≥ 0 and is smooth one finds that, relative to the mean, wiggles in Isync
ν are suppressed

relative to wiggles in dNe

dǫ
, and the suppression is greater as one looks at higher frequency

wiggles. Furthermore since dNe

dǫ
≥ 0 one finds that the amplitude of wiggles in dNe

dǫ
can be no

bigger than the mean. Given these constraints it is impossible for the amplitude of wiggles

in Isync
ν to be larger than a suppression factor times the mean Isync

ν . At the frequencies of

interest the mean Isync
ν corresponding to a brightness temperature of a few Kelvin so the

physical bound on wiggles is the suppression factor times a few kelvin. The suppression

factor will depend on the physical scale of the wiggles and is extremely small for wiggles

which could masquerade as BAO.

More specifically if one Fourier transforms the intensity in ln ν: Ĩ(K) =
∫ ∞
−∞ Isync

ν e−iK ln νdν then |Ĩ(K)| ≤ S(K)Ĩ(0) where S(K) ≥ 0 is the suppression fac-

tor which is plotted in Figure 3 for small K. S(K) is given by the logarithmic Fourier

transform of W . At the large K relevant to BAO the S(K) is so small that it is difficult

to determine numerically, but since the Fourier transform of C∞ functions, such as W ,

should fall off exponentially one can extrapolate the S(KBAO) < 10−100 where KBAO is the

logarithmic wavenumber corresponding to the BAO scale. If one chooses modes which limit

the amount of small-K contamination one can greatly suppress the amount of possible

synchrotron contamination. One can apply exactly the same argument to free-free emission,

which depends on the distribution of gas temperatures in position or ǫ, and obtain similar

levels of suppression. In practice suppression factors of a 10−100 are not achievable due

to the contamination from small K, and this level is not really needed since this is much

larger than many other sources of noise such as the photon shot noise. However if one

understands the beam pattern and frequency response of the telescope, one can expect to

achieve suppression factors of < 10−4 for most modes on the BAO scale, which is more than

enough to make foreground contamination a negligible source of noise.
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The CRT will be sensitive not only to total intensity but also to linear polarization.

While at emission the synchrotron light is linearly polarized with a smooth spectrum,

Faraday rotation can cause small scale wiggles in the spectrum of each component of linear

polarization by the time it reaches the CRT. This does not effect the total intensity. To

avoid possible contamination by Faraday rotation one should combine the radio signals so

as to make an intensity map with as small a contamination linear polarization as possible.

In this paper, we assume that the foreground is properly subtracted, and consider only

the noise (i.e, fluctuations) associated with it.

2.5. Fisher matrix calculations and instrument response

Once we have estimates of the noise relative to the signal for a given survey and

instrumental parameters, as in equation (9), we can derive error estimates on the angular

diameter distance DA(z) and Hubble parameter H(z) at various redshift bins (of size

∆z = 0.1) using the Fisher matrix formalism presented in Seo & Eisenstein (2007): we

consider nonlinear degradation on BAO both due to nonlinear structure growth and redshift

distortions at each redshift. We combine this with the Planck Fisher matrix from the DETF

and derive errors on dark energy parameters and the Figure of Merit (FoM) (Albrecht et al.

2006). The FoM is defined as the inverse volume of the 95% confidence ellipse in the space

of w0 and wa. Following the convention of the DETF, our parameters include the matter

density Ωmh2, baryon density Ωbh
2, dark energy fraction Ωde, curvature fraction ΩK , the

spectral tilt ns, and the amplitude A, and two dark energy equation-of-state parameters:

w0 and wa. We choose our fiducial cosmology to be consistent with WMAP1 (Spergel et al.

2003).

Recent results (Eisenstein et al. 2007; Seo et al. 2008) have shown that when the
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signal to noise ratio per Fourier mode is of order two, we can partially undo the nonlinear

degradation of the BAO signal. For our Fisher projection, we assume that we can

conduct reconstruction and halve the nonlinear damping scale of the BAO only when

PHI(k, µ = 0)/(PN + Pshot) at k = 0.2h Mpc−1 is larger than two. We hereafter denote

PHI(k, µ = 0)/(PN + Pshot) at k = 0.2h Mpc−1 as nP0.2.

While we do not attempt to include an exact instrument response function, we adopt a

reasonable approximation that describes the general response function of CRT in our Fisher

matrix analysis. The CRT cylinders are oriented in a North-South line so that the beam

has a narrow width in right ascension (because of the focussing of the cylinders) but a very

broad coverage in declination. As a consequence the beams formed scan the sky at fixed

declination and the largest beam separation defines a maximum spatial Fourier component

(i.e., the Nyquist frequency kNyq = π/Resolution) that can be measured in declination.

Higher modes are aliased onto lower modes but the alias effect is greatly suppressed because

of the non-zero beam width. The rotation of the earth results in nearly continuous sampling

in right ascension. The CRT therefore has some sensitivity to all modes beyond kNyq but

the sensitivity decreases around kNyq according to a window function which arises from

the non-zero beam size. We model the beam shape assuming a uniform illumination of

the cylinder aperture and calculate the signal that would be detected summed over all the

beams. The resulting expression is cumbersome but can be adequately represented for our

purposes by an exponential damping of a signal with a characteristic damping scale set by

the Nyquist limit kNyq for a given angular resolution. As the damping effectively suppresses

signals from the modes beyond the Nyquist limit along the right ascension, we refer to the

effects in both directions as Nyquist limit or Nyquist cutoff from now on. Such limitation

does not apply to wavemodes along the frequency direction (i.e., the line of sight) where the

21cm survey can achieve an excellent redshift resolution: we apply no Nyquist limit along
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this direction. We therefore introduce the following anisotropic window function Ŵ (~k) and

include in the signal to noise calculation in equation (9):

Ŵ (~k) = exp
[

−1.5(kx/kmax)
2
]

Θ(kmax − ky) (15)

where Θ is a Heaviside step function, PHI is the HI power spectrum in redshift space, and

kmax is set to be the Nyquist frequency kNyq given the angular resolution. In a real survey,

an instrument response will generate a window function with more complex features than

described above. However, note that the effect of the instrument response on the shape of

the power spectrum can be precisely predicted and therefore corrected for in a real survey.

We use equation 9 and 15 as our default for § 4. We explain the effect of including this high

k cutoff in more detail in § 3.

An interferometer that forms beams using only cross-correlations also has a low k

cut-off that depends on the instantaneous field of view along the drift scan direction (i.e., in

right ascension) but only on the plane kDec(= ky) = 0. We have not explicitly corrected for

the reduced sensitivity at low k due to the limited field of view, but the resulting effect on

the total number of modes per k is minimal for the array geometries we consider, so we can

safely ignore this effect. We note, in addition, that the beams that are formed can generally

contain signals from more than one direction. In our analysis, note that we assume that the

antenna pattern cuts off sufficiently quickly outside the region where the beams are formed

so that the signal from side lobes are attenuated to a negligible level.

3. Effect of angular resolution

Unlike optical galaxy surveys where the angular resolution is of order arcseconds, the

expected angular resolution of a CRT is a few arcminutes at best. Such a limited angular
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resolution might potentially impair the acoustic peak measurement and therefore distance

measurements in various ways. The angular resolution of a CRT affects the pixel volume

VR in equation (9), but also determines the range of the wavenumbers available due to the

cutoff near the Nyquist frequency as modeled with the window function Ŵ . While the

former effect is obvious, the latter has not been investigated previously. Before we move to

the DETF FoM for a CRT, we investigate the effects of this window function on the acoustic

peak measurement and test using Fisher matrix analysis and Monte-Carlo simulations.

We focus on the following effects of angular resolution (i.e., the window function).

• The increase in errors due to the wavenumber cutoff near the Nyquist frequency kNyq.

We can test this analytically within the framework of Fisher matrix.

• Instability of the χ2 fitting due to the short wavenumber range available below kNyq.

We test this using Monte-Carlo simulations.

First, limited angular resolution will decrease S/N not only by increasing VR but also

by limiting the wavenumbers available. Note that the Fisher matrix method from Seo

& Eisenstein (2007) assumes that the power spectrum up to a large enough wavenumber

(i.e., kmax = 0.5h Mpc−1) is available from observation, implicitly relying on an optical/IR

survey. However, the resolution of radio surveys will likely limit kNyq, therefore kmax,

to be much below 0.5h Mpc−1. Due to the degradation of BAO by Silk damping (Silk

1968) and nonlinearity (e.g., Meiksin, White, & Peacock 1999; Seo & Eisenstein 2005;

Jeong & Komatsu 2006; Eisenstein et al. 2007; Crocce & Scoccimarro 2008; Matsubara

2008), kmax = 0.3 − 0.5h Mpc−1 contains very little relevant information, but losing scales

k < 0.3h Mpc−1 may be more damaging. Chang et al. (2008) mention that a Nyquist

sampled map with a pixel size of ∼ 18h−1 Mpc, and therefore kmax = kNyq = 0.17h Mpc−1,
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is required for a BAO survey at z ∼ 1, as the information on smaller scales is damped

away due to nonlinearity. We want to probe this quantitatively: how much residual BAO

information lies beyond k ∼ 0.17h Mpc−1? This question becomes especially pressing

if reconstruction is anticipated, in which case we do not want the scales of interest for

reconstruction to lie beyond the Nyquist frequency.

We include the effect of the Nyquist frequency limit by introducing Ŵ as shown in

equation (9) and (15), which effectively limits the integration range of the Fisher matrix

calculation in Seo & Eisenstein (2007). We test the effect of including this limit as a

function of kmax. The left panel of Figure 4 shows the Fisher matrix estimates of the errors

on the the distance measurement DV as a function of kmax for different cases of nP0.2

assuming a BAO feature at z = 1 in redshift space; we assume a volume of 1h−3 Gpc3.

With kmax ∼ 0.2h Mpc−1 corresponding to a resolution of 16h−1 Mpc (i.e., 23 arcmin at

z ∼ 1), compared to kmax > 0.3h Mpc−1, the effect of introducing Ŵ is small when the

instrumental noise is negligible (i.e., nP0.2 ≫ 10). However, for a realistic survey with

nP0.2 < 1.5 the error increases by ∼ 16% relative to an estimate which includes small scales.

This degradation in errors will be even more severe at high redshift, where the linear regime

extends to smaller scales leaving even more information unobtainable at fixed telescope size.

The survey we consider is composed of a broad range of redshifts and therefore we

observe an integrated effect of the Nyquist frequency limit over a range of redshift. The

middle panel of Figure 4 compares the FoM for our fiducial CRT configuration as a function

of Lcyl, i.e., angular resolution, with and without considering the Nyquist frequency limit,

while the rest of telescope parameters are held fixed. The right panel shows the effect of the

Nyquist frequency limit on the errors of DV at the individual redshift bins that comprise

the fiducial survey. The effect is indeed larger at high redshift. Note that such an effect

would have been much more severe than shown here at high redshift if not for the large
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survey area/volume available at high redshift; if we assume at z = 2 the same volume as at

z = 0.7, the errors at z = 2 will be ∼ 1.7 times larger than shown here. Overall the effect

of the Nyquist limit is small for a CRT array with a length larger than 100 ∼ 150 meters

(i.e., angular resolution better than 10− 15 arcmin at z ∼ 1): < 11% in FoM with a Planck

prior and even less with an addition of the DETF Stage II as priors. A smaller telescope

will suffer more from the Nyquist frequency limit (magenta points).

The second potential problem with limited resolution is related to the way the BAO

feature is typically extracted from the power spectrum. To make the extraction as robust

(systematics-free) as possible, the BAO feature is extracted by marginalizing over the

broadband shape of the power spectrum. Poor angular resolution, which leads to a

limited range of wavenumbers available, makes the correct estimate of the broad-band

shape difficult, and this can bias the acoustic scale measurement, and therefore distance

measurements, as well as increase the errors associated with the measurement.

To test the second problem, we generate 61 random Gaussian density fields of

8h−3 Gpc3 (i.e., a total of 488h−3 Gpc3) with 5123 density grids using a code (Sirko 2005)

which produces initial conditions using second order Lagrangian perturbation theory. To

account for nonlinear degradation of the BAO signal without evolving the density field,

we smooth the input power spectrum based on the expected degradation at z = 1 in real

space. We Fourier-transform the ensuing distribution, compute the power spectrum, and

conduct a χ2 analysis to measure the acoustic scale using Jackknife resampling. We follow

the details of the χ2 analysis presented in Seo et al. (2008).

In Figure 5, we use one Jackknife subsample (i.e., 480 h−3 Gpc3) and show the

differences between the measured acoustic scales α as a function of the number of fitting

parameters for the broadband shape. For example, B2A4 means that we used a second

order polynomial in k for a scale-dependent bias B(k) and a fourth order polynomial in
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k for a smooth additive term A(k). A robust extraction of a BAO signal is characterized

by a best fit α that is independent of the polynomial order for a range of reasonable

choices of polynomials where “reasonable choices” means enough flexibility to account

for the unknown broadband shape while not mimicking the BAO. From the figure, while

kmax > 0.3h Mpc−1 shows robust behaviour, when kmax ∼ 0.2h Mpc−1 the best fit varies

with parametrization: the standard deviation of the best fit values among these four

parametrizations for the given subsample is 7 times larger for kmax = 0.2h Mpc−1 than for

kmax = 0.3h Mpc−1.

We find that the dispersion among many Jackknife subsamples (i.e, the precision

associated with the measurement of the acoustic scale) is also sensitive to a choice of

parametrization for kmax < 0.2h Mpc−1. That is, for large values of kmax, i.e., the higher

resolution data, the choice of fitting formula is simple: all reasonable choices give the

same result. However, in the case of poor resolution, the marginalizing process over the

smooth component of the power spectrum becomes more challenging and the fit becomes

highly dependent on the fitting formula. This sensitivity itself speaks to the peril of a low

resolution survey.

In summary, angular resolution at the level of 20 arcmin (i.e., ∼ 16h−1 Mpc) at z = 1

not only increases the noise of the survey but also limits the small wavenumber region

where a residual BAO exists. The effect is more damaging at high redshift where the linear

scales of interest correspond to smaller angular scales; still the impact on the DETF FoM is

only 11% for our fiducial survey. Second, with a limited wavenumber region as a result of

the poor angular resolution, it is difficult to construct a robust standard ruler test, and the

extracted acoustic scale will be sensitive to the choice of fitting formula used to marginalize

over the broadband shape. This means that we will need to know the broadband shape

better, which diminishes the advantages of using the BAO as a standard ruler.
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4. FoM as a function of telescope configurations

In this section, we investigate the dependence of the final FoM values on various

telescope configuration parameters. From equation (9), it is evident that, at a given T̄sig,

the noise depends on the angular resolution, the integration time per pixel, the volume of

the survey, and therefore on Lcyl, Nyear/Wcyl, and the redshift range and dF , respectively.

The signal, which scales as T̄sig, will vary depending on our assumptions about ΩHI, and

clustering bias in PHI. In Figure 6, we show the dependence of the FoM from a CRT on

each of these parameters while the rest of the parameters are fixed. We plot two values of

FoM: first, when we combine the CRT with the Planck priors (square points), and second,

when we add the DETF Stage II survey (cross points). The x-axis is scaled such that the

fiducial model parameter presented in Table 1 corresponds to unity. The lower panels show

nP0.2 ≡ PHI/(PN + Pshot) at k = 0.2h Mpc−1, which indicates the amount of signal relative

to the noise at our scale of interest, and σDV
, the resulting error estimate on the isotropic

distance scale DV (Eisenstein et al. 2005), at each redshift bin for the corresponding

configuration denoted with the same colored point in the top panels. The error σDV
reflects

both Vsur and nP0.2 as well as redshift distortions.

With our fiducial survey (see Table 1), we find FoM = 21 without Stage II, and

FoM = 141 including Stage II, which is ∼ 3 times better than Stage II alone, and somewhat

worse than Stage II + Stage III. From the bottom panels of the figure, one sees that our

fiducial survey is noise-dominated at high redshift bins (nP0.2 is less than one), mainly due

to poor angular resolution. This results in a larger σDV
in the high redshift bins, an effect

somewhat offset by a larger volume per redshift bin at higher redshift.

As expected, the FoM increases with increasing Lcyl due to increasing (i.e., better)

angular resolution. Increasing Lcyl increases nP0.2 and decreases σDV
over all redshift bins.

While the improvement on σDV
is in general larger at high redshift, at the lowest redshift
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bins, nP0.2 is now big enough to pass the reconstruction requirement of nP0.2 > 2. The

contribution from these lowest redshift bins is very important for improving the FoM as

Lcyl increases.

Increasing Wcyl decreases the amount of time that a celestial object will sit in the

cylinder beam as it drifts across the cylinder width, i.e., the integration time, and therefore

decreases the FoM. Note that decreasing Wcyl means increasing the number of cylinders

and therefore increasing the number of feeds in the case of a compact array. Increasing

and decreasing Nyear will affect the integration time in an opposite manner to Wcyl, and

therefore the two can be adjusted to balance the overall cost of the survey and the time

required to complete it.

For the survey we consider here, the receiver spacing dF determines the main lobe

beam angle, therefore, the area of the sky covered. As dF reaches 0.17m, i.e., half of our

fiducial spacing, the survey area increases to the whole sky, and no further improvement in

FoM is obtained, as shown in the right panels of Figure 6.

The figure also shows that the neutral hydrogen fraction and the clustering bias of the

neutral hydrogen are important uncertainties in estimating the performance of the CRT.

Increasing the two parameters has two effects: first, the signal increases, therefore increasing

the signal to noise. Second, some of the low redshift bins now can satisfy the nP0.2 > 2

threshold for reconstruction, and therefore we can assume a smaller nonlinear degradation

on the BAO feature for those redshifts. The clustering bias of the neutral hydrogen has

been investigated in several papers (Meyer et al. 2007; Wyithe et al. 2009). According to

Marin et al. (2009), large-scale bias of the neutral hydrogen is near unity at z = 1, but

increases to ∼ 1.3 at z ∼ 2. If we include this bias evolution in our fiducial model, we find

a slightly larger FoM: 24 without Stage II and 152 with Stage II for our fiducial survey

parameters.
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5. Maximization of FoM

In designing a future CRT array, we want to optimize the telescope configuration for

the best performance (i.e., a largest FoM) while holding the cost fixed. In this section we

describe an online calculator which performs this optimization.

For a given survey area, the figure of merit increases as the pixel noise and pixel size is

reduced. However, reducing the pixel noise and pixel size increases the complexity of the

CRT array. For example, while we have considered a square compact CRT array in the

previous sections, we may want to sparsely locate cylinders to be more cost-effective, as

the cost depends on the number of cylinders. The sensitivity per pixel, and therefore the

noise per pixel, then will also depend on the packing factor, i.e., the ratio of the number

of cylinders to the number of possible locations of the cylinders. We can describe a cost

function that parametrizes the complexity of the CRT array. It is not intended that these

costs include everything that would arise in designing and building a large radio telescope,

such as site preparation, non-recoverable engineering costs, overhead, contingency etc.

These costs should only be used in trying to compare sets of design parameters. The cost

function can be broken into three components; the cost of the digital electronics, the cost

of the cylinder feed line, and the cost of the reflector surface.

CT = NfNcRe + NfNcdF Rf + NfNcdfW
2
cylRr (16)

where Nf is the number of feeds per cylinder, Nc is the number of cylinders, dF is the

feed spacing, and Wcyl is the width of the cylinders. In addition, Re is the cost per digital

channel, Rf is the feed line cost per unit length, and Rr is the reflector cost per unit volume.

These three cost rates can be scaled from the cost of existing prototypes.

An optimization tool for the maximum FoM per given cost that takes into account a

large number of CRT engineering parameters was developed and is available publicly at
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http://astro.fnal.gov/21cm. Figure 7 shows the output of a design optimization for various

CRT engineering parameters. Because fractional changes in array sensitivity and resolution

drop off as the array cost increases, the corresponding figure of merit levels off as well.

However, it should be noted that a FoM of 300 can be achieved with an array costing $15

million according to our cost model.

6. Conclusion

In this paper we have considered a BAO survey with a ground-based 21cm intensity

mapping with a CRT targeting a redshift range of 0.2-2.0. We have tested the feasibility of

the survey while paying more careful attention to the effect of limited angular resolution.

We summarize the results in this paper.

First, we have tested the effect of angular resolution using the Fisher matrix calculations

and Monte Carlos. The angular resolution at the level of 20 arcmin at z ∼ 1 not only

increases the instrumental noise beyond the signal but also notably limits the wavenumber

range available for the standard ruler test. The latter effect further increases errors on the

acoustic scale, while such effects on FoM are small for a CRT array with a size of 100-150

meters (i.e., an angular resolution of 10 − 14 arcmin at z ∼ 1). The limited wavenumber

range also makes the marginalizing process over the smooth component of the power

spectrum to isolate the BAO more challenging: the result highly depends on the fitting

formula. Therefore, in the case of poor resolution, the data are hard to fit reliably.

Second, we have investigated the dependence of the DETF FoM on various telescope

parameters while assuming a simple compact CRT array. As expected, the FoM strongly

depends on the telescope parameters as well as the neutral hydrogen fraction and the

clustering bias.
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Third, we have relaxed the assumption of the compact CRT array and have optimized

the telescope configuration for the maximum FoM while holding the cost fixed. We find

that we can achieve FoM of 300 (with Planck and Stage II priors) for a reasonable cost.

The FoM/cost calculator and the optimization tool for a CRT is publicly available in

http://astro.fnal.gov/21cm.

We thank Patrick McDonald and Nickolay Y. Gnedin for useful communications. H-JS,

SD, JM, DM, AS, CS, and AV are supported by the U.S. Department of Energy under

contract No. DE-AC02-07CH11359.

A. 21cm Intensity Power spectrum

We derive the measured power spectrum in Fourier space, using the following definitions

for discrete Fourier transform:

δ̂~k =
1

N

∑

x

ei~k·~xδp(~x) (A1)

δp(~x) =
∑

k

δ̂~ke
−i~k·~x (A2)

∑

x

ei~x·(~k−~k′) = NδK
~k,~k′

(A3)

< δ̂~kδ̂
∗
~k′

> Vµ = P (~k)δK
~k,~k′

, (A4)

where δp is the fluctuations in power (i.e., Watts) measured for the pixel due to the large

scale structure of HI and instrument noise, N is the total number of pixels in the map, Vµ

is the total volume of the map under FFT, and δK is the Kronecker delta.

Then,

< δ̂~kδ̂
∗
~k′

>=<
1

N

∑

xp

ei~k· ~xpδp( ~xp)
1

N

∑

xq

e−i~k′· ~xqδp( ~xq) >
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=
1

N2

∑

xp

∑

xq

< δp( ~xp)δp( ~xq) > ei~k· ~xpe−i~k′· ~xq

=
1

N2

∑

xp

∑

xq

[

p2
S(ξHI)pq + σ2

pN
δK
pq

]

ei~k· ~xpe−i~k′· ~xq

=
1

N2

∑

xp

∑

xq

∑

k′′

p2
S

Vµ
PHI( ~k′′)e−i ~k′′·( ~xp− ~xq)ei~k· ~xpe−i~k′· ~xq

+
1

N2

∑

xp

σ2
pN

ei(~k−~k′)· ~xp

=
1

N2

∑

k′′

p2
S

Vµ
PHI( ~k′′)

∑

xp

∑

xq

ei(~k− ~k′′)· ~xpei( ~k′′−~k′)· ~xq

+
1

N
σ2

pN
δK
~k,~k′

=
∑

k′′

p2
S

Vµ

PHI( ~k′′)δK
~k, ~k′′

δK
~k′′, ~k′

+
1

N
σ2

pN
δK
~k,~k′

=
p2

S

Vµ
PHI(~k)δK

~k,~k′
+

1

N
σ2

pN
δK
~k,~k′

, (A5)

where PHI(~k) is the power spectrum in h−3Mpc3 due to the large scale structure of the

neutral hydrogen, i.e., our signal. Parameters pS and σPN
are the average power due to the

21cm line and the uncertainly associated with the average power pN due to the instrumental

and sky noise, as defined in equation 1 - 4. The measured power spectrum of the 21cm

intensity P̂ (~k) is then,

< δ̂~kδ̂
∗
~k′

> Vµ = P̂ (~k)δK
~k,~k′

= p2
SPHI(~k)δK

~k,~k′
+

Vµ

N
σ2

pN
δK
~k,~k′

P̂ (~k) = p2
SPHI(~k) + VRσ2

pN
, (A6)

where VR is the volume of a pixel.
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Table 1. Fiducial CRT configuration.

Low redshift High redshift

Parameters 0.66 < z < 1.24 1.22 < z < 2.11

Length of Cylinder, Lcyl (m) 99.8 142.8

Feed spacing, dF (m) 0.39 0.558

Width of Cylinder, Wcyl (m) 14.3 14.3

Duty factor, Df 0.5 0.5

Nyear (years) 1.40 0.87

ΩHI 0.0005 0.0005

bias 1.0 1.0

Sky temperature, T̄sky (K) 10 10

Antenna temperature, T̄a (K) 50 50

gain, g 0.8 0.8

Pshot 100.0 100.0

Note. — For technical reasons, we assumed that the redshift range

is covered by two distinct configurations of the telescope.
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Fig. 1.— General configuration of a compact CRT array. Lcyl is the length of the cylinder,

Wcyl is the width of the cylinder. We assume the cylinder is square and compact so Wcyl

times the number of cylinders is set equal to Lcyl. Also the number of antenna feeds along

a single cylinder is equal to the length of the cylinder divided by dF , the spacing of the

receivers.
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Fig. 2.— Expected errors on the power spectrum for our fiducial survey in Table 1. We

assume a power spectrum at z = 1 in real space, after properly accounting for the nonlinear

degradation on BAO, and the instrumental noise at z = 1 while assuming the entire survey

volume. A wavenumber bin width of 0.01h Mpc−1 is assumed.
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Fig. 3.— Plotted is the suppression factor, S(K), which is the ratio of the maximum am-

plitude in spectral wiggles in synchrotron intensity in units of the mean intensity. It is a

function of the logarithmic wavenumber K. In the inset is plotted the logarithmic wavenum-

ber corresponding to the 1st BAO peak as a function of redshift. Extrapolating to get

S(KBAO) < 10−100. These functions are computed in Stebbins (2010).
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Fig. 4.— The effect of introducing the Nyquist frequency limit kmax (i.e., Ŵ in eq. [9] and

[15]) into the Fisher matrix calculation to account for a limited angular resolution. Left:

Fisher matrix estimates of errors on the distance scale as a function of kmax for different

cases of nP0.2 assuming a BAO feature at z = 1 in redshift space. The arrows point at

kmax = kNyq for the resolution of 16h−1 Mpc and 8h−1 Mpc. Middle: the difference in FoM

between including (solid points) and ignoring the Nyquist frequency limit (open points) as a

function of Lcyl, i.e., as a function of an angular resolution for our fiducial CRT configuration.

The squares are with the Planck prior and triangles are with the Planck + Stage II priors.

Right: the corresponding errors on the distance scale DV at each redshift bin of the fiducial

CRT. The solid points are with the Nyquist frequency cutoff and the open points are without

the cutoff. The same colored points in the middle and the right panels correspond to the

same value of Lcyl.
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Fig. 5.— The stability of the χ2 fitting (i.e., the differences between the best fits from

different parametrizations) as a function of kmax. The acoustic scale α is measured from

the χ2 fitting to one Jackknife subsample (i.e., 480 h−3 Gpc3) and the differences of α in

the unit of the true acoustic scale are shown as a function of the parametrization for the

broadband shape: for example, B2A4 means that we used a second order polynomial in k

for a scale-dependent bias B(k) and a fourth order polynomial in k for a smooth additive

term A(k) in Seo et al. (2008). Note that the fits using kmax > 0.3h Mpc−1 display robust

behaviour regardless of the parametrization, but when kmax ∼ 0.2h Mpc−1 the best fit varies

with parametrization.
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bias/1

Fig. 6.— FoM values as a function of various parameters (top panels). The square points

are for FoM from CRT+Planck, and the cross points are for CRT+Planck+Stage II. The

x-axis is scaled such that the fiducial model parameter presented in Table 1 corresponds to

1 in x-axis. The lower panels show nP0.2 ≡ PHI/(PN + Pshot) at k = 0.2h Mpc−1, which

indicates the amount of signal relative to the noise at our scale of interest, and σDV
, the

resulting error estimate on the distance scale DV at each redshift bin. The corresponding

configuration between the top and the bottom panels is denoted with the same colored point.

For example, black points correspond to our fiducial configuration.
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Fig. 7.— Optimization of the CRT: the maximum DETF FoM at given cost. We assume a

CRT at a latitude of 35 degrees.




