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Abstract

Dramatic progress has been made over the last decade inrtrerical study of quantum
chromodynamics (QCD) through the use of improved formatatiof QCD on the lattice
(improved actions), the development of new algorithms &edapid increase in comput-
ing power available to lattice gauge theorists. In thiscéetive describe simulations of full
QCD using the improved staggered quark formalism, “asgtadhions. These simula-
tions were carried out with two degenerate flavors of lighargs (up and down) and with
one heavier flavor, the strange quark. Several light quadses down to about 3 times the
physical light quark mass, and six lattice spacings hava hsed. These enable controlled
continuum and chiral extrapolations of many low energy Q@®@Beawvables. We review the
improved staggered formalism, emphasizing both advastage drawbacks. In particu-
lar, we review the procedure for removing unwanted stagfspecies in the continuum
limit. We then describe the asqtad lattice ensembles atdntehe MILC Collaboration.
All MILC lattice ensembles are publicly available, and thewe been used extensively by
a number of lattice gauge theory groups. We review physisglteobtained with them,
and discuss the impact of these results on phenomenologigsTimclude the heavy quark
potential, spectrum of light hadrons, quark masses, demastant of light and heavy-light
pseudoscalar mesons, semileptonic form factors, nuckeoctsre, scattering lengths and

more. We conclude with a brief look at highly promising figyorospects.

PACS numbers: 12.38.Gc, 11.15.Ha
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I. INTRODUCTION

The standard model of high energy physics encompasses nantinowledge of the funda-
mental interactions of subatomic physics. It consists af qavantum field theories: the Weinberg-
Salam theory of electromagnetic and weak interactions,caraahtum chromodynamics (QCD),
the theory of the strong interactions. The standard modeblean enormously successful in ex-
plaining a wealth of data produced in accelerator and cosayiexperiments over the past thirty
years. Our knowledge of it is incomplete, however, becatisas been difficult to extract many of
the most interesting predictions of QCD: those that depenthe strong coupling regime of the
theory and therefore require nonperturbative calculation

At present, the only means of carrying out nonperturbati@®(@alculations from first princi-
ples and with controlled errors is through large-scale misaksimulations within the framework
of lattice gauge theory. These simulations are needed troatguantitative understanding of the
physical phenomena controlled by the strong interactisnsh as the masses, widths, and scatter-
ing lengths of the light hadrons, and to make possible therdebation of the weak interaction
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements fromezkpent. A central objective of
the experimental program in high-energy physics, and 6E&@QCD simulations, is to determine
the range of validity of the standard model, and to searciméawr physics beyond it. Thus, QCD
simulations play an important role in efforts to obtain agkyeunderstanding of the fundamental
laws of physics.

Major progress has been made in the numerical study of QCD tbeelast decade through
the use of improved formulations of QCD on the lattice, theettgpment of new algorithms, and
the increase in computing power available to lattice gahgerists. The lattice formulation of
QCD is not merely a numerical approximation to the contindammulation. The lattice regular-
ization is every bit as valid as any of the popular continuggufarizations, and has the distinct
advantage of being nonperturbative. The lattice spagiestablishes a momentum cutoffa that
removes ultraviolet divergences. Standard renormatinatiethods apply, and in the perturbative
regime they allow a straightforward conversion of lattiesults to any of the standard continuum
regularization schemes.

There are several formulations of the lattice QCD Lagramgiacurrent widespread use. The

gauge field action can be constructed with varying degre@sfovement that are designed to



reduce cutoff effects at nonzero lattice spacing. The gaation can be formulated using Wil-

son’s original method (Wilson, 1974) with modern improverise i i ert,
1985) or with the twisted mass (Frezzaitial,, 2000,/ 2001 Frezzotti and Rassi, 2004) or other

variants (Morningstar and Peardon, 2004; Zargittl, (2002), with the Kogut-Susskind or stag-
gered fermion formulation (Banles all, 11976, 197/7; Kogut and Susskind, 1975; Susskind,1977)
with improvements, and with the more recently implementaidat methods that include domain-
wall fermions (Furman and Shamir, 1995; Kaplan, 1992; Sh,el@_&)_%) and overlap fermions

Narayanan and Neuberger, 1995; Neuberger, 1998b). Otigmovements also in production

use are Wilson quarks with HYP smearing to reduce latticdaats (Hasenfratet al., [2007;

Schaefeet all,|12007), or to approximate good chiral behav;m(ﬁaﬁtikbﬁﬂ).

In this article, we review a ten-year research program fednzh a particular improvement of

staggered fermions called “asqgtad” (Bernatdl., [2000a; Blunmet al., 11997; Lagae and Sinclair,
1999; Lepagde, 1998; Orginos and Toussaint, 1999; Orgiha, [1999) (named for it® (a?) level

of improvement and its inclusion of a “tadpole” renormatiiaa). Over this time, the MILC Col-
laboration has created significant library of gauge fieldfigomation ensembles with the full com-
plement of the light sea quarks d, ands. The masses of the andd quarks have been taken
to be equal, which has a negligible effeet {%) on isospin-averaged quantities. In planning the
parameters of these ensembles, an attempt has been madiedssdthe three primary sources of
systematic errors in lattice QCD calculations: the chirad aontinuum extrapolations and finite
size effects. It is straightforward to perform simulatiovish the mass of the quark close to its
physical value, and in most of the ensembles that has been dtowever, up to now it has been
too computationally expensive to perform simulations atghysical mass of the andd quarks.
Instead, ensembles have been generated with a range ofjlighk masses in order to perform
extrapolations to the chiral (physical value of thandd quark mass) limit guided by chiral per-
turbation theory. Simulations have been performed withvaixes of the lattice spacing in order
to enable controlled extrapolations to the continuum (Z&ttcce spacing) limit, and in almost all
cases the physical size of the box in which the simulatione lh@en carried out has been taken
to be more than four times the Compton wavelength of the pioorder to minimize finite size
effects. Finally, because SU(3) chiral perturbation tigemmmverges rather slowly for thequark
mass close to its physical value, a number of ensembles hese dpenerated with lighter than

physicals quark masses to improve the chiral extrapolation. Thesenebkes are publicly avail-



able, and have been used by a number of research groupglimgchwur own, to calculate a wide
variety of hadronic quantities ranging from chiral propestof light mesons to hadronic parton
distributions to semileptonic decays of mesons with a chartmottom quark to the spectroscopy
of heavy quarkonium.

The asqgtad improved staggered fermion approach has enjoyesiderable success. Its com-
paratively high degree of improvement and its relatively mmputational cost enabled a broad
set of full QCD phenomenological calculations earlier thas possible with other fermion meth-

ods. In Fig[l we illustrate the dramatic effects of inclugsea quarks in a variety of physical

guantities |(Daviegt al,, [2004). Computations with asqtad sea quarks are able tauatéor a

wide variety of known decay constants, some hadronic maasdseveral quarkonium mass split-

tings to a precision of a few percent (Davegsall, 2004). Their predictions for a few heavy-light

leptonic (Aubinet all, 2005a) and semileptonic decays (A L, 2005b) have been experi-

mentally confirmed. They provide values for the strong fimacstire constantis (Davieset al,

2008), the charm quark mass (Davésal., [2009), the CKM matrix element¥s| (Bernardet al,,
2007e),|Vep| (Bernardet all, 2009a), andV,y| (Bailey et all, [2009), and thé™ andDs leptonic

decay constants (Follar al,, 2008) that are competitive with the most accurate detatitns

to date.

In Sec.[1l, we begin with a brief review of lattice gauge theatiscussing gauge field and
fermion field formulations and numerical simulation method/e end Sec€.Jll with an overview of
the asqtad and the more recent HISQ fermion formulations.

Sectiorll first discusses the inclusion of staggered diszaition errors in chiral perturbation
theory, resulting in “staggered chiral perturbation tygqSXPT). The application to the light
pseudoscalar meson sector is described in detail; thecagiplns to heavy-light mesons and to a
mixed-action theory (with chiral valence quarks and stagdeea quarks) are treated more briefly.
We then turn attention to the procedure we use to deal witlettra species that occur for stag-
gered fermions. Each staggered field (each flavor of quarkhalty gives rise to four species
in the continuum limit. The additional degree of freedoma#ied “taste.” To obtain the correct
counting of sea quarks it is necessary to take the fourth@bthe fermion determinant. This
rooting procedure has been shown to produce a theory thamniscal on the lattice, leading to
the legitimate question of whether the nonlocality pessést the lattice spacing goes to zero. Such

nonlocality would spoil the continuum limit, giving a thganequivalent to QCD. In recent years,
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FIG. 1 Comparison of the ratio of lattice QCD and experimlevaitues for several observables, where the

lattice QCD calculations are done in the quenched appraioméeft) and with 2+ 1 flavors of asqtad sea

quarks (right). This is an updated version of a figure fromi all (2004).

however, there has been a considerable amount of work ois$luig, and there is now a substantial
body of theoretical and computational evidence that thetfieroot methodology is indeed correct.
We discuss some of that work in detail in Jed. Ill, and alsdargow to take rooting into account
properly in the chiral effective theory.

In Sec[1V, we list the ensembles of publicly available ad@auge configurations, and describe
tests of their intended properties, including the deteatim of the lattice scale and the topological
susceptibility. In the following sections, we review plgsresults obtained with them. In SEg. V,
we review the spectroscopy of light hadrons other than teegasscalar mesons, including vector
and scalar mesons and baryons. Sectidn VI is devoted to miespef the pseudoscalar mesons, in-
cluding masses, decay constants and Gasser-Leutwylemniesgyconstants. We turn in Selcs. VI
and VI to the masses and decays of mesons containing owy lg@arm or bottom) quark and
one light antiquark. Sectidn VIl treats masses and leptdeaays; Se¢. VI, semileptonic decays.

In Sec[IX, we review a variety of other calculations, inéhgithe determination of the strong



couplingas, quarkonium spectroscopy, the spectroscopy of baryonsicmng one or two heavy
quarks Ko — Ko andBg — Bg mixing, the muon anomalous magnetic moment, and quark arhg|
propagators.

Finally, in Sec[X, we discuss further improvements under @raunder consideration, including
the incorporation of electromagnetic effects and the im@ietation of the HISQ action, and briefly
comment on future prospects for the field.

We do not review applications of the asqtad formulation toDQ@ermodynamics. A recent

article by DeTar and Heller (DeTar and Hell 009) cordarreview of high temperature and

nonzero density results, including those obtained usiag#ytad fermion action.

[I. FERMIONS ON THE LATTICE: IMPROVED STAGGERED FORMALISM
A. Brief introduction to lattice gauge theory
1. Basic setup

Euclideanj.e., imaginary time, field theories can be regulated by formiggthem on a space-
time lattice, with the lattice points, called sites, sepedtdby the lattice spacing This introduces
an ultraviolet cutoffrt/a on any momentum component. Matter fields then reside onlyhen t
lattice sites, while the gauge fields are associated witHitke joining neighboring sites. The
gauge fields are represented by gauge group elerdgis on the links, which represent parallel
transporters from siteto the neighboring site+ afl, wherelis the unit vector in the directiop,

with u=1,...,d for ad-dimensional lattice:

X-+af 2
Uu(x) = ?exp{ig/x +audy\,A\,(y)} :exp{iga {A“(x-i—aﬁ/Z)—i—%aﬁA“(x—i—aﬁ/Z)-i—..l}
= 1+iagAi(x+af/2) +... . (1)

Under gauge transformatiod$x), restricted to the sites of the lattice, the gauge linkssiam

as
Up(x) — V() UL(x)V T (x+afl) . 2)
The traces of products of gauge links around closed looplselattice, so-called Wilson loops, are

then gauge invariant. The gauge action can be built fromuhe®ver the lattice of combinations

of small Wilson loops with coefficients adjusted such thahimcontinuum limita — 0, it reduces
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to fddx%TrFl,z\, up to terms ofo (a?). The simplest gauge action, the original action introdunged

Wilson (1974), consists of a sum over plaquettes (1Wilson loops)

sezggReTml—upo, @

wheref = 2N /g?, for gauge group SW), with g the bare coupling constant.
Fermions, in Euclidean space, are represented by Grassimetdsw, andyy, which in the

lattice formulation reside on the sites of the lattice. Aggmfermion action can be written as
S = Z WxME xyly 4)
Xy

where the fermion matriMe.xy is some lattice discretization of the continuum Dirac opmra
D +m. Details of lattice fermion actions are described below.

The lattice gauge theory partition function is then given by
/ |‘| U () [ 00 expf S —a ISy 5)

wheredUy(x) is the invariant SUY) Haar measure ardip,dyy indicate integration over the Grass-
mann fields.
Since &k is quadratic in the fermion fields, the integration over thagSmann fields can be

carried out, leading to (up to a trivial overall factor)
B) :/nduu(x)detMF eXp{—Se}:/rldUu(x)exp{—Seff}, 6)
X,H X,

with St = Sg — TrlogME.
The expectation value of some observablis given by

(0) — /|‘|duu )] eBiusOexpl S - a'se)
_ 2(1[3 /|‘|o|uLl (X)OdetMr exp{— SG}—Z /|‘|o|uu ()0exp{—Sert} . (7)

If the observableD involves fermion fieldspy and gy then, in the second line of Ed.](7) each
pair is replaced bWI;;f(vy in all possible combinations with the appropriate minussitpr Wick

contractions of fermion fields.
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2. Improved action

As mentioned before Ed.](3), the typical gauge action ondtteés reduces to the continuum
action up to terms ob (a?). These terms lead to(a?) deviations from the continuum result
of physical observables computed at finite lattice spacifigeseo (a?) effects can be reduced
by using an improved gauge action (together with improveerajors, where necessary) in an
improvement program initiated by Symanzik (19|8_Q_] 983).

For the gauge action, the improvement can be achieved bywgdtk 1 (planar) rectangle
(labeled ftt”) and generalized 3-d all 1 1 x 1 parallelogram (labeleddg’) Wilson loop terms (see
Fig.[2) to the Wilson action, Ed.](3), with coefficients cortgul at one-loop order in perturbation
theory, by Luscher and Weisz (1985a,b),

Sw = % {gcmReTr(l—Upl) + Zcrt ReTr(1—Uy) + %CpgReTr(l— Upg)} : (8)

The coefficientsg; = ci(o) —|—4T[GoCi(1) at one loop, can be found in Table 1/ of Luscher and Weisz

19854).

\Y \Y

a M by M o M
FIG. 2 Luscher-Weisz action Wilson loops: a) standard yddig, b) 2< 1 rectangle and ¢) ¥ 1x 1

parallelogram

Bare lattice perturbation theory results generally cogeetowly but can be improved by using

tadpole-improved perturbation theory (L nd Madke993). This starts with using a

more continuum-like gauge lind, — Uy = uy *U,.. The so-called tadpole factag is determined
in numerical simulations either as the expectation valug,of Landau gauge or, more commonly,

from the expectation value of the average plaquette
1
Up = <NReTIUp|)1/4. (9)

The Liuscher-Weisz action can now be tadpole improved byiattp pulling a ugl factor out of
each link and replacingg in the one-loop perturbative coefficientswith a nonperturbatively

renormalized couplings defined, for gauge group SU(3), in terms of the measuredéatalue

12



of ug by
os= —1.303615logyp , (20)

where the proportionality factor is determined by the oo@pl expression for logy. Defining
Bw = U “Bey, sinceUy, involves the product of four links, the improved action cawritten as
Iford et all,[1995)

BLw [1+ 0.480504] 0.033251¢
Sw=""2"¢YReT(1-Up) -y = ———"ReT(l-Un) - 5 —— 5 —ReTi1—Upg) ; .
3 % P Z 20u3 <N Pa

(11)

Since higher perturbative orders in the coefficients aréeégd, the one-loop improved Liischer-
Weisz action, Eq[(11), leads to remaining lattice artéafto (aZa?). Sometimes, only a tree-level
improved action without the terms proportionaktgin Eq. (11) is used, leading to lattice artifacts
of 0 (asa?). Since the parallelogram terms are then absent such siongatre somewhat faster. It
should be noted that E.(11) does not include the one-loopibations from dynamical fermions,
which were unknown at the time the MILC collaboration stdrtiee 2+ 1-flavor simulations re-
viewed in this article. Therefore, for those simulatiore teading lattice artifacts in the gauge

sector areo (0sa?) as in the fermion sector, described later. The one-loopitermontribution has

recently been computed by Hao, von Hippel, Horgan, M Jaottier (20017).

B. Fermions on the lattice
1. The doubling problem

Putting fermions on a lattice, one replaces the covarianvatéese in the continuum fermion

action with a covariant (central) difference

Shaive = Z P(x) { Z YuOud(x) +mu(x) } ) (12)
X m
where
W00 = o (Uu(w0c+ afl) — U (x— al(x—af)) (19

The inverse propagator in momentum space derived from tiendeq. [12) in the free case, with
all link fieldsU, =1, is
ast(ap) =i yusin(ap,) +am. (14)
K

13



In the massless case, this inverse propagator not onlyhesisherp = 0, but also whemp, =0
or p, =1/afor eachu=1,...,4,i.e.,on all 16 corners of the Brillouin zone th= 4 dimensions.
Thus, when we try to put one fermion on the lattice we actugdiyl6 in the continuum limit. This

is the infamous doubling problem of lattice fermions.

2. Wilson fermions

This doubling problem was recognized by Wilson when he fosniulated lattice gauge theo-

ries. He also proposed a solution: adding an irrelevant teraterm that vanishes in the contin-

uum limit,a— 0 (Wilson, 1975)

S =Srawe 5 3 WX 3 A4 = POw(mp. (15)
wherer is a free parameter, usually sefrte- 1, and the Laplacian is
1 N A A
D) = — (UuOOw(x-+a) + Uyl (x— a)w(x—afl) —20(x)) - (16)

The free inverse propagator now is
aS'(ap) =iy yusin(ap,) +am—r Y (cogap,) - 1) . (17)
H H

The doublers, witthn momentum components, = 1/a, now attain masses -+ 2nr/a, and only
one fermion, withp =~ 0, remains light.

We note that the Wilson Dirac operatonisHermitian,
Dyy (M) = ysDw (M)ys . (18)

Thus deDJV(m) = detDw(m), implying that two flavors — and by extension any even numltber o
flavors of Wilson fermions — lead to a manifestly positiventg¢ definite fermion determinant,
degDyy, (m)Dw(m)).

The price for eliminating the doubling problem in this Witséermion approach is that the
action Eq.[(Ib) violates the chiral symmedy = iays, dP = ialys of massless fermions (with
a an infinitesimal parameter). As a consequence, the madsi@s®f fermions is no longer
protected — the mass gets an additive renormalization; targessless quarks requires a fine

tuning of the bare mass parameter.

14



According to the usual, renormalization group based usaléy arguments, the chiral symme-
try, broken at finite lattice spacing only by an irrelevammension-five operator, will be recovered
in the continuum limit after fine tuning of the bare mass patan But the explicit violation of
chiral symmetry allows the generation of other contribgito dimension-five operators which are
suppressed by only one power of the lattice spaainthe lattice artifacts for Wilson fermions are
therefore ofo (a), rather tharo (a?) as in the pure gauge sector.

Besideg(x)Ay(X), with A = > udy, there is a second dimension-five (chiral symmetry break-
ing) operator _

Ssw= %cswg P(X)Op Fi ()W(X) (19)
where 7, (X) is a lattice representation of the field strength terfsp(x), andoy, = iz[yu,yv].
Inclusion of Eq.[(IB) into the fermion action, with propedgijusted coefficientsyy, was proposed
by|Sheikholeslami and Wohl

D

't (1985) to eliminate th@) effects of the Wilson fermion action.

Since7y(X) on the lattice is usually represented by a “clover leaf” gatbf open plaquettes, the
action including the term Ed.(119) is commonly referred tohasclover action.

The appropriate coefficie of the clover term, Eq[(19), can be computed in perturbation
theory (Luscher and Weisz, 1996; Wohlert, 1987), or eveétehenonperturbatively (Lischet al.,

1996, 1997) — truly reducing the remaining lattice effectsrf o (a) to 0 (a?).

Another problem with Wilson fermions is that, because ofdldditive mass renormalization,
the fermion determinant dBty(m) is not positive definite even for putative positive quark mas
Configurations with dddyy(m) =~ 0 can occur, called exceptional configurations, which caw sl
down numerical simulations considerably. A formulatioatthemoves such exceptional config-
urations, introduced by Frezzott al. (Frezzottiet all, 2000, 2001; Frezzotti and Rassi, 2004) is

called “twisted-mass QCD”. For two flavors one considerslirac operator
Dtwist = D+ M+ ilysT3 , (20)

where the isospin generatof acts in flavor space. In the continuum, the twisted-masscipa
erator is equivalent to a usual Dirac operator with mg8g? + p2. On the lattice, however, with
D replaced by the (massless) Wilson Dirac oper&ar(0) of Eq. (15), the twisted-mass term
ensures a positive-definite two-flavor determinant{lia{k(m) Dw(m) + ] > 0. An added ben-

efit of the twisted-mass (Wilson) fermion formulation isatlat maximal twist tao = py/m, the

twisted-mass Wilson Dirac operator is automaticallg?) improved (Frezzotti and Rossi, 2004).

15



Unfortunately, the real part of the massstill receives an additive renormalization so that achiev-
ing maximal twist requires a fine tuning. Furthermore, atditattice spacing, isospin symmetry

is broken, making the® mass different from the mass of tie.

3. Staggered fermions

Another way of dealing with the doubling problem, allewtithough not eliminating it, is

the staggered fermion formalism (Bamll, 1976, 197/7; Kogut and Susskind, 19175; Susskind,

1977). One introduces a new fermion field by

PX) =) , BX) = XXy, (21)
with
M= yg_Xl/a) ngZ/a) ygx3/a) yngzl/a) ) (22)
Usingl Iy =1 and
IV xrap = (—1)00 T P0/8 =y (x) | (23)

the naive fermion action, Ed. (IL.2), can be written as

Ss= ) X(X {an OuX(X +W(X)}E>?<DKs+m>x, (24)

where matrix multiplication is implied in the final expressi Here, the four Dirac components
decouple from each other, and the fermion figlck) can be restricted to a single component,
thereby reducing the doubling by a factor of four, from sexteéo four. It is, in principle, possible
to interpret these four remaining degrees of freedom asigdiyffavor (u, d, s, ¢), but, in order to

ive different masses to the flavors, one must introducergen®ass terms coupling nearby sites

Gockeler 1984;£‘_QIL6J:ma.D_a_nd_Slmit. 1984). That approheh teads to a variety of practical

problems including complex determinants and the necessftge tuning.

Instead, we follow modern usage and refer to the quantum eutabeling the four remaining
fermion species as “taste,” which, unlike flavor, is an untedrdegree of freedom that must be
removed. We describe how this removal is accomplished bgdhealled “fourth-root procedure”
at the end of this section, and discuss itin more detail in[[BeCl If more than one physical flavor
is required, as is, of course, the case for simulations of (0B then needs to introduce a separate

staggered field for each flavor. For example, for QCD withéHrght flavors, one employs three

16



staggered field, X4, andxs.t However, for simplicity, we consider only a single staggsfield
(one flavor) in the remainder of this section.

The one-component fermions with action Hq.](24) are refeteeas (standard) staggered or
Kogut-Susskind fermions. The “standard” distinguishesritfrom improved versions, described
later on.

An important discrete symmetry of the staggered fermiomoactEq. [24), is shift symmetry
van den Doel and Smit, 1983; Golterman and Smit, 1984)

X(X) — pu(X) X(x+af)

X() = pu() X(x+ap)
Uy(X) — Uy(x+afl) , (25)
with the phasey(x) defined byp,(x) = (—1)Xwit+%)/a Additional discrete symmetries of the

staggered action are 9fotations, axis inversions, and charge conjugation. Irctdmginuum limit,

these symmetries are expected to enlarge to a direct proftitiet Euclidean Poincaré group and a

vector SU(4y among the tastes (plus parity and charge conjugation n and Smit, 1984).
For massless quarksnp = 0, the staggered fermion action also has a continuous elen/o

U(1)exU(1), chiral symmetryl(Kawamoto and Smit, 1981; Kluberg-Stetral., (11981, 198§b), a
remnant of the usual chiral symmetry for massless fermiorike continuum. The U(3xU(1)

symmetry is
X(X) — exp{ioe}x(x), X(X) — X(X)exp{—ioo} for x = even,
X(X) — exp{ioo}X(X), X(X) — X(X)exp{—iae} for x=odd, (26)

whereae anda, are the symmetry parameters, and a site called even or odd if ,(x,/a) is

even or odd. The “axial part” of this symmetnye = —0o = ¢, is known as U(J) symmetry

Kawamoto and Smit, 1981) and takes the form

X(X) — exp{icee(X)Ix(X), X(X) — x(x)exp{iaee(X)}  with g(x) = (—1)ZX/a  (27)

The chiral symmetry, Eq[(26) or Ed._(27), protects the massitin Eq. [2#) from additive

renormalization, while the discrete symmetries (esplcitift symmetry) are also needed to

L In practice, since one usually takeg = my # ms, theu andd fields can be simulated together, and one can use
only two staggered fields. For clarity, we ignore this techhdetail in our exposition.
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prevent other mass terms (coupliggand X at nearby sites) from arising (Golterman and Smit,

1984). In particular, an alternative version of staggeredrks called the “Dirac-Kahler action”

Becher and Joos, 1982) does not have shift symmetry anefftiiergenerates a mass term at one

loop even whem = 0 (Mitra and Weisz, 1983).

The even/odd symmetry is spontaneously broken to the dag®ator U(1y (quark number)
symmetry,0e = 0o, With an ensuing Goldstone boson. In addition, the mass tewaks the
U(1)exU(1), symmetry explicitly, giving mass to the Goldstone bosof,0 m.

The staggered Dirac operatdks in Eq. (24) obeys (Smit and Vink, 1987)

Dis=—Dks=¢Dkse (28)

wheree is a diagonal matrix in position space wifx) along the diagonal, and the second equality
follows from the fact thaDg s connects only even and odd sites. The fact Bhat is antihermitian
implies that its eigenvalues are purely imaginary; ¢helation in Eq. [(2B) then tells us that the
nonzero eigenvalues come in complex-conjugate pairs.nFor0, which is the case of interest
here, this ensures that the staggered determinanDget- m) is strictly positive? Note that
the continuum Euclidean Dirac operatDgqn: is also antihermitian and obeys a corresponding
equation
Dont = —Deont = Y5 Deont ¥ , (29)

which similarly (but now only formally) results in a posigédeterminant for positive quark mass.

The one-component staggered fermion fiefds) can be assembled into Dirac fieldsy),
living on 2* hypercubes of the original lattice, labeled ywith cornersx = 2y + aA, where
A, = 0,1 (Duncaret al.,11982; Gliozzi, 1982; Kluberg-Stet al,,11983a). One has

A)ai=5 ¥ (Al UaY) XY+aR8),  @Y)a=5 ¥ X(Y+am ULy MWk, (30
A A

wherea, i label the Dirac and taste indices, respectively, dagy) is a product of the gauge links
over some fixed path fromyzo 2y + aA. Bilinear quark operators, with spin structyge=I's and
taste structur& = I'; are defined by (Sharpe and Patel, 1994)

Ost = G(Y) (Vs @ &)q(y) = 1—16;B>?(2y+ aA) UA(y) Us(y) X(2y+aB) %tr (FArsrerd) . 1)

2 We do not expect any exact zero modes on generic configusatimen those with net topological charge. Such
configurations will in general have only some near-zer¢e) or smaller) eigenvalues. So, in fact, the determinant
should be positive even fon < 0. This is different from the case of chiral fermions disadsi Sed_TL.B}.
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In the free case (all,(x) = 1), the quark action in EqL_(24) can be expressed in termseof th
fieldsq(y) as (Kluberg-Steret all,11983a)

Ss=16% q(y) {m(l @)+ [(Yu@!) Outa(vs @ &uls) Ay } ay) (32)
y N

wherel is the identity matrix, the factor of 16 arises from the fdwittthere are 116 as many

points a points, andJy, andA, are the free-field versions of Eqs.[13) ahd (16), but actmthe

doubled y) lattice:

uF(Y) = = [£(y-2a0) — F(y— 200 |

4a
BUF(Y) = — [ (y—2a) — 2£ (y) + f(y—2af)] (33)

422

These derivatives go @), f (y) andaﬁf(y), respectively, in the continuum limit. In the interacting

case there is another dimension-fieg¢a), term, involving the field-strength tensgy,, in addition

to theA, term in Eq. [(3R). There are also higher contributionss)@:ﬁz) starting at dimension six

Kluberg-Sterret all,11983a).
In thed,, (first derivative) kinetic energy term of E{.(32), the evstd U(1):xU(1), symmetry

is enlarged to a full continuous chiral symmetry, Y(4)J(4)r, acting on the taste indices of the
right and left fieldsgr(y) = %(1+y5)q(y) andq(y) = %(1—y5)q(y). The mass term breaks this
down to an SU(4) vector taste symmetry (plus the U(19f quark number). On the other hand,
because of the explicit taste matrices, the second demvatim in Eq.[(3R) breaks the full chiral
symmetry to the U(X)xU(1), symmetry (plus the discrete staggered symmetries). Bedhese
are all symmetries of the original staggered action, theyaia symmetries in the taste basis, even
when the additional terms that appear in Eq] (32) in the aatémg case are taken into account.

The key point is that, in the interacting theory, one cant $pé staggered Dirac operator in the
taste basis as:

Dks=D®Il+aA, (34)

wherel is here the (4« 4) identity matrix in taste space, afds the taste-violating (traceless) part,
with minimum dimension five. One expects the Sy (¥gctor taste symmetry to be restored in the
continuum limit becausA should be irrelevant in the renormalization-group sense.

In the free case, the shift symmetry, Eq.](25), takes the flamthe Dirac fieldsq(y) (Lug,
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1997):

(1@ &u+YsYu®&s)a(y) + (1 @ & — YsYu @ &s)a(y + 2af1)) (35)

NI NI

(GY) (1 @&~ VsYu® Es) + Ay +2a0) (1 @ &+ Ysyu @ Es)) ) - (36)

As the continuum limit is approached, shifts become simplijtiplication by the taste matrigy,,
plus higher-dimension terms involving derivatives. Thhsts are basically discrete vector taste
transformations, coupled with translations.

In the taste basis, the axial U{lgymmetry is

aly) — exp{ide (Ys®&s)}aly) ,  dly) — q(y) exp{ide (Vs @8&s)} - (37)

Because of thés, this is clearly a taste nonsinglet axial symmetry, and Besconanomalous.

The anomalous axial symmetry Uglnust be a taste-singlet:

q(y) — exp{ioa(ys@1)taly),  qly) — aly)exp{ioa(ys@1)} . (38)

Indeed, this symmetry is not an invariance of the staggeatiité action in the massless limit,

and the symmetry violations generate, through the triaggdph, the correct axial anomaly in the

continuum limit (Sharatchandet al.,11981).

The bilinear quark operators in EQ. {31) can create (or alaté) mesons. Therefore, for stag-
gered quarks, each meson kind with given spin (Dirac) gtredis (e.g, ['s = ys for the pion,
I's = Yk for the rho,etc) comes in sixteen varieties, labeled by the taste irtddx the contin-
uum limit all nonsinglet mesons of a given spin are degesgraBU(4), taste symmetry connects
them. But at nonzero lattice spacing, there is only the stagtjsymmetry group, the group of
the discrete symmetries of the staggered action (shiftsy@@ations, axis inversions, charge con-
jugation) plus the U(1) of quark number, which are remnants of the continuum Pomdaste

SU(4),, quark number, and discrete symmetries. Meson states maelassified under the sub-

group of the staggered symmetry group, the “stai?eredmﬂﬁsymmetry group,” which is the
(

symmetry group of the transfer matrix (Golterr 6alle sixteen tastes of a meson with

3 Mesons that are singlets under taste and any additionat 8gwometries need not be degenerate with the nonsinglet
mesons, since they can have physically distinct discoedexintributions to their propagators. The most important
example is they’, which will get a contribution from the anomaly and have a sniaghe continuum limit different
from that of all other pseudoscalars.

20



given spin structure are not degenerate at finite latticeisgabut are split according to irreducible
representations of the rest frame group. In particulary tre pion with pseudoscalar taste struc-
ture & = y; is a Goldstone boson, denoted tgy (P stands for pseudoscalar taste), whose mass
vanishes for massless quarks= 0. To leading order in the chiral expansion (see Sec.JllIh&) t

other tastes have masses
mé = m, + a8 = 2Bm+a?% (39)

with B a low energy constant anll a taste-dependent splitting that is independera @iip to
logarithms) for smalb. The non-Goldstone pions become degenerate with the Golelgiion
only in the continuum limit. The taste violations in the pisystem are found to be larger than
those for other hadrons (Ishizukéaall, [1994).

Since staggered fermions have only one (spin) componeidtbiee site, and since they have a

remnant chiral symmetry that insures positivity of the femmdeterminant at positive quark mass,
they are one of the cheapest fermion formulations to siraulamerically. The main drawback is
the need to eliminate the unwanted extra tastes, using tbalksal “fourth-root procedure.” Each

continuum fermion species gives a factor of Metin the partition function, Eq[{6). Therefore,

to reduce the contribution from four tastes to a single oreetake the fourth root of the determi-
nant, (detMks)*#, whereMks = Dks+ m® |, with Dks given in Eq. [3%). The procedure was
first introduced in the two dimensional version of staggdezthions (where it is a “square-root
procedure” because there are only two tastes) by MarinarisiPand Rebbil (1981b). The point

is that the Dirac operatddks (and henceMgs) should become block diagonal in taste space in

the continuum limit becaust is an irrelevant operator. The fourth-root procedure thecoimes
equivalent to replacing thBgs by its restriction to a single taste. Conversely, the noiatiity of
the prescription arises because taste symmetry is brokemnaero lattice spacing. In Séc. 111.C,
we discuss the status of this procedure and the evidencie #ltabmplishes the goal of producing,

in the continuum limit, a single quark species with a locaicac

4. Chirally invariant fermions

None of the ways of dealing with the fermion doubling probleatlined so far are entirely
satisfactory. Wilson-type fermions explicitly break alisymmetry, and staggered fermions have

a remaining doubling problem, requiring the fourth-roaiqedure, that continues to be somewhat
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controversial because of the broken taste symmetry at fattiee spacing.

Indeed, the chiral anomaly implies that no lattice actiom lsave an exact flavor-singlet chiral

symmetry|(Karsten and Smit, 1981). There is even a no-go¢neNielsen and Ninomiya, 1981)
that states that the doubling can not be avoided with anlodiaét and unitary fermion action.
However, actions with a modified form of chiral symmetry oa thttice can avoid doubling while
retaining most of the desirable features of chiral symme&ugch actions couple arbitrarily distant
points on the lattice but with exponentially suppressedtings, exd—r/rq}, wherery should
be of the order the lattice spacing to ensure a local actidharcontinuum limit. There are three

known ways of achieving this.

The first goes under the name of “domain-wall fermions” and developed by Kaplan (1992),

Shamir (1993), arld Furman and Shamir (1995). The construofiFurman and Shamir is usually

used nowadays. One introduces an additional, fifth dimensfdengthLs and considers 5-d

Wilson fermions with no gauge links in the fifth direction datiie 4-d gauge links independent of

the fifth coordinates,

Ls—1

S — 1
SDW = S; Zm(& S) {% (yHDH_ EAH) qJ<X7 S) - M‘P(X7 S) - PJP(X,5+ 1) - PJqu(X?S_ 1)} ’

(40)

wherePy = %(1iy5) are chiral projectors and we have set a= 1. M, introduced here with a
sign opposite that of the mass term for Wilson fermidns (ikbpften referred to as the domain-
wall height and needs to be chosen such that < 2. For free fermionsM = 1 is the optimal
choice, while in the interacting casé should be somewhat larger. The fermion fields satisfy the

boundary condition in the fifth direction,
P,l.|J(X, LS) = —Mg FUP(X, O) ) P+‘P(X7 _1) = —Mms P+l-|J(X7 LS_ 1) ’ (41)

wheremy is a bare quark mass.

Forms = 0, the domain-wall action, Ed. (#0), has 4-d chiral modesblexponentially to the

4 We denote by “ultralocal” an action that couples only sitéisige number of lattice spacings apart. A “local” action
is either ultralocal, or the coupling falls off exponerifalith distance with a range of the order of a few lattice
spacings, so that the action becomes local in the continiraita ISuch “local” actions are believed not to change
the universality class in the renormalization group seAsw.other action is called “nonlocal.”
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boundaries a¢ = 0 ands = Ls— 1, which are identified with the chiral modes of 4-d fermioss a

qR(x) =P:W(xLs—1), g0 =P-w(x0), qX) =B(xLs—1P-, g (x)=P(x0)P; .
(42)
WhenLs — o the chiral modes become exact zero modes, the left and rayided modes
andgR do not interact foms = 0, and the domain-wall action has a chiral symmetry. At fihife
the chiral symmetry is slightly broken. Oftég = 0 (10— 20) is large enough to keep the chiral
symmetry breaking negligibly small. The computationalta@isdomain-wall fermions is roughly
a factor ofLs larger than that for Wilson-type fermions.

Related to these domain-wall fermions are the so-calledlaweermions developed by

Narayanan and Neuberger (1995); Neuberger (1998b). Th#apvPirac operator for massless

fermions can be written as (Neuberger, 1998b),

aDoy = M [1+y50 (ysDw(—M))] , (43)

whereDw (—M) is the usual Wilson Dirac operator with negative mass —M, and again 6<
M < 2 should be used®(X) is the matrix sign function, for a Hermitian matrk, that can be
defined as

O(X) = (44)

VX2
Using the fact tha®?(X) = 1, it is easy to see that the Neuberger Dirac operator satisfee
r)),

~

so-called Ginsparg-Wilson relation (Ginsparg and Wil
{Y5, Dov} = @aDowysRDoy , (45)
with R=1/M, or equivalently, when the inverse Bfy is well defined,
-1 o
{y5,Dgv } = aysR. (46)

In the continuum, chiral symmetry implies that the massfessiion propagator anticommutes
with ys. The massless overlap propagator violates this only by @ kecm that vanishes in the
continuum limit. Ginsparg and Wilson argued that this isi&lest violation of the continuum

chiral symmetry on the lattice possible. In fact, any Dirgerator satisfying the Ginsparg-Wilson

relation [4%) has a modified chiral symmetry at finite lat8pacingl(Lischer, 1998),
. a L a
5llJ:IGy5(1—mD)l]J, 6w:|aw<1—mD>y5. (47)
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or
3w =iavs (1- D) w=iaiew, 3 =iadys, (48)
with §5 = y5 (1— D) satisfying\“/g = {5 and, using the G-W relation, Eq_{45§ = 1.

The close connection between domain-wall and overlap farsican be made more ex-
plicit by integrating out the “bulk fermions”, which have sses of the order of the cutoff
1/a, from the domain-wall action, Eq[_(40), see Boarici (2000gwards and Heller| (2001);
Kikukawa and Noguchi (1999); Neuberger (1998c). In thetlimi— o, one ends up with the

overlap Dirac operator, but with the Hermitian Wilson kdrHg, = ysDy in Eq. (43) replaced by
a more complicated Hermitian kernel,

1 1

Hr=——— Hy=Hy——— .
T 14 2aHys W1+ 2a5Huys

(49)

Here we denote the lattice spacing in the fifth directiorabylt is usually chosen to be the same
as the 4-d lattice spacings = a, which, in turn, is usually set to 1. From E@. {49) we see that
domain-wall fermions in the limits — oo, followed by the limitas — 0 become identical to overlap
fermions with the standard Neuberger Dirac operator.

The difficulty with numerical simulations using overlaprf@ons is the evaluation of the sign

function ©(Hy) of the Hermitian Wilson Dirac operatdty = ysDw in Eq. (43). This can be

done with a Lanczos-type algorithm_(Borici, 1999). Alteimaly, ©(Hy) can be represented as

a polynomial, or, more efficiently, as a rational functioattban be rewritten as a sum over poles

Edwardset all, 11999;| N rger, 1998a), with the optimal approximatissing a theorem of

Zolotarev, first given in van den Eshef al. (2002),

N
S jajHy
2157w
5 j bjHw

n Ck
O(Hw) = H —Hw o+ S K| 50
(Hw) = Hw w | Co klevzv"‘d"_ (50)

All d¢’s are positive, and the necessary inversions with the spaegtrix H2, are done using a

multishift conjugate gradient inverter (Fromnedrall, 1199%) Jegerlehner, 1996, 1998).

Finally, two versions of fermions that satisfy the Ginsp#vdson relation approximately have

been considered. One, the so-called fixed point action ,L1998), approximates the fixed

point of a renormalization group transformation by truimggito a small range. Hasenfragral

1998) have shown that (untruncated) fixed point fermioroastsatisfy the Ginsparg-Wilson re-
lation. The second versiou_(_G_aII.Lin]gEL_ZOOI), directlyimizes deviations from the Ginsparg-
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Wilson relation by adjusting the parameters in an arbitfainac operator with a finite (small)

number of terms.

C. Numerical simulations

After having chosen a gauge and fermion action one compypestation values of interesting
observables, EqLK7), by numerical Monte Carlo simulatidfsr this one creates a sequence of

gauge field configurationaJS)(x)}, i=1,...,N, distributed with probability distribution
PUUY (0}) = == (detMe (U))Pexp{—So(U)} = ——
Z(B) Z(B)

Here,d = n¢, the number of flavors, for Wilson and chirally invariantrféons, and = n¢ /4 for

exp{~Sri(U)}.  (51)

(rooted) staggered fermioAsand now
Sif(U) =Ss(U) —0TrlogMg (U) . (52)

Expectation value$O) are then computed as an average over the ensemble of gadgeofidig-

urations,

13 40
0= 30", (53)

whereO) = O(U") is the observable evaluated on the gauge field configuration
For pure gauge simulations, when no fermions are present thre quenched approxima-

tion, where the fermion determinant is set to one Kdiet= 1), the action is local (in the gauge

fields) and the sequence of configurations can be generatédawbcal updating algorithm,
such as the Metropolis algorithv\n_(mm'_s_il, 1953) or a heatbath algorithm (Creutz, 1980;
on, 1985).

With the fermion determinant present, all gauge fields atplenl and the local updating algo-

rithms become impractical. Molecular dynamics based #lyos (Callaway and Rahman, 1982,

1983) have become the standards for simulations with dycalfermions. For a scalar lattice

5 The sketch here is somewhat schematic: each fermion witfiexafit mass would get its own determinant factor.
FurthermoreMg should be Hermitian and positive semi-definite. For Wilsemfions one therefore tak& =
DJ\,DW and use® = n; /2, while for staggered fermions one talds = [DLSDKS]eeWhere the subscript “ee” refers
to the matrix restricted to the even sublattice. This is thrbsssinceDLSDKs block-diagonalizes to even and odd
sublattices. Restricting to only one sublattice removediitubling introduced by the “squaring.”
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field theory with actionS(¢y) one introduces a fictitious momentupg on each lattice site, and

considers the Hamiltonian

2
_ v &
H(p,cp)—g 5 TS0 (54)
This Hamiltonian defines a classical evolution in a fictisdumeT by,
- . 0S
= - = 55
% =P Px=—5 (55)

where the dot denotes the derivative with respeat. té&iven some initial valuespy(0), @(0))
these equations of motion define a trajectopy(t), ¢(1)) through phase space. The classical

partition function corresponding to the set of all suchdc#pries is
z= [ [idpdadexp(—H(p.0)} = [ []dgcexp(~S(@)} . (56)
X X

where in the second step the quadratic integration ovepth®as been carried out, amd is an

unimportant normalization factor. The integration of HHom's equations, Eq[(55), conserves
the Hamiltonian, Eq.L(B4), up to numerical errors. To getdbeect distribution corresponding
to the canonical partition functiof (b6), the fictitious mema are “refreshed” periodically by

replacement with new Gaussian random numtgLs_(Duan_e_auai,l\St@ _19_EJ6). This algorithm

goes under the name of Hybrid Molecular Dynamics (HMD).

T

Relying on the ergodicity hypothesis, the expectation atiobservables can then be com-

puted by averaging over many MD trajectories

=1/ ” drO(g(1) (57)

Integration of the equations of motion, EQ.55), is done araally by introducing a finite
step sizeAt and using a volume-preserving integration algorithm, sagteapfrog. Due to the
finite step size, the Hamiltonian is not exactly conservednduthe MD evolution, leading to
finite step size errors in observables, including the Hamitn itself, ofo ((At)?) for the leapfrog
integration algorithm. These step size errors can be efitath— the algorithm made exact —

by combining the refreshed MD evolution with a Metropoli€egt/reject step at the end of each

trajectory (Duanet al.,[1987), resulting in the so-called Hybrid Monte Carlo (HM&Zgorithm.

For a lattice gauge theory the equations of motion have te@bassuch that the gauge fields

remain group elements. This is ensured by writing

Up(x) = iHL(x)Up(X) (58)



with Hy(x) = ¥ ,t%nf(x) a traceless Hermitian matrix artl the SUN) generators, see.g.,

Gottliebet all,[1987). The MD Hamiltonian is given by

HOHW00,Un()) = 3 STAHE + S s(Uu(). (59
oy

The equation of motion fold,,(x) is then, somewhat schematically,

Fu) = U0 (60)

where “TH” denotes the traceless Hermitian part. The teritihemight-hand side of(60) is usually

referred to as the force term. Wifla¢ ¢ of Eq. (52) we have

0%11(U)  0Ss(U) - [OME(U)
Up(x) U, 5“{ aUu(x)

MEW)} . (61)

To evaluate[(61) we need to know all matrix elementMepf'(U), a dense matrix, even though the
fermion matrixMg (U) is sparse. This would be prohibitively expensive. Insteaw; estimates

the inverse stochastically. LBtbe a Gaussian random field such that

RA(X)R(Y) = 0agdxy , (62)

whereA, B denote color indices, and for Wilson-type fermions alsa@abDindices. Then,

B 3
Tr[ XJZE;J))MFl(U)] _R ;{'JZE)L(J))MF%U)R, (63)

and for each random vect®& only a single inversionM;l(U)R is needed. Typically, for each

time step in the MD evolution one uses just one Gaussian rangator, and hence one inversion.

This algorithm goes under the name of “HMD R-algorithm” (@eb et al.,11987).

Instead of doing molecular dynamics starting with 1 of Eq. (52) one can first represent the

fermion determinant by an integral over bosonic fieldsechfiseudofermions

detMg (U) = / [1(d®" () db(x)] exp{—> M (U) D} . (64)

HMD using [64), referred to as the-algorithm (Gottliebet al., [1987), consists in creating, to-
gether with the momenta refreshmentsp-ield distributed according to Ed_{84&nd then inte-

grating the molecular dynamics equations for the effeciistéon

Si1(U,®) = S(U) + M (U)o, (65)

6 ForMg = DD this can be achieved by creating random Gaussian varia#esl then setting® = D'R.
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with the ®-field fixed. Now the force term becomes

0S11(U, @) _ 0Ss(V)
oUu(x)  aUu(x)

OMg(U)
0Uy(x)

—o'™M-1(U) MztU) . (66)

This again requires one inversidVI,;l(U )®, in each step of the MD evolution. One major benefit
of the ®d-algorithm formulation is that an accept/reject Metropdtep is easily implemented at
the end of each trajectory resulting in an exact HMC algarith

The representation of the fermion determinant by an integvar pseudofermion fields,
Eq. (64), can formally be extended to fractional pow&ts n¢ /4, as needed for rooted staggered

fermions, and = n¢ /2, as needed for odd number of flavors for Wilson fermions,
(detMg (U))® = / [1(dDT () dD(x)] exp{—d M 2(U) D} . (67)
X

The problem then is, how to deal wim;5. In the HMD R-algorithm this is handled by weighting
the fermionic contribution to the force by a factor dfand evaluatind ~'R at a point in the

integration time chosen so that the errors in observabieaireordere?, wheres is the step size in

the molecular dynamics integratian (Gottlieball, 11987). Clark and Kennedy recently proposed

using a rational function approximation rewritten as a swer @oles|(Clark and Kennedy, 2004,
2005),

-5 N o . ak
M)~ F(MEU) =20+ 3 s

with suitable constantay andby. A ®-algorithm can then easily be constructed, resulting in

(68)

the so-called rational hybrid molecular dynamics (RHMDgaalthm, or, with inclusion of the
Metropolis accept/reject step to eliminate errors fromzaevae, the rational hybrid Monte Carlo
(RHMC) algorithm. Elimination of the noisy estimator yislémaller errors than in the HMD
R-algorithm at a given integration step size.

Several improvements of the HMD-type algorithms over tis¢ $&veral years have made them
substantially more efficient. These improvements includaltiple time step integration schemes”
_%mgz) preconditioning of the femdeterminant by multiple pseud-
ofermion fields sch, 2001; Hasenbusch and Ja , 2and replacing the leapfrog in-
tegration scheme with more sophisticated “Omelyan integsa (Omelyaret al., 2002 2003;
Sexton and Weingarten, 1992; Takaishi and de Forcrand|)2006
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D. Asqtad improved staggered fermions

Staggered fermions, with only one component per lattiee aitd the massless limit protected
by a remnant even/odd Uy U(1), chiral symmetry, are numerically very fast to simulate. One
of the major drawbacks is the violation of taste symmetryaAdttice spacing of order 01 fm,
which until recently was typical of numerical simulatiotisg smallest pion taste splitting EQ. [39)
for standard staggered fermions is of ordém3) = a?dp ~ (300 MeV)?, i.e.,, more than twice the
physical pion mass. Even when the lattice spacing is redwcagbut 005 fm this smallest splitting
is still the size of the physical pion mass. It is thereforgoarant to reduce taste violations.
Since the different taste components live on neighboritigéasites and in momentum space have
momentum components that differ biy/a, emission or absorption of gluons with (transverse)
momentum components closertpa can change the taste of a quark. Exchange of such ultraviolet

gluons thus leads to taste violations.

Suppressing the coupling to such UV gluons thus should esthectaste violations (Bluret all,
1997; Lagae and Sinclair, 1999; L epage, 1998; ' nt, 1999; Orginast all,11999).

This can be achieved by replacing the link fiéld in the covariant difference operatoy, (see
Eq. (13)) by a smeared link built from 3-link staples (“fat3”

Un(X) — U 3(x) = 7 BUK(X) = Up(x) + wa? ; AUL(X) | (69)
V#U

where the superscrigtindicates that the Laplacian acts on a link field,

1 ,\ " A ,\ A A
=2 (UV(X)UH(X—l— a0)U\ (x+ afl) + U] (x— al)U,(x — ad)Uy (x — ad + aft) — 2Uu(x)> .

(70)

AUL(x) =

In momentum space, expanding to first ordeg,ifeq. (69) leads to
Au(p) = Au(p) + @ ; {2Au(p) [cogap) — 1] +4sinap,/2)sin(@ap,/2)Au(p)} . (71)
VZH

Choosingw = 1/4 eliminates the coupling to gluomg,(p) with a single momentum component

py = T/a. Adding a 5-link staple (“fat5”)

4
a
Un() = U0 = 7 U0 = U2 (0 + 55 > ApAuUu(x) (72)
pPAVFH

eliminates the coupling to gluons with two momentum comp®p, = 11/a and adding a 7-link
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staple (“fat7”)
UH(X) . UJ7(X) =7 f7Up(X> = UJE’(x) +—= ; AgAéAﬁUu(X) , (73)
OFPFAV#U

eliminates the coupling to gluons with all three transvensgnentum components, = 1t/a.

For smooth gauge fields, with= 0, the Laplacian, EqL(70), becomes
DUL(X) = aDyFy+ -+, (74)

where - -- represent higher order terms @ The change in Eq[(69) thus produces a change

~ azD\,F\,u to the gauge fieldy,. Thisis a newo(az) lattice artifact, and will occur when using

fat3, fats or fat7 links. It, in turn, can be canceled by adgght 5-link staple”/(Lepage, 1999)

1 . . A .
AUy (x) = H(uv(x)uv(x+av)UH(XJr2av>uj(x+av+au)uJ(x+au)
+ U] (x— al)U (x — 2a0)Uy,(x — 2a0)Uy (x — 2a0 + afi)Uy (x— a0 + afl) — 2Uu(x))
— aD\)F\)u‘i_ 5 (75)

referred to as the “Lepage-term.” In momentum space, expgrd first order ing, this becomes

% {Au(p) [cos2ap,) — 1] +2sin(apy/2) [sin(ap,/2) +sin(3apy /2)|Av(p)} . (76)

and thus does not affect the coupling to gluons with momerdomponents at the corners of the

Brillouin zone. Therefore, replacing
2
Uu(x) — U™ = 7 MU0 = U7 () — az ; D2U(X) | (77)
VZU

eliminates, at tree level, the coupling to gluons with anyheftransverse momentum components

pyv = Tt/a without introducing new lattice artifacts.

Finally, for a complete (a®) improvement we include a so-called “Naik-term” (Naik, 1\989
improve the free propagator, and hence the free disperslatian. To keep the structure of the
couplings to the different tastes unchanged, this invodkeng a 3-hop term,

2

O — Bx(0 — = (0)*() (78)
— (145 D09 ~ g5 (VRO ol k- 22+ 3o

U (x— ap)U (x— 2aR) U] (x— ax (x - 2af) ) -
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FIG. 3 lllustration of taste violations for staggered feomactions with various link fattenings. The valence
quark masses were adjusted to give the samgm, = 0.55 for all fermion actions. The results are for
guenched gauge field configurations with a Symanzik imprgeedye action usin = 7.30. The staggered
fermion actions are standard, or one-link (OL), “fat3+Nai®@FN) , “fat5” and “asqtad”. The pions are

labeled by the taste structure, with the taste singlet thgibst, and the taste pseudoscatgj),(the pseudo-

Goldstone boson, the lightest. For more comparisons_segn@et all,[2000).
In the free inverse propagator this changes

gsin(apu) — gsin(app) {1+%sinz(apu)] =put+o(@h. (79)
The fermion action with only the improvement in Elq.](79) ifereed to as the “Naik action”. This
is also the free (noninteracting) limit of the asq and aségathion actions, defined next.

We now have all the ingredients for an improved staggereaiiter action, called the “asq”
action (0 (a?) improved action): use the covariant derivative with thek\tarm, Eq. [(7P), and in
the one-link term replace the gauge linkgby the fat7 links with Lepage terllud7L of Eq. (Z7).
Replacing the various coefficients in the asq action by tedipaproved coefficients finally gives
the “asqgtad” fermion action. The reduction of taste viaas for pions with increasing amount of
link fattening is illustrated in Fid.]3.

The Naik term, Eq[(79), reduces the lattice artifacts inpgressure for free fermions, and thus

in the very high temperature limit of QCD as illustrated irg 4, left panel, and in the ‘speed

of light’ determined from the pion dispersion relation,higpanel, from Bernardt al. (1998). In

Fig.[4, left panel, “p4” fermions are another variant of iyed staggered fermions (Heller al.,

1999) designed to improve the dispersion relation and hegiperature behavior. The speed of
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FIG. 4 The pressure (left) per fermion degree of freedom ffee fiKogut-Susskind, Naik, Wilson and

“p4” (Heller et all, [1999) fermions as a function & = 1/(aT). The continuum value is shown as the
horizontal solid line. Figure frorln Bernagt all (2005); an earlier version appeared in Bgrﬂgll _LQ_Q;JS).
The ‘speed of light squared’, (right), calculated from thenpdispersion relation, for Naik and K-S pions.
Figure from Bernaret al. ( )-

light, shown in the right panel, is determined from pion eiesE;(p) for various momenta as
2 _ EA(Pp)—EX0)
- 7 ,

The 0 (a?) improvement of the asqtad action gives a staggered fernoionuiation with good

(80)

scaling properties, as shown in Higj. 5 for a quenched s t all,i2000a).

E. Highly improved staggered fermions

The largest contribution to th©(a?) error in the asqtad action originates from the taste-
exchange interactions. This error can be completely elteith at one-loop level by adding four-
qguark interactions (which are hard to implement in dynahsgaulations) or greatly reduced by

additional smearings. Multiple smearings, for instance
Un(x) = Xu(x) = 7 "5 T Uy (x) (81)

are found to further reduce mass splittings between piodgfefent taste. However, they increase

the number of products of links in the sum #(x) links and effectively enhance the contribution
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FIG. 5 Rho masses (left) and nucleon masses (right) in ufitg & 0.32 fm, in a slight update from

Bernardet al. (2000a). Octagons are unimproved staggered fermions witdoi/gauge action, diamonds

are unimproved staggered fermions with Symanzik improwaehg action, crosses are Naik fermions and

squares are asqtad fermions, both with Symanzik improvedeyaction. For comparison we also show

tadpole clover improved Wilson fermions with Wilson gaugsian

and with Symanzik improved gauge acti

of two-gluon vertices on quark lines (see Follaatal

n (Collgtsall, 11997

Bowleret all,

200

7) (fancy diamonds).

2007

Thus, an operation that bounds smeared links needs to e utied:

UH(X) _ XH(X) —7 f7L‘UT f7LU“(X) ,

) (fancy squares)

7) for a more detailed discussion).

(82)

where« is an operation that projects smeared links onto the U(3)u{BBgroup. Cancellation

of the O(a?) artifacts introduced by fat7 smearing with the Lepage team loe achieved on the

outermost level of smearing, and EQq.](82) can be simplified:

Un(x) = Xu(x) = 7 "rar U (x) = 7 15U .

(83)

Introducing smeared and reunitarized links that arise atieh operation in Ed._(83)

= 7f7Uu(X),
V) = a7 U

F Wy (x) = 715U, (x)
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we can write the covariant derivative that replaces theenane:
2

OulU]X (%) = BuC9X]x (%) — %(1+ €)(0w*WIX(¥) - (87)

Equation[(87) is a recently proposed “Highly improved stxgg quark”, or “HISQ”, discretiza-

tion schemel (Follanat all, 2007). In square brackets we indicate which links are useghage

transporters in the derivatives. The second term is the &k evaluated using the reunitarized
links Wy,(x). Its coefficient includes a correctianintroduced to compensate for the ordam)*
andas(am)? errors. This correction is negligible for light quarks, &y be relevant for charm

physics if a level of accuracy better than 5-10% is desirdte dorrectiore can be either tuned

nonperturbatively or calculated in perturbation theoryl t al,, [2007).

The HISQ action suppresses the taste-exchange intera¢tjoa factor of about 2.5 to 3 com-
pared to the asqtad action, which makes it a very good catadidiathe next generation of simula-
tions with 2+1 or 2+1+1 flavors of dynamical quarks, wherehia latter case the last quark is the

charm quark. We discuss preliminary studies of the HIS@adh more detail in Se€.IX.

Ill. STAGGERED CHIRAL PERTURBATION THEORY AND “ROOTING”

A. Chiral effective theory for staggered quarks

Because simulation costs increase with decreasing quasg,mmeost QCD simulations are done
with the masses of the two lightest quarks (up and down) fatgan their physical values. The
results, therefore, have to be extrapolated to the phybgtalquark masses. This is done using
chiral perturbation theory, the effective field theory thascribes the light quark limit of QCD
Gasser and Leutwyler, 1984, 1935; Weinberg, 1979).

Even with the asqtad improvement of staggered fermiongg-®8nmetry violations are not
negligible in current simulations. It is therefore impart#o include the effects of discretization
errors in the chiral perturbation theory forms one uses tmapwlate lattice data to physical light
guark masses and to infinite volume; in other words, one nieedse “staggered chiral perturba-
tion theory” (XPT). Indeed, it is not possible to fit the mass dependenceeddtdggered data to

continuum chiral forms_(Aubiet al, 2004b). Once the discretization effects are includediexpl

itly by making XPT fits, one can gain good control of the errors from the caowiin extrapolation.

Furthermore, the effects of taking the fourth root of theygexred determinant can be included in
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SXPT. The resulting “rooted staggered chiral perturbati@oti” (rSXPT) allows us to understand
the nonlocal and nonunitary consequences of rooting orathied and to test that these sicknesses

go to zero ag. — O.

Lee and Shary GL(_1_9J99) first developeXPS for a single staggered flavor (a single staggered

field) at o(a?); this was generalized to an arbitrary number of flavors by iA Bernard

2003&,b). Here, we outline the theory with flavors to this order; for the next order we re-

fer the reader to the literature (Sharpe and Van de Wateg)200

To derive SPT, one starts by determining, to the desired orde®irthe Symanzik effective

theory (SET)(Symanzik, 1983) for staggered quarks. The iSER effective theory for physical

momentap small compared with the cutoffp(<« 1/a); it parametrizes discretization effects by
adding higher-dimensional operators to continuum QCD .drigular, taste violations appear to
o(a?) inthe SET as four-quark (dimension six) operators. Theseatprs arise from the exchange
of gluons with net momenta 11/a between two quark lines. Such gluons can change taste, spin,

and color, but not flavor. Therefore, the operators genéizdge the form

Osgtr = Qi (Ys® &) 9j(Ys @ &v)Qj (88)

wherei and j are flavor indices, spin and taste matrices have the notafi&g. (31), and color
indices are omitted because they play no role in what folloMe SU{¢) vector flavor symmetry
guarantees thddsgt is a flavor singlet, which means thiaj are (implicitly) summed over their
Nt values in Eq.[(88).

The possible choices of the spin and taste matrices i E)jaf@&onstrained by the staggered
symmetries. First of all, we can use the separate df()each flavor. This forces each of the
bilinears making usg, for exampleq;i(ys ® & )i, to be U(1) invariant by itself for each.
From Eq. [(3¥), we then have thfs ® &5,ys® & } = 0, which gives twelve choices fogg and&;:
One of them must be a scalar, tensor, or pseudoscglar ¢r P) and the other must be a vector
or axial vector { or A). For example, we might have® T, that is,ys ® & = Y5 @ &, With the
notationy,s = yuys (and similarly for tastes), angl,, = %[EV,E)\] (and similarly for spins). Such
operators are called “odd” because, in the original onegmmant form of Eq.[(24), the fields
andy are separated by an odd number of links (1 or 3) within an ehtang hypercube. This is
easily seen from the equivalence given in Eql (31).

Shift symmetry gives the next constraint. As mentionedfeihg Eq. [36), shift symmetries are

a combination of discrete taste symmetries and transktionthe SET, however, where external
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momenta are always small compared with the cutoff, it is jpesso redefine the fieldg(y) to

make the action invariant under arbitrary translatiorke, iin any continuum theory (Bernaed al.,
2008a). The shifts then have the form:

aly) — (I @&ualy) ; aly) — q(y) (I ®&p) - (89)

Thus, for each of the sixteen possibilities &ythe bilinear; (ys® &t )qg; undergoes a unique set of
sign changes under shifts in the four directipnsSince the only bilinears that are invariant under
all shifts are those witl; = I, this immediately shows why taste symmetry cannot be braken
bilinear operators. Moreover, it forcés= & in the four-quark operators of the SET, Hq.l(88).
We now consider the implications of rotations and parity.téfional symmetry requires that
Lorentz (Euclidean) indices be repeated and summed ovesittice the lattice action is invari-
ant only under 90 rotations, an index can be repeated any even number of tiefesebsum-

ming, not just twice. Further, with staggered quarks, tlcka rotational symmetry transforms

the taste indices together with the space-time (and spdies (van den Doel and Smit, 1983;
Golterman and SHI\I|I 1984). Sindg,= &y, the spin indices ogy must be the same as thoseyan

Parity then forcegs andyy to be identical; combinations suchgs= vy, Y¢ = Y5 are forbidden.

There are now only two choices: either the spin indices asie tiadices are separately summed

over, or there are some indices that are common to both thesgitaste matrices. Lee and Sharpe

1999) called the former class of operators “type A,” andl#tter, “type B.”

Because there are twelve choices for an odd bilinear, ther@tatal of twelve type-A operators.

An example is

Ovxp| = &G (V&) G (Yu®Es)q; (90)

with the repeated indeg summed over. The fields here have standard continuum diores)si
so we write explicit factors o& to give the operator dimension four. Note that type-A opmsat
are invariant over the full Euclidean space-time rotatiooug, SO(4), as well as a corresponding
SO(4) of taste, a subset of the complete S (@f)taste that appears in the continuum limit.

In order to have a sufficient number of indices to construgtpeB operator, eitheys = Yy
or & = & must be a tensofT(); the other set is then eith®f or A. Thus there are four type-B

operators. An example is

Opxty = & [Gi (Y ® &) G G (Y © Eupa) 0 — G (Y @ Eyw€5) 0l G (Y ® Es&upn) ] (91)
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where the second term ensures that the operator has noteefjaira or taste-singlet piece. Since
the indexu is repeated four times, one sees explicitly from Eq] (91} thpe-B operators are
invariant only under joint 90rotations of spin and taste.

The SET too (a?) for Nt flavors of (unrooted) staggered fermions is then simply tinuum
QCD Lagrangian for M; species together with the above type-A and type-B operatGisen this
SET, theo (a?) chiral Lagrangian is constructed by finding — with a “spuftianalysis, outlined
below — the chiral operators that break the full SN{%} xSU(4N¢)r symmetry in the same way
as the four-quark operators in the SET do. However, the syimgnisealso broken by the quark
mass terms in the SET. In order to arrive at a consistent exparscheme (a consistent power
counting) for the chiral theory, we must first decide how thealing bya® terms compares with
the breaking by mass terms.

The standard power counting, which we follow here, taées m, wheremis a generic quark

mass. More precisely, we assume that (see[Eg. (39))
a’d ~ mi, = 2Bm, (92)

wherea?s is a typical pion taste-splitting. The taste splittings agdared Goldstone pion masses
are indeed comparable in current MILC ensembles. Goldspiore masses range from about
240 MeV to 600 MeV; while, on the “coarsed & 0.12 fm) ensembles, the average taste splitting is
about(320 MeV)2. This splitting drops to aboi210 MeV)? on the “fine” @~ 0.09 fm) ensembles
and to about125 MeV)? on the “superfine” & ~ 0.06 fm) ensembles. It is clear that EQ.92) is
appropriate in the range of lattice spacings and massesewvaking on. However, for future
analysis of data that include still finer lattices and omé tioarse and possibly the fine ensembles,
it might be reasonable to use a power counting wiaéiis taken to be smaller than.

To derive the leading order (LO) chiral Lagrangian, we stath the Lagrangian in the contin-

uum limit, i.e., in the absence of taste-breaking operators. In Euclideaces we have

2
Leont— %Tr(auzauzT ) — %szTr(M S+arsh)+ g(Tr(¢))2 : (93)
where the meson fiel®, ~ = exp(i®/ f), and the quark mass matriX are N¢ x 4N; matrices,

and f is the pion decay constant at LO. The fi@ldransforms under SUNk ). x SU(4N¢)r as

" There are additionad (a®) terms in the SET, for example from the gluon sector, that weiig here for simplicity.
Such terms are taste invariant, and at leading order onlyym®“generic” effects in the chiral Lagrangiam(a?)
changes in the physical low energy constants.
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> — LZR'. The field® is given by:

U T[+ K+
m D KO ..

®— _ , (94)
K- KO S

where each entry is ax44 matrix in taste space, with, for exampie, = Zéﬁl T, To. The 16 Her-
mitian taste generatorl, areTa = {&5,i&s5, 1§ (U > V), &y, | }. Since the normal staggered mass
term is taste invariant (see Ef.132)), the mass matrix fefotim a7 = diag(myl, mgl, mgl,---).

The quantitymg in Eq. (93) is the anomaly contribution to the mass of theetaahd flavor-

singlet meson, thq’ 00 Tr(®). As usual, then’ decouples in the limitmyg — . However, one

may postpone taking the limit and keep tifeas a dynamical field (Shar nd Shoresh, 2001) in
order to avoid putting conditions on the diagonal elemehi®.oThese diagonal field&], D, ...,

are then simply thed, dd bound states, which makes it easy to perform a “quark flowlyaism

Sharpel, 1990, 1992) by following the flow of flavor indicesotiigh diagrams.

Since a typical pion four-momentum obeysp? ~ m2 ~ 2Bm both the kinetic energy term
and the mass term in Ed. (93) argm). By our power counting scheme, E@.{92), we need
to addo(a?) chiral operators to complete the LO Lagrangian. These ateced by theo (a?)
operators in the SET. We start with the type-A oper&gr,.p, of Eq. (90). Usingg; = o+,
with g = [(1+s)/2]q;, and similarly forgi with " = Gi[(1F ys)/2], we have

Ov e = @[ (W@ &) R+t (@ &) dH]° = [R (e FR) F+d (weR)d-]*,  (95)

where flavor indices are implicit in the last expression. $periong— andF_ will eventually take
the values

N N
FR:aEEr, 2 = a&s®lfiavor s FL:aEEr, 2 = a&5® lfiavor » (96)

but for the moment are given spurious SN¢J x SU(4Nf)r transformation propertiebgr —
RR=R" andF_ — LR LT in order to makeDy, ,.p, “invariant.”

The corresponding (a?) operators in the chiral Lagrangian are then invariants tcocted
only from =, =T, and quadratic factors ik and/orF_. We cannot use derivatives or factors of the
mass matrixy because such terms would be higher order. It turns out tkeat ik only one such
operator:

CiTr(RERRET) = Cra2Tr(E]ze M) 5Ty | (97)
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whereC; is a constant that can be determined in principle by fits tgpgsteed lattice data.

The eleven other type-A operators can be treated in the saypetiough of course different
operators will have different spurions with different tshormation properties. Some of the type-A
operators give more than one chiral operator, but, becausaspeats, a total of only eight chiral
operators are generated.

The type-B operators couple space-time and taste indindsgra invariant only under 9@ota-
tions. Their chiral representatives must therefore havateses to carry the space-time indices;
an example is 'I(EauZTE bar) ZE ) Sharpe and Van de Water, 2005). Because of the deriva-

tives, however, these operators are higher order and doppeiaa in the LO chiral Lagrangian.

This was an important insight of Lee and Sharpe (1999). Itnae¢hat at LO the physics has the

“accidental” SO(4) taste symmetry of the type-A operators.

We can now write down the complete LO chiral Lagrangian:

2
= %Tr(auzauzf) — %B f2Tr(mM S+ v =T+ gﬁ(Tr(CD))Z +alv (98)

where the taste-violating potential is given by

—v = Tz T)+%[Tr(i\(,Nf)ZE\(,Nf)Z)Jrh.c.]
+% TrEl 285, 5) +he) + % Tr(Ew" 2802
+CTZV Tr(&y " 5)Tr(E) ) + he] + CTZA [Tr(&ys" 5)Tr(Eg, ") + hc]
e sy Te(e ) 4+ SR ey 5y Trel ), (99)

with implicit sums over repeated indices.

Expanding Eq.[(98) to quadratic order in the meson fig|dve find, as expected, that pions
with nonsinglet flavor fall into SO(4) taste multiplets, &éd byP, A, T,V, S. We show numerical
evidence for this in Se¢_II[IC. The splittings of Eq. (39), witht =P, A, T, V, S, are given
in terms ofCy, C3, C4 andCg. The presence of two traces in the terms multipliedXby, Coa,

Csv, andCsa means that they cannot contribute at this order to the mads@kavor-)charged

mesons/ Aubin and Bernard (2003a) showed that such termsrrae “taste hairpins,” which

mix the flavor-neutral mesons however, of taﬁteand separately, tasf. In other words, there
25/

are terms of formé%(uu—i- Dy+Si+---)2 and L2 (Uu5 +Dys+ S5+ -+ )2 in the expansion

of Eq. (98), where), and &), are functions olCyy, CZA, Csy, andCsa. These terms have been
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indirectly observed_(Aubiet all, 2004b) in fits to charged pion masses and decay constants to
one-loop expressions derived from EQ.](98). Because of thetipal difficulties in simulating
disconnected diagrams, taste-hairpins have not yet badiedtdirectly in two-point functions of
neutral mesons.

So far, the entire discussion oKBT has been in the context of unrooted staggered quarks.
Bernard |(2002) and Aubin and Ber akd_(AOBa) proposed dloéing could be taken into account
by using quark flow to determine the presence of closed sagedpops in an ¥PT diagram, and

then multiplying the diagram by a factor of4 for each such loop. This is a natural assumption,

because it is exactly what happens in weak coupling pertiorbtheory (Bernard and Golterman,

1994). In the chiral theory, however, the validity of thegmeption is not obvious.

To study in more detail how rooting should be handledX®§, it is convenient to replace the

guark-flow picture with a more systematic way to find and adjus sea-quark loops. This is pro-

vided by a “replica rule,” introduced for this problem by Antand Bernard (2004). Since rooting

is defined as an operation on sea quarks, it is useful firstgarate off the valence quarks by
replacing the original theory with a partially-quenche@oimtroduce new (valence) quarks along

with ghost (bosonic) quarks to cancel the valence detemhiffdne adjustment to theX®T theory,

Eq. (998), is the standard one for a partially-quenched thé®ernard an [terman, 1994): just

add some additional quark flavors and corresponding bodlaniars. The masses of the valence
guarks may be equal to or different from the sea masses. Tike d¢ase is clearly unphysical, but
is useful for getting more information out of a given set addgpiark configurations.

We now replicate each sea-quark flavprtimes, wheren, is a positive integer, so that there
are total ofn,Nr flavors. We then calculate as usual with the replicated (amtigtly-quenched)
version of Eq.[(98), going to some given order in chiral pdyagion theory. The result will be a
polynomial inn;, where factors of, arise from summing over the indices in chiral loops. Finally
we putn, = 1/4 in the polynomial. We thus take into account the rooting thyatively counting
each sea-quark flavor ag4 of a flavor, which cancels the factor of 4 that arises fromtéste
degree of freedom. The chiral theory obtained by applying téplica rule to &PT is called
“rooted staggered chiral perturbation theory”’XF).

Note that we have done nothing to the valence quarks. Sircaumber of tastes of the sea
guarks has been reduced by a factor of 4, it is clear that therenismatch, even when the valence

masses are taken equal to the sea masses. This is still titue dontinuum limit, where the issue
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is particularly transparent. When taste symmetry is exaotjng removes three of the four tastes
from the quark sea for each physical flavor, but leaves theneal quarks unaffected. It is therefore
possible to construct Greens functions, either at the quiattke chiral level, which are unphysical,

in the sense that the external particles have no countarptré intermediate states. Sharpe has

called this the “valence-rooting problem” (Sharpe, 2006lhe solution is however straightforward

Bernardet al., 2007b, 2008a; Sharpe, 2006b): the physical subspace cahtbimed simply by

choosing all external particles to have a single value dététaste 1, say). Using flavor and taste

symmetries, other Greens functions may also be constrticgtdhappen to equal these physical

correlators in the continuum limit (Bernaed al,, 2007b). Nevertheless, most Greens functions

will be unphysical. This is not a cause for concern as londhagetis a physical subspace. In fact
such a situation has nothinger se to do with rooting: it will happen in continuum QCD, or in
any lattice version thereof, if we introduce arbitrary nwargoof valence quarks.

We emphasize that the replica rule tells us to take into adconly the explicit factors ofy,
from chiral loops. Puttingyy = 1/4 in the polynomial resulting from theX®T calculation is
thus a well-defined procedure. We are not concerned witheitteliat, if replication is done in the
fundamental, QCD-level theory, the low energy constanEI$) such a$ andB will be (implicit)
functions ofn,. Such dependence is in general unknown and nonperturbatidenot amenable to
analytic continuation im,. Instead, as is always the case in chiral perturbation yhe@ treat the
LECs as free parameters. After setting explicit factorg,aio 1/4 in our calculations, the LECs
can be determined by fitting the lattice data to the resuttiigal forms. The unknown dependence
of the LECs omy, is however an obstacle in trying to show, directly from thedamental theory,
that rXPT is the correct chiral theory. This is discussed furthe3ec[111.G.

B. Extensions of staggered chiral perturbation theory

The purely staggered theory discussed thus far is ofterfficismt for calculations of many
physical quantities. It would be very difficult, for example simulate heavy quarks with the
asqtad action at currently-available lattice spacingsabge of the large discretization errors that
appear wheram~ 1. Thus, the determination of phenomenologically impdrianoperties of
heavy-light mesons and baryons has usually been carridny@ading a heavy valence quark with
the Fermilab|(El-Khadrat all, 11997) or NRQCD [(Thacker and Lep @991) action to asqtad
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simulations of the sea quarks and light valence quarks.ridtevely, HISQ valence quarks have

been used on the asqtad sea configurations to get precitis fesatharmed mesons (Follaeaal.,

2008). To the accuracy strived for in current calculatiahs, effects of heavy sea quarks can be

neglected; that is, these quarks can be treated in the ge@aqiproximation.
For several other quantities, the complicated effectsstétaymmetry violation make staggered

guarks difficult to use. Since these effects often presejtbatest obstacle in the valence sector, a

very successful compromise, first introduced in Rerate. (2005), has been to add domain-wall

valence quarks on top of the MILC sea-quark ensembles. Suotetl-action” simulations are be-

ing used to study scalar meso|ns Aubirall,[2008),Bk and related quantities (Aubgt al.,[2007a,

2008, 2009a), nucleon propertiELs_(B_mﬂ, 2009,/ Edwardet al., 12006b; Ha , 12008;
Renneret all, 12007), hadron spectroscopy (Edwagﬂall, 2006a] Walker-L t all, '2009), me-

son scatteringl (Bearst all, [2008¢,d), and nuclear-physics topics (Beanhall, 12007¢,/ 2008b;
Detmoldet al.,|2008 =D)).

To take full advantage of simulations with heavy valencerkgiar mixed actions, it is useful

to have chiral effective theories that properly include diseretization effects. We briefly discuss

such theories, starting with the mixed-action case of damaill valence quarks on a staggered

sea. The basic ideas of mixed-action chiral perturbatienhwere developed in Bét al. (2003,
2004) and Goltermaet al. (2005) for the case of Wilson fermions in the sea and chiratiens in

the valence sector. By chiral fermions we mean overlap oradonvall quarks, where we assume

for domain wall quarks thdis is large enough that the residual mass is negligible. Thensitn

to chiral valence fermions on staggered sea qu m 2005) is then fairly straightforward.
Features of mixed-action chiral theory that are univeiaahe sense that they are independent of

the sea-quark action, have been discussed in @hgtL 200",;0_0_db).

Because the valence and sea quarks have different actiangged-action theory lacks the

symmetries that would normally rotate valence into sealgu@rvice versain a standard theory.
Since we assume that both the valence and sea sectors dpgiteaxpected continuum theories
asa— 0, these symmetries should be restored in the continuurh lixhthe level of the Symanzik
effective action, the violation of these symmetries firgtegrs ai (a?) in the existence of inde-
pendent “mixed” four-quark operators: in our case, the pobdf a domain-wall (valence) bilinear
and a staggered (sea) bilinear. We know, following the agrakent in Se¢ TILA, that each bilinear

must be separately chirally invariant, and that any stagbilinear must be taste invariant. It is
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then simple to see that only two mixed four-quark operatoegassible:

Ov = azlljayuq»'a Ci(yu ®)a, Oa = azlljayuysq»'a Ci(V5Vu® 1) (100)

wherey), is a domain-wall quark or ghost of valence flawrandg; is a staggered quark of sea
flavor i, anda andi are summed over. As in the pure staggered case, the colaemii these
operators are irrelevant.

In addition to the operators in Eq._(100), there are the futhplement of standard, purely stag-
gered four-quark operators in the sea sector, and starmlaaly domain-wall four-quark operators
involving valence quarks and valence ghosts. In a normairihé¢he relative coefficients of cor-
responding sea-sea, valence-valence, and valence-sedarpavould be fixed by the symmetries.
But in the mixed case, all such operators are independennastibe treated separately.

In the corresponding chiral effective theory, the purelg-geark sector is the same as the
sea-quark sector of a standard staggered theory. Simitheypurely valence-quark sector is the
same as the valence-quark sector of a standard domainheatyt Mixed valence-sea mesons are

affected by various operators, including the operatoresponding to Eq[(100):
— a’Cix Tr(13Z132 1) | (101)

whereZ is the complete chiral field involving both sea and valencwl (@host-valence) quarks,
andts is a diagonal matrix that takes the valié in the sea sector an€l in the valence sector.
At LO one finds|(Baet al.,, |12005; Cheret all,12009a)

Mo = B(Matmy)
m%[,ia = B<m + ma) + a-26Mix )

wherea, b are domain-wall (valence) flavors,j are staggered (sea) flavotsis the taste of a
sea-sea meson, as in EQ.1(39), @y is a function ofCyix and other low energy constants.
Orginos and Walker-Loud (2008) and Aulenal. (2008) have determinedyix numerically by

measuring the masses of mixed mesons.

The mixed-action chiral Lagrangian thus developed can bd tescalculate one-loop effects in

pseudoscalar masses and decay consi hr2005), inBk (Aubin et all, [2007b) and = 2

Ti— 1tscatteringl(Cheet al., 12006).
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Next, we consider the case of heavy-meson staggered chitakpation theory (HM®PT), the
relevant chiral theory for a heavy meson made out of a healenwa quark and a light staggered
valence quark, on the background of staggered sea quark§&XFIMis designed to parameterize
the light quark chiral extrapolation and the light quarkcdégization effects. Discretization errors
due to the heavy quark are not included; it is assumed thpictre be estimated independently by
using heavy-quark effective theory (HQET) (Isgur and A}Mi Neubert, 1994) to describe the
lattice heavy quark (Kronfeld, 2000, 2004).

At the level of the SET, the first nontrivial effect of combigithe heavy quark with the stag-
gered theory is again the generation of mixed four-quarkaipes (a heavy-quark bilinear times
a light-quark one). As before, such operators do not brestle ymmetry. Furthermore, unlike
the mixed-action case, symmetry between heavy and lighikgusalready strongly broken by the
heavy-quark mass. So the mixed operators have no impoftantsin this case.

The power counting for heavy-light mesonsX®PT makes the HM&PT at LO rather sim-

ple (Aubin and Bernard, 2006). In the continuum, the chiradjtangian for heavy-light mesons

Manohar and Wise, 2000) startsa@tk), with k the residual momentum of the heavy quark. The

light meson momentunp should also be (k). In our staggered power counting, EQ.1(92), we
take p?> ~ m2 ~ a2. This means that the LO heavy-light meson terms are lowegrdithn the
o0(a?) discretization errors in the light quark action. The LO helight meson propagator and
vertices are thus the same as in the continuum, as are thg-hglat/currents that entee.g,

in leptonic and semileptonic decays. The light-quark diSzation errors in heavy-light me-
son quantities first appear at one loop (NLO), through theetamlations in the light meson

propagators in the loop. These corrections have been atdcufor heavy-light leptonic de-

cay constants (Aubin and BernLa'd. 2006), for semileptoeiavii-to-light decayse.g, B — T,

ubin and Bernard, 2007), and for semileptonic heavydesMy decays.g, B— D andB — D*
_Laihg_andlan_d_eJNaIJe ., 2006). There are also analytic NL@ections to physical processes,

coming both from light-quark mass corrections (as in thetiooim) and from taste-violating cor-

rections to the LO Lagrangian and currents. In practices itdually easy to guess these analytic

NLO corrections from symmetry arguments, so it is not neagsg use the complicated NLO

heavy-light Lagrangian (Aubin and Bernard, 2006).
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C. The issue of rooting

The extra tastes are eliminated in staggered dynamicalaiioms by taking the fourth root of
the fermion determinant — the fourth-root procedure. Inghast few years there has been progress

in understanding and validating this procedure, and we @iveef overview of this progress here.

For more detailed discussion, and full lists of referenseg recent reviews hy Sharpe (2006b),
Kronfeld (2007) and Golterman (2008).

The fourth-root procedure would be unproblematic if thécarchad full SU(4y taste symmetry,

which would give a Dirac operator that was block-diagonataste space. Indeed, this is the
“cartoon version” of what we expect in the continuum limitsAiming taste symmetry is restored,
the positive fourth root of the positive staggered deteeminvould then become equal to the
determinant of a single continuum species.

However, at nonzero lattice spaciagtaste symmetry is broken and the Dirac operator is not
block-diagonal (see Ed.(B2)). From EQ.1(34), one has

In detDks+m®1) =4 Inde{D+m)+Indet{l + [(D+m) t®l]aA} . (103)

Since(D+m)~1is nonlocal, we should not expect the rooted theory to be foca +# 0. In fact it

is possible to prove (Bernaet al.,[2006b) that the fourth root of the determinant is not edeivia
to the determinant of any local lattice Dirac operdtdFhe idea of the proof is simple: If there
were such a local operator, then one could construct a theibinyfour degenerate quarks, each
one with that local action. Calling this introduced degré&@dom “taste,” one now has a local
theory with exact SU(4) taste symmetry by construction, and whose determinantus/aignt

to that of the original staggered theory. This is a contiigmlic because the taste symmetry of

the constructed theory guarantees that it has fifteen ps@othitstone bosons (pions), whereas the

staggered pions are known to split up into nondegenera@udaible representations (Golterman,
1986b; Lee and Sharp‘g_‘4999). Indeed, Eig. 6 shows ourdatteasurements of the pion split-

tings as a function of quark mass (left) and lattice spadiigi{). The left plot clearly shows the

characteristic splitting of the charged pian) multiplet into the five nondegenerate submultiplets

with tastesP, A, T, V, S. This is as predicted at(a?) in the chiral expansion, as discussed in

8 “Equivalent” here means equal up to a factor of the expoakafisome local effective action of the gauge field.
This is enoui to guarantee that the two theories have the paysics at distances much larger than the lattice

spacing m 05)
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FIG. 6 Squared charged pion masses, in units;pfas function of quark mass (left). Figure from

¥

Bernardet al. (2006e/ 2007f). A previous version appeared._i 2001). The splittings ap-

pear to be independent of the quark mass. The taste sgitisdunction ofi2a? (right) in a log-log plot,

showing the expected behavior, indicated by the diagonaigstt line. A slightly different version of this

figure appeared in Bernast al. (2007d).

SecILA. Further splitting at higher order into a total @fjht submultiplets is allowed by the

lattice symmetries (Golterman, 1986b), but we see littliel@wce of that at the current level of

statistics.

The same features of the rooted theory that imply nonlgcalgo imply nonunitarity on the
lattice (Bernard, 2006; Bernaet al., 2007@

in the rooted one-flavor theory. The physical one-flavor thatould have no light pseudoscalar

Prelovsek, 2006b). The issue is particularlypsha

mesons (pions) but only a heaqy. In a rooted theory with exact taste symmetyg( with four
copies of rooted overlap quarks), this works automaticahyg fourth power of the fourth root of
a (positive) determinant is equal to the determinant itg&lernatively, one can check directly in

the rooted four-taste theory that, in physical correlgttre pion intermediate states cancel and

only then’ remains|(Bernarét al.,2007b). On the other hand, in the rooted one-flavor staggere
theory, the pions have different masses at nonzero lagaeiisg and cannot cancel, leaving light
intermediate states with both positive and negative wsighhis is a clear violation of unitarity.

In the continuum limit, we expect that all the pions becomgeterate. For the tree-level

improved asqtad fermions, generic lattice artifacts a@déro (asa?). Taste violations, however,

46



require exchange of at least two UV gluons, since the cogplfra quark to a single gluon with any
momentum components equalima vanishes. Therefore taste violations with the asqgtad ctio
should vanish asi2a® asa — 0. The lattice-spacing dependence of the pion splittingsws in

the right-hand plot of Fid.]6, agrees very well with this esjagion. Note that since we are looking
here at flavor-nonsinglet pions, the taste-singjéalso becomes degenerate with the other fifteen
pions as the continuum limit is approached.

Thus, the rooted staggered theory is inherently nonloghhamunitary at nonzero lattice spac-
ing, but should become local and unitarity in the continuumitlif taste symmetry is restored. This
is because, in the limit of exact taste symmetry, rootindnefdea quarks is equivalent to restriction
to a single taste, which is a local operation. Clearly, theerical evidence for taste-symmetry
restoration in the continuum is strong, and accords withtlleeretical expectation coming from
the fact that taste violation is due to an operator with disn@m five. How, then, could rooting
go wrong? The main problem is that the theoretical expextas based on standard lore of the
renormalization group (RG) that operators with dimensicgater than four are irrelevant in the
continuum limit. This standard lore for the scaling of ofgera assumes a local lattice action,
which does not apply here. The numerical results indicattttte lore is not leading us astray, but
of course numerical evidence does not constitute a proof.

There is a further problem in the formal argument we have rsadar that rooting is equivalent
in the continuum limit to restriction to a single taste. Thganent seems to require that taste sym-
metry is restored for the Dirac operafdgs, Eq. (33), itself. In Fig. 6, however, we are only testing
the restoration of taste symmetry at physical scales, thma#h larger than the lattice spacing. At

the scale of the cutoff, there is actually no reason to exthettaste symmetry is restored. Indeed,

direct studies of the eigenvaluesbgs on the lattice|(Duret all, 2004 Follanaet all, 12004) find

only approximate quartets of eigenvalues (indicating apipnate taste symmetry) fdow-lying

eigenvalues, those corresponding to long (physical) nitgtacales.
S_ha.mj|r (2005, 2007) has set up an RG framework for both uadband rooted staggered theo-

ries, and used it to address the potential problems of rgolihe renormalization group is clearly

the natural framework to study the scaling of operators,iaaldo makes possible a more precise
treatment of the continuum limit. As one blocRgs to longer distance scales, the eigenvalues at
the scale of the cutoff are removed, and one may then expadiatfte symmetry is truly restored.

Shamir's RG scheme starts with unrooted staggered quaréidylacks them on the hypercubic

a7



lattice by a factor of 2 at each step, integrating out the fingrk fields. The gauge fields are also
blocked, but the integration over them is postponed unélehd, so that the quark action stays
guadratic at every step. The starting “fine” lattice spaengs blockedn times to a final “coarse”
lattice spacin@c. Asnis increased, the coarse spacing is held fixed but small,ayitt 1/Aqcp.
The fine lattice spacing thus obegs= 2 "a., and the continuum limit is8 — oo, which sends
to zero. In this unrooted theory, the scaling/olike as is guaranteed by the standard lore, since
the action is local.

The rooted theory cannot be blocked in the same way becaatsirquarks are not defined by
a standard Lagrangian, but by a rule to replace the fermiterménant by its fourth root in the
path integral. We can, however, apply the rule at every stétjee (unrooted) blocking, obtaining,
at then'" step, the theory given by

ZKSroot_ / da dett (Dxsn+ M@ 1) , (104)

whereDks is the blocked staggered Dirac operatuoy,is the (renormalized) mass on the blocked
lattice, andda is the full gauge measure (which includes integrals oveggdields at each level
of blocking, as well as Jacobian terms coming from integtabut the fermions on the coarse
lattices). This defines a RG for the rooted theory. Howevés,difficult to make progress directly
from Eq. [104), because of the problem of nonlocality.

Shamir's key insight is that one may define, at each stage adkivlg, an intermediate,
“reweighted theory,” which becomes closer and closer tortlaéed staggered theory but retains

locality. DefineDy, to be the taste-singlet part Dk s, andasAn to be the remainder:

1
Dnh = Ztrts(DKSn) )

Dksn = Dn®Il+afhn, (105)

where tfs is the trace over taste, ahds the identity in taste space. This parallels [Eql (34). We wi
see below the explicis in the second term of Ed._(105) does not mislead us about Himgof
ar/\. The operatoby, is local becausBysis. Further, deiD,, +my,) = det/4((Dy+my) ®1). The
(rooted) reweighted theory is then defined by

Zreweighted_ / d1 detDp+my) , (106)

Now, since the reweighted theory is QCD-liladheitwith a more complicated gauge integration

than usual, we expect it to be renormalizable and asymptbtitee. The running of the operator
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a;iAp from as to ac can then be calculated perturbatively because in this rdregkattice spacings
are all much less than/N\gcp. Because the theory is local, the standard lore tells ustkigat
perturbative running will be a reliable guide to the comg]etonperturbative behavior. Thus we

expect that the operator norm&fA,, will obey, in an ensemble-average sense,

af 2"
||afAn||S_2 =
a a

(107)
where the< sign implies that the scaling is true up to logs. For the sasasans, the mass,

should run logarithmically, just as in QCD. From this and @d3), we have

deti (Dksn+My@!) = defDp+my)exp(3 trin[1 + ((Dn+my) t@1)arln])
a
— det(Dp + ) (1+o (ag—;h)) : (108)

where the quark mass provides a lower bound to the absollute gathe eigenvalues @, + my,.
Thus,

lim ZnKerOt: lim er]eweighted. (109)

n—oo n—oo
In other words, the nonlocal rooted staggered theory co@scwith a local, one-taste, theory in the
continuum limit, as desired.

Note that Eq.[(1308) makes it clear that one must take the mamtn @; — 0) limit before
the chiral (n — 0) limit for rooting to work. This is not surprising, since ig already well
known (Bernard, 2005; Bernagt all, 2007b; Durr and Hoelbling, 2005; Smit and Vink, 1987)

that the two limits do not commute for all physical quansti@nd that taking the chiral limit
first can give incorrect answers. This is true even for theoted staggered theory. As a triv-
ial example, consider the low energy constBnfsee Eq.[(39)) defined at a given lattice spac-
ing a by B(a) = nﬁ&/(Zm) for some taste. Unlesst = P, giving the Goldstone pion, one has
lima_o limy_o B(a) = oo; while the desired result is ligpo lima_o B(a) = B.

The reader may worry that the argument thus far presumes tmh @bout how perturbation
theory works in the reweighted theory. After all, the pdpation theory involves multiple levels

of gauge integrations, making it quite complicated. Inde®dsuch perturbative calculations have

been performed to date mir (2007) has pointed out, rewthat we may avoid the details

of perturbation theory in the reweighted theory by leanirmtanore on the standard lore and on

perturbation theory in thenrootedstaggered theory, which is fairly well understood — ar
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2006b) and the references therein. One starts by consgire unrooted staggered theory repli-

catedn, times, whera, is an integer. In this theory tHefunction and the logarithmic anomalous
dimension ofas An will be the standard functions of the total number of fermspecies, andAn
will scale as expected as longm@sis not so large that asymptotic freedom is lost.

Now, as Ay is just the difference between the (replicated) unrooteggetred theory and a (repli-
cated)unrootedreweighted theory defined by the Dirac operdir + m,) ® 1. SinceasA, gets
small asn — o in one theory, it must get small in the other theory. Both the=oare local, so the
standard lore says that/, scales as expected in perturbation theory in the unrooteeigated
theory — however complicated such calculations would dlgtuee in practice. The results of
perturbation theory to any fixed order are polynomiahinwith the power of, just counting the
number of closed quark loops. So in this perturbation theseymay putn, = 1/4 to obtain the
perturbation theory for the rooted reweighted theory, EQ8J. Thus we do not have to calculate
explicitly in either the unrooted or rooted reweighted ties; we know thatsA, will scale to
zero as expected in perturbation theory. Now the standaediddkes over, as above, for the local,

rooted reweighted theory, and sayg\, will scale to zero as — o even nonperturbatively.

A numerical test of the scaling @A, was attempted in Bernaet all (2006¢). The results

were encouraging but far from conclusive, due to quite |atgéstical errors.

Of course, although the above arguments make it plausiblierdoting works, they do not
constitute a rigorous proof. As always in lattice QCD, onkessheavily on the standard lore
about RG running of irrelevant operators, which is what ‘fguéees” universality. Further, we are
unable to do justice here to all the arguments and assunsptivolved in the perturbative analysis.
We have also ignored the nontrivial issues involving theoB&am obtained by integrating out the
fermions at each level of blocking. The Jacobian can beewists the exponential of an effective

action for the gauge fields. The claim is that this effectistgom is local, basically because it comes

from short-distance fluctuations of the fermions. The re&lerged to see Sharnir (2007) and the
reviews by Shary EL(ZQdG ), Kronfeld (2007) and Golte "@3

We now consider the question of whetheXFS is the correct chiral theory for rooted staggered

for details and discussion.

QCD. This is important first of all becauseXfST allows us to fit lattice data and take the limits
a— 0 andm— 0 in the correct order and with controlled errors. In additithe validity of rXPT,
coupled with the strong numerical evidence for the resimmadf taste symmetry foa — 0 (see

Fig.[8), guarantees that rooted staggered QCD produces#ied results for the pseudoscalar
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FIG. 7 Relative weights (shown at the right of each line) ob{particle intermediate states in the scalar,
taste-singlet correlator in the one-flavor case. The fystate §indicates taste singlet) is shown at top;
while the various two-pion states below are labeled by tbe faste §, V, T, A, P). The height of each line

represents, qualitatively, the relative mass of the state.

meson sector in the continuum limit. This is becausé@Bbecomes continuuXPT when taste
symmetry is restored.

Before discussing the arguments supportingR§ we note that 8T has the main features
desired for a chiral effective theory of the rooted theompérticular r&PT reproduces the nonuni-
tarity and nonlocality of rooted staggered QCD at nonzettickaspacing. This comes about be-
cause r&PT, like the rooted staggered theory itself, is not an omginnagrangian theory, but a
Lagrangian theoryith a rule For rXPT the rule is: calculate in the replicated theory for intege
ny number of replicas, and then sgt= 1/4. Settingn, = 1/4 gives “funny” relative weights for
different diagrams, which can result ultimately in negativeights for some intermediate states

in an ostensibly positive correlator. For example, Elg. Gwehthe weights of various two-meson

intermediate states coming from &XfST calculation/(Bernard, 2006; Bernagtlall, [20074a) of the
scalar, taste-singlet correlator in a one-flavor rooteggsteed theory. The physical theory should
only have a twaq’ intermediate state, but here we have various light piorestatith the taste-
singlet piong having a negative weight. In the continuum limit, howevdirtize pions become

degenerate, and they decouple since their weights adddo zer

The first argument for the validity of KT was given by Bernard (2006). The starting point is

the observation that the case of four degenerate flavorsotédostaggered quarks is particularly

9 The taste-singlet pion is distinct from théhere because it is a flavor nonsinglet arising at the arpjtiraegraln;
values at which the calculation is done.
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simple because it is the same as the case of one flavor of edrstatggered quarks. Thus we know

the chiral theory: it is exactly that obtainedlby Lee and $kdi999) for one unrooted flavor. This

chiral theory is equivalent to that of XBT for four degenerate flavors. The equivalence is manifest
order by order in the chiral theory: Since the result for ahygical quantity is polynomial in the
number of degenerate flavors, takingrddegenerate flavors and then puttimg= 1/4 gives the
same chiral expansion as a one-flavor theory.

The case of four nondegenerate flavors may then be treatedoay@ing around the degener-
ate limit. The expansion is however somewhat subtle. Oncenaxe away from the degenerate
limit, nontrivial weighting factors of various diagramsaused by the fourth root of the deter-
minant of the sea quarks, come into play. This means thatimpossible to write all needed
derivatives with respect to the quark masses as derivatitbe one-flavor unrooted theory of Lee
and Sharpe. The solution is to keep the sea quarks degenrarate introduce arbitrary numbers
of valence quarks. Bernard then shows that it is possiblevoite all derivatives with respect to
sea quark masses as sums of various combinations of deewatith respect to the valence quark
masses. This approach allows us to remain in the degenetgusrk limit, where the chiral the-
ory is known. It is however necessary to assume that pgHipienched chiral perturbation theory
(PQXPT) (Bernard and GoltermaJa‘L)%) is valid in the unrootesec&ince the unrooted case is
local, this is very plausible. Further, there is a signifiamount of numerical work that supports

the validity of PQXPT for local theories, using other fermion discretizationst just staggered

quarks. But it should be pointed out that partially-quernttigiral theories rest on shakier ground

than the standard chiral theory for QCD, as emphasized tigdgnSharpel(2006a). For example,

the argument by Weinberg (1979) for QCD invokes unitaritigick partially-quenched theories do

not have. On the other hand, the argument by Leutwyler (188¥hasizes cluster decomposition

instead of unitarity and may be possible to apply to a pédyt@lenched Euclidean theory. Work

on putting PQPT on a firmer foundation is in progress (Bernard and Golter®a09).

An additional, technical assumption for this approach & the mass expansion does not en-
counter any singularities. This is reasonable becausexgi@nsion is about mmassiveheory, and
one therefore does not expect infrared problems.

To reach the more interesting case of three light flavorsn&erraises the mass of one of the
four quarks (call it the charm quark, with masg) to the cutoff, decoupling it from the theory. This

requires an additional technical assumption, arising fthenfact that there is a range of masses,
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which begins roughly at; ~ 2mg (with mg the strange quark mass), where the charm quark has
decoupled from the chiral theory, but not yet from the QCizeléheory. While the resulting three-
flavor chiral theory has the same form as that of QCD wdnen0, the assumption does leave open
the possible “loophole” that the LECs have different nurwedrvalues from those of QCD.

The above argument takes place entirely within the framkwbthe chiral theory. It has the
nice feature that the recovery of the correct QCD chiral egpions, and the vanishing of nonlo-
cal and nonunitary effects, only requires taste violatimsganish in the continuum limit in the
unrooted, and hence local, theories with integkalThe vanishing of these taste violations in the
rooted chiral theory then follows. On the other hand, bee#lus argument does not conneXPS
to the QCD-level rooted staggered theory, the replica rotisaip emerging rather mysteriously.
The chain of reasoning also depends on several technicahgs®ns.

An argument for the validity of P8PT directly from the fundamental rooted staggered theory

is therefore desirable. It has been develope&ie@ 2008a) by starting from the RG

framework of Shamir. The basic idea is to generalize thedomehtal (lattice-level) theory to one
in which the dependence on the number of repligags polynomial to any given order in the
fine lattice spacin@gs. Then we can find the chiral theory for each integem a standard way
(because the theories are local), and apply the replicdaget the rooted staggered theory at the
fundamental level and X®T at the chiral level.

For simplicity we focus on a target theory witly degenerate quarks in the continuum limit.
Unlike the previous argument, the extension here to quaitksnendegenerate masses is straight-
forward. Consider Eq[{I104), the rooted staggered theotiyeat™ step of blocking, but witms

degenerate staggered flavors:
ZKSroot ) / da det® (Dxsn+mel) (110)

Now generalize this, using the definitions of Hg. ([105), to

det™[(Dn+my) @ | +tasAp]
det™ [(Dp+my) @ 1]

79 ng,ny ) — / da det™s(Dp+my) , (111)

wheret is a convenient interpolating parameter. Whenl andn, = ng/4, this reduces to Ed._(1110)
because the determinants of the reweighted fields (thoséving D, +mor (D, +m) @1 only)
cancel, and the remaining determinant is just that of théetbstaggered theory. Whenr= 0, on

the other hand, Eq._(1111) gives a local theorygfeweighted one-taste quarks.
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Equation [(11l1) has an important advantage over [Eq.] (110)ileVitre dependence omy is
unknown and nonperturbative in both cases, the dependml;&)c’)zﬁe”(ns, nr) is well controlled
because it vanishes when the taste violations vaigh,(= 0 ort = 0). This makes it possible to
apply a replica rule on, at the fundamental QCD level. To see this, we first write

det™ [(Dn+my) ® | +tasAn]
det™ [(Dp+my) @]

=exp(n; trin [1+ ((Dn+mn) t@1)tasdy]) - (112)

We then expand in powers of the fine lattice spa@ngThese can come from the explicit factor
as in the taste-violating term or from the implicit dependencea; of the gluon action and the
lattice operator®,, andA,. The parametetr serves to keep track of the explicit dependence; the
power oft must be less than or equal to the powemefto which we expand. From Ed.(1112),
the power ofn, must in turn be less than or equal to the powet.oThus, to any fixed order in
as, the dependence of the theory pnmust be polynomial. This means thatis a valid replica
parameter of the fundamental theory (again to any fixed drdef). We can in principle find
the polynomial dependence of any correlation function bigudations for integer values af;
only, and then determine the correlation function in theedstaggered theory by simply setting
nr = ng/4 (andt = 1).

We now discuss the effective theories, the SET and the dhiealry. For convenience, we can
work att = 1. Forn, andns (positive) integersZa° (ns, Ny ) is a local, but partially-quenched, theory
that can be written directly as a path integral. It is pdstiguenched because the determinant in
the denominator needs to be generated as an integral ov&r(@osonic) quarks. Finding the SET
and the chiral effective theory for such local theories adard, although theaveatsabout the
foundations of P@PT apply. All that we really need to know is that the effectiveories exist for
any integem; andns, and that their dependence onis polynomial (because the dependence in
the underlying theory is polynomial). In the chiral theorg wan then sat, = ns/4. At the QCD
level this just gives the rooted staggered theoryrfpilavors. At the chiral level, the reweighted
parts of the theory again cancel order by ordert, at ns/4, because we havg flavors of one-taste
guarks and, flavors of four-taste ghost quarks, with exact taste symyn&te are then left with

exactly the result we would have gotten fronXFS.

This argument avoids the “loophole” and technical assuongtiof the argument of Bernard

2006). It also makes clear how the replica rule arises frbenfindamental theory. On the

other hand, it inherits the assumptions_of Shamir (200T)esit is based on that framework.
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Both arguments rely on the standardXRJ for local theories. This is not surprising since rooted
staggered QCD inherently shares some features of a paigiadinched theory: Since rooting is
done only on the sea quarks, there is an excess of valendesques noted earlier, however, this
“valence-rooting” issue is not a fundamental problem beedhere is a physical subspace.

A nice feature of the current argument is that, by couplingRBdirectly to the RG framework,
it makes numerical tests of X8T into tests of the RG framework, and hence of the validity of

rooting at the fundamental level. We discuss such testsdr{\Be

We now turn to the objections raised to rooted staggeredk @@_Lﬂz (20064,b, 20 Elgb,c,
2008 ﬂ)). Since these objections have been refuted, (Am Bernarcbt all, ' 2007b}, 200 H,c;
Goltermah/ 2008) — see also the reviews by Sraltp_e_(2006blsm_eld 2007) — we give

only a very brief discussion here. The main point is that nodsEreutz’s claims apply equally

well to the proposed continuum limit theory of rooted stagdequarks: a rooted four-taste theory

with exact taste symmetry, which is called a “rooted contmuheory” (RCT) by Bernaret al

2008c). Such a theory provides a tractable framework inclviio examine Creutz’s claims.
Because, as emphasized before/détD + m) ® | ) = det(D + m), the RCT is clearly equivalent

to a well-behaved, one-taste theory, and gives a countegeato most of Creutz’s objections.

Alternatively,lAdams|(2008) has found counterexamples iteu@'’s claims in a simple lattice
context, namely a version of twisted Wilson quarks.

While the RCT is equivalent to a one-taste theory, it is natotly the same in the following
sense: In the RCT, with its four tastes, one can couple setiocearious tastes and generate Green
functions that have no analogue in the one-taste theoryh 8nphysical Greens functions are at
the basis of many of the “paradoxes” Creutz finds. For exanaple can find 't Hooft vertices that
are singular in the limiin — 0. Nevertheless these unpleasant effects exist purelgiartphysical
sector of the RCT; in the physical sector all 't Hooft ver@e well behaved.

Finally, Creutz has noticed that there is a subtlety invajviooted staggered quarks for negative
guark mass, and this is in fact true. Independent of the digmeaquark mass, the staggered deter-
minant is positive, as discussed following Eqg.l(28). Thettowoot of the determinant generated
by the dynamical algorithms, Sdc.11.C, is then automdiiqabsitive for any sign ofm. In other
words, the rooted staggered theory is actually a functiopmpfnot m. This means that rooted

staggered fermions cannot be used straightforwardly tesingate the effects that are expected
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Dashen, 1971; Witten, 19I80) to occur for an odd number ofitieg quark massée$. A related

problem occurs when one adds a chemical potential to theytheothe determinant becomes

complex, and the fourth root, ambiguous (Golterredal., [2006). Nevertheless, these problems

have no relevance to the validity of the rooted staggerearthia the usual case of positive quark

mass and zero chemical potential. For more details, seeaBighal. (2007b).

IV. OVERVIEW OF THE MILC LATTICE ENSEMBLES

In this program of QCD simulations, ensembles of latticesengenerated at several lattice
spacings and several light quark masses. This allows etatmns to zero lattice spacing (the
“continuum extrapolation”) and to the physical light quarnlass (the “chiral extrapolation”). In
all ensembles the masses of the up and down quarks are sé&twhich has a negligible effect
(< 1%) on isospin-averaged quantities. The original goalfiefgrogram were to simulate with
three dynamical quark flavors, with a large enough physioaime to make finite size effects
small, and to vary the quark masses to study the effects ofittg on” the dynamical quarks.

It later became clear that more lattice spacings were needadderstand the continuum limit.
Fortunately, computer power was increasing rapidly, wimadde the simulations with smallar
practical.

Currently, the lattice spacings of the ensembles fall ik@sts, with lattice spacings approxi-
mately 0.18 fm, 0.15 fm, 0.12 fm, 0.09 fm, 0.06 fm and 0.045 fimmany places these are called
“extracoarse,” “medium coarse,” “coarse,” “fine,” “supedi|” and “ultrafine,” respectively. The
0.12 fm lattices were the first to be generated. Over timepagpater power permitted, the lattice
spacing was reduced progressivelyi /+/2 so that in each reduction the estimated leading finite
lattice spacing artifacts were a factor of two smaller thathie previous set. The coarser lattices
were added to support thermodynamics studies and to préwitteer leverage for continuum ex-
trapolations. The medium coarse ensemble was added aftesecand fine and has a better tuned
strange quark mass based on analysis of the other ensembles.

For comparison, e~ 0.12 fm, a~ 0.09 fm anda ~ 0.06 fm, quenched ensembles with the

101n principle, the negative mass region can be simulated lojngda 6 term to the action. Because of the sign
problem, this would be extremely challenging in four dimens. However, it has been shown to work well in the
Schwinger model (Diirr and Hoelbling, 2006).
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same gauge action were also generated. For each of thése $qi@cings, the gauge coupliig-
10/g? was adjusted as the light quark mass was changed to keeyittbe $pacing approximately
fixed. However, the lattice spacing could only be determimexurately after the large ensembles
were generated, so itis necessary to take into account thlédifferences in lattice spacing among
the ensembles in the same set. In $ec.1IV.B, we then desceasurement of the lattice spacing
on each ensemble, and a parameterized fit to smooth outistdtikictuations.

The strange quark mass in lattice unésy, was estimated before simulations began, and was
held fixed as the light quark mass and gauge coupling weredzatiater analysis, described in
Sec[V], determined the correct strange quark mass much acorgately, and in fact the initial
estimates turned out to be wrong by as much as 25%.

In thea ~ 0.12 fm set, several ensembles have a large dynamical quark +ass large as
eleven times the physical strange quark mass. This was ddnedstigate the physics of contin-
uously “turning on” the quarks by lowering their masses friofimity. There are also a number
of ensembles with a lighter-than-physical strange quarksm@ihese were generated to explicitly
study dependence on the sea strange quark mass, and, sidightér strange quark implies less
sensitivity to higher orders in SU(3) chiral perturbatibeary, enable improved determinations of
the parameters in the chiral expansion, particularly oldleenergy constants (see Secl VI).

The fields satisfy periodic boundary conditions in the spaicections, while the boundary
condition in the Euclidean time direction is periodic foethauge fields and antiperiodic for the
quark fields.

Tablell shows the parameters of the asqtad ensembles (a fetv'&ming” ensembles are not
included). Heream is the dynamical light quark mass in lattice units @md, is the strange quark

mass. Figurgl8 plots the quark masses and lattice spacirniyssa ensembles.

A. Algorithms and algorithm tests

The earlier ensembles were generated using the “R” algnr&_oﬂeb_et_il, 1987) de-

scribed in Sed_I.IC. The molecular dynamics step size wasngdly set at about two thirds

of the light quark mass in lattice units. More recent lattiEneration has used rational func-

tion approximations for the fractional powers describedSiec.[1.G. In those simulations,
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B=10/g?| am | ams |(L/a)®x (T/a)|Lats| ug ry/a |mgl
a~0.18 fm
6.503 |0.0492 |0.0820 16°x 48 250 0.856361.778(8) |9.07
6.485 |0.0328 |0.0820 16°x 48 3340.855851.785(7) |7.47
6.467 |0.0164 |0.0820 16°x 48 416/0.854921.801(8) |5.36
6.458 |0.0082 |0.0820 16°x 48 484 0.854891.813(8) |3.84
a~0.15fm
6.628 |0.0484 |0.0484 16°x 48 621/0.8623 |2.124(6) |8.48
6.600 |0.0290 |0.0484 16°x 48 596/0.8614 |2.129(5) |6.63
6.586 |0.0194 |0.0484 16°x 48 640 0.8609 |2.138(4) |5.46
6.572 |0.0097 |0.0484 16°x 48 631/0.8604 |2.152(5) |3.93
6.566 |0.004840.0484 20° x 48 603 0.8602 |2.162(5) |3.50
a~0.12 fm
8.000 |oo o 2B x 64 | 4080.8879 |2.663(6) |na
7.350 |0.4000 |0.400Q0 20°x 64 3320.8822 [2.661(7) |29.4]
7.150 |0.2000 |0.200Q0 20°x 64 34110.8787 [2.703(7) |19.6
6.960 |0.1000 |0.100Q0 20°x 64 3400.8739 [2.687(0) |13.7
6.850 |0.0500 |0.0500 20°x 64 4250.8707 [2.686(8) [9.70
6.830 |0.0400 |0.0500 20°x 64 351/0.8702 [2.664(5) |8.70
6.810 |0.0300 |0.0500 20°x 64 5640.8696 [2.650(4) |7.56
6.790 |0.0200 |0.0500 20°®x64 |17580.8688 |2.644(3)|6.22
6.760 |0.0100 |0.0500 20°x64 [20230.8677 |2.618(3) |4.48
6.760 |0.0100 |0.0500 28%x 64 2750.8677 |2.618(3) |6.27
6.760 |0.0070|0.0500 20°x64 |18520.8678|2.635(3)|3.78
6.760 |0.0050 |0.0500 24°x64 [18020.8678|2.647(3)|3.84
6.790 |0.0300|0.030Q0 20°x 64 367/0.8689 [2.650(7) | 7.56
6.750 |0.0100 |0.0300 20°x 64 357/0.8675 [2.658(3) |4.48
6.715 |0.0050 |0.0050 3Bx64 | 7010.8671|2.697(5)|5.15

TABLE | Table of asqtad ensembleg; is the input tadpole factor, Eq.(9), rather than the valuerdeined
from the ensemble average of the plaquette. Lattice spaeirggfrom the smoothed fit described in the text,
except where indicated by &". For these ens%gblesl /ais from this ensemble alone, rather than the

smoothed fit. To convert to physical units, ugex 0.31 fm. A T indicates that the run is in progress. This

list of ensembles and counts of archived lattices are as oéiber 2008.



B=10/g’| am | ams |(L/a)®x (T/a)|Lats| uo ry/a  |[mpl
a~0.09 fm
8.400 |00 00 28° x 96 396/0.89741 |3.730(7) |na
7.180 [0.0310|0.0310 28°x 96 500/0.8808 |3.822(10)8.96
7.110 [0.0124|0.0310 28°x96 |19960.8788 |3.712(4) |5.78
7.100 [0.0093|0.0310 28°x96 |11380.8785 |3.705(3) |5.04
7.090 [0.0062|0.0310 28°x96 |19460.8782 |3.699(3) |4.14
7.085 |0.004650.0310 322x96 |540'/0.8781 |3.697(3) |4.11
7.080 [0.0031|0.0310 40°x 96 |10120.8779 |3.695(4) |4.21
7.075 [0.001550.031Q0 64° x 96 530'|0.8778053.691(4) |4.80
7.100 [0.0062 |0.0186 28° x 96 985/0.8785 |3.801(4) |4.09
7.060 [0.0031|0.018G 40° x 96 6420.8774 |3.697(4) |4.22
7.045 |0.0031(0.0031] 40®x96 |4401/0.8770 |3.742(8) |4.20
a~ 0.06 fm
7.480 [0.0072(0.0180 48 x 144 625/0.8881 |5.283(8) [6.33
7.475 [0.0054 (0.0180 48° x 144 617/0.88800 |5.289(7) |5.48
7.470 [0.0036 (0.0180 48° x 144 771/0.88788 |5.296(7) |4.49
7.465 [0.0025 (0.0180 56° x 144 800/0.88776 |5.292(7) |4.39
7.460 [0.0018 (0.0180 643 x 144 826/0.88764 |5.281(8) (4.27
7.460 [0.0036 (0.0108§ 64° x 144 483 0.88765 |5.321(9) |5.96
a~ 0.045 fm
7.810 [0.0028 |0.014Q 643 x 192 861/0.89511 |7.115(20)4.56
TABLE Il Table[l continued.
we have used the Omelyan second order integration algo lyanet all, ZOOZB) 20

Sexton and Weingarten,

1992; Takaishi and de Forcrand

the fermion and gauge force

5 (Sexton and WeingaJLtm

3;

)2006 used different step sizes for

1981) the step size for the fermion

force three times that of the gauge force. We used four seps@fidofermion fields and cor-
2003). The first set

implements the ratio of the roots of the determinants forgisical light and strange quarks to

responding rational function

5 (Hasenbusch, 2(
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FIG. 8 Lattice spacings and quark masses used. The octagdinate ensembles with the strange quark
near its physical value, while the crosses indicate thodle avi unphysically light strange quark. The burst
at lower left shows the physical light quark mass. Here thekjmasses are in units of MeV, but using the

asqtad action lattice regularization.

the determinant for three heavy “regulator” quarks with smas, = 0.2. That is, it corresponds

to the weight de(tM(rn))l/2 det(M(rns))l/“det(M(n}))*e’/“. The remaining three pseudofermion
fields each implement the force from one flavor of the regulgiark, or the fourth root of the cor-

responding determinant. These choices are known to benablsogood, but could be optimized
further.

For all but the largest lattices generated with rationalcfiom methods, we included the
Metropolis accept/reject decision to eliminate step sizers, or the RHMC algorithm. Because
the integration error is extensive, use of the RHMC algarifior the largest lattices would have
forced us to use very small step sizes and double precisiaraimy parts of the integration. For
these lattices it was much more efficient to run at a small ghstep size that the integration error

was less than other expected errors in the calculation (B[R algorithm).
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FIG. 9 The plaquette as a function of integration step sizeusayl for 28 x 64 lattices with = 6.76 and
amy = 0.01/0.05. The point ae? = 0 is from the RHMC algorithm, and the point indicated Rys the

value used in the R algorithm production runs. The remaibhwwpoints are from short test runs described

inlAubin et al. (2004a).

Errors from the integration step size in the R algorithm waniginally estimated from short

runs with different step sizes, as described in Ber 2001) and Aubiret al. (2004a). In

several cases, ensembles originally generated with thg®&idm were later extended with the
RHMC algorithm. This allows aex post factdest of the step size errors in the R algorithm, with
much higher statistics than possible for a tuning run. FEglshows the average plaquette for one
a= 0.12 fm run as a function of step size squared, combining tHg taring runs with the R and
RHMC algorithm production runs. TaHdlellll compares the etpton values of the plaquette and
the light quark condensate and, in some cases, the lattoingpand pion mass, for the ensembles
where both algorithms were used. The differences are smalirmamost cases are comparable to
the statistical errors.

In one casea~ 0.12 fm andamy = 0.01/0.05, an ensemble with a larger spatial size’j2®as
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B |lam |am |e O(R) O(RHMC) difference  |QY(R) YY(RHMC) difference

6.790.020 [0.050/0.013331.709160(26) 1.708805(16) -0.000355(3DP52553(61) 0.052306(28) 0.000251(67)
6.760.010 [0.0500.006671.700917(21) 1.700879(18) -0.000038(ZBP36875(43) 0.037174(36) 0.000300(56)
6.760.007 [0.0500.005001.701183(22) 1.701177(18) -0.000006(ZBP31388(54) 0.031306(38) -0.000082(66)
6.760.005 [0.0500.003001.701181(17) 1.701211(11) 0.000030(20)027551(50) 0.027597(25) 0.00045(56)

7.11/0.01240.0310.008001.789213(19) 1.789075(7) -0.000138(ADP24584(22) 0.024620(10) 0.000036(24)
7.090.00620.031/0.004001.784552(9) 1.784541(6) -0.000011(ILP15622(17) 0.015608(14) -0.00015(2R)
7.08/0.00310.0310.002001.782300(8) 1.782254(11) -0.000046(ILP10664(18) 0.010860(19) 0.000196(26)

B |am |am |e 1(R) I(RHMC) difference |amy(R) amy(RHMC) difference

a a

7.110.01240.0310.008003.708(13)  3.684(17)  -0.024(21) |0.20640(20) 0.20648(20) 0.00008(28)
7.090.00620.0310.004003.684(12)  3.681(8)  -0.003(14) |0.14797(20) 0.14767(13) -0.00030(24)
7.080.00310.0310.002003.702(8)  3.682(7)  -0.020(11) [0.10528(9) 0.10545(9) 0.00017(13

TABLE Il Comparison of plaquette and light quark condeesfair ensembles run partly with the R algo-
rithm and partly with the RHMC algorithm. For tlzex~ 0.09 fm ensembles, we also shoyya and the pion

mass.

generated to check for effects of the spatial size. In gérbese effects were found to be small as
expected, although the effects dpand fx differ significantly from one-loop chiral perturbation

theory estimates, as discussed in §et. VI.

B. The static potential and determining the lattice spacing

Since results of lattice QCD simulations are initially initsrof the lattice spacing, knowing
the lattice spacing is crucial to calculating any dimeng&ibguantity. However, since ratios of
dimensionful quantities (mass ratios) calculated on ttteéwill only have their physical values
at the physical quark masses and in the continuum limitetieearbitrariness in the determination
of the lattice spacing except in the physical limit. Someelisionful quantity must be taken to be
equal to its physical value or to soragoriori model.

Following the practice of most current lattice simulatiorograms, we use a Sommer

scale ((Sommer, 1994) as the quantity kept fixed, and deterthis scale from some well con-
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FIG. 10 The static quark potential for the ensemble waith 0.09 fm andm = 0.2ms. This was obtained
from time range five to six. The inset magnifies the short distgpart, showing a lattice artifact which is

discussed in the text.

trolled measurement.

A Sommer scale is defined as the length where the force beteestatic (infinitely heavy)
quark and antiquark satisfie&F (r) = C, whereC is a constant. Intuitively, this is a length where
this static potential changes behavior from the short degaCoulomb form to the long distance
linear form. In particular, the most common choicegsdefined byC = 1.65. We have chosen to
userq, defined byC = 1. This choice was made based on early simulatioasa0.12 fm where
it was found that, had smaller statistical errors thag(Bernardet all, i2000b).

The calculation of the static potential on the earlier ertdemis described in Bernagt al.
(2000b). We begin by fixing the lattice to Coulomb gauge. lis thauge, we can evaluate the
potential from correlators of (nonperiodic) Wilson lineghere the line atX;t) with lengthT is
Wr (X,t) = 15" Ua(%,t +i). The Coulomb gauge fixing, which makes the spatial links asotin
as possible, is an implicit way of averaging over all spgtiths closing the loop at the top and

bottom. Because we do not explicitly construct the spafdiypit is easy to average over all lattice
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FIG. 11 The static quark potential and first excited statemt! for the ensemble with~ 0.06 fm and
m ~ 0.1ms. This was obtained from time range three to twenty, using\fRE smeared time links discussed

in the text.

points(X,t) and to get the potential at all spatial separatiBns
The first step in determining is to extractV (R) from the expectation value of the correlators

of Wilson lines. We expect
LRT) = (WEROW(R+RY)) = AeVRT AV ®T 4 (113)

whereV’, etc. are potentials for excited states. Bor 0.09 fm, the excited states are negligible
for fairly small T, and we simply tak&/(R) = log(L(R, T)/L(R,T +1)). Specifically, we use
T =3fora~0.15fm, T =4 fora=x 0.12 fm andT = 5 for a=x 0.09 fm. Figurd_ 1D shows the
resulting potential for the run @~ 0.09 fm andm = 0.2ms. The inset in this figure shows the
short distance part of the potential. In this inset, there vgsible lattice artifact where the point
at R = 2, or separatior2,0,0) is slightly below a smooth curve through the nearby point wi
off-axis distance® However, aR = 3 the lattice artifacts are quite small. In fact, what appéar
be a single point & = 3 is actually two points, one fd® = (3,0,0) and another foR= (2,2, 1).

The small objects in the center of the plot symbols are thesttal error bars o (R).
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FIG. 12 The static quark potential in unitsmffor five different lattice spacings. In all cases, these are f
light quark mass of two tenths the simulation strange quaakan For each lattice spacing, a constant has
been subtracted to s€{r;) = 0. The ruler near the bottom of the plot shows distance irswfifm, using

r; = 0.318 fm. The multiple rulers in the upper half of the plot shagtahce in units of the lattice spacings

for the different ensembles.

For a= 0.06 fm, the above procedure for findinJR) gave large statistical errors. This is
primarily because a large constant term in the potentiadesua rapid falloff oL(R, T) with T.

This constant can be considered a self energy of the stadikgdiverging as la. To fix this, the

timelike links were smeared by adding a multiple of the thirde“staples” (Albaneset all,|11987),
namely “fat3 links” defined in Eq[{89) wittb = 0.1. The Wilson line correlators(R, T) were
computed from the smeared time direction links as desciabede. As expected, this reduces the
constant term iV (R), and comparison with the potential from unsmeared linkgesats that any
systematic effects ory/a are less than.005 ata ~ 0.06 fm, smaller than the statistical errors.
With the smeared time links, the correlatdr@®, T) are statistically significant out td as large
as twenty (for smalR). It is then advantageous to do a two state fiL (& T). For thea~ 0.06

fm ensembles, we generally fit these two states over a tingeran. T < 20. An example of the
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potential from this procedure is shown in Eig 11. The firstiextstate potential is also shown, but
we caution the reader that in addition to having large gstediserrors this excited state potential
has not been carefully checked for stability under varyihgainges, or under addition of a third
state to the fit.

OnceV (R) is determined, we find; by fitting V (R) to a range oR approximately centered at

1
- ﬁ) (114)

r;. We use a fit form

B 1
V(R) = —+0R+A | =
(R) C-I—R-|—0+ (R

lat

HereC is part of the quarks’ self energy, is the string tension anB is *730(5 for a potential

definition ofas. The last term,%}lat — %, is the difference between the lattice Coulomb potential,

%Mat =4nf (gig’g D(()%)(p)eiIDR with D(()(g(p) the free lattice gluon propagator calculated with the
Symanzik improved gauge action, and the continuum Coul pial I/R. Use of this correc-

tion term was introduced by the UKQCD collaboration (Boetfal., 11992). This correction was

used forR < 3. The scale (or ro) was then found from solving?F (r) = C with A set to zero,
rya= 1%5. Since we often want lattice spacing estimates from onlyaldgtices, and there are
a large number of distances to be fit, these fits were genafailg without including correlations
among the differenR. Errors onry are estimated by the jackknife method, where the size of the
blocks eliminated ranges from 30 to 100 simulation timesurfipot checks comparing fits includ-
ing the correlations confirmed that the jackknife errorscmesistent with derivative errors in the
correlated fits, and that the fit function does fit the data wedlr the chosen range.

For thea=~ 0.18 fm ensembles, we used the spatial range frehod 1.5 to 6.0; for thea=x 0.15
fm ensemblesy/2 < R < 5; for thea ~ 0.12 fm ensembles,/2 < R < 6; and for thea ~ 0.09 fm
ensembles, 2 R< 7. For thea~ 0.06 fm ensembles, where the two state fits with smeared links
were used, the spatial range was R < 7, and for thea ~ 0.045 fm run, it was 5< R< 10.

The static quark potentials for different lattice spaciogs be overlaid after rescaling to check
for lattice effects and to plot the potential over a largegen Figure_ IR shows such a plot in

units ofrq for five different lattice spacings, using the ensemblef wit= 0.2ms at each lattice

spacing. In Bernarét all (2000b), it was found that including the dynamical quarksiifies the
static potential in the expected way. This can be seen byimyadimensionless quantities such as
ro/r1 orr1,/0. When this is done in a region where the potential is appraseéch by Eq.[(114) and
riis found fromrq = 1%5, this amounts to plotting the coefficient ofRin the fit.

Oncer1 is estimated for each ensemble, the estimate can be impbyéting all values of
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ri/ato a smooth function of the gauge coupling and quark masseshaie used two different

forms for this smoothing. In the first form, we fit I0g /a) to a polynomial in3 and 2am + am.

The second form is a function based on wor Iton (1996):
f 2f3 4f3
a _ Cof +Co0 +Cyg (115)
r 1+Dog?f2
where

f = (bog?) P/ (%) exp(—1/(2bog?)) , bo= (11— 2n¢/3)/ (4102,
b; = (102—38n¢/3)/(4m)*, amo =2am/f+amy/f, (116)
Co = Coo+Couam / f +Corsamy/ f +Coz(amot)?, Co = Coo+Coramot -

HereCoo, Co1, Co1s, Co2, Coo, Co1, Cs, andD are parameters. The second form is a slightly better
fit, and we have used it for thrg/a values in Tabléll. Errors on the smoothada are estimated by
a bootstrap for which artificial data sets were generatethdse data sets the valuergfafor each
ensemble was chosen from a Gaussian distribution centetiee @alue for the ensemble given by
the fit, and the standard deviation was given by the stadisticor inrq /a for the ensemble.

To find r1 in physical units, we use a quantity that is both well knowpementally and ac-
curately determined in a lattice calculation. One such tityamnd the one used in most of our

work, is the splitting between two energy levels of tilemesons. These splittings have been cal-

culated on several of the asgtad ensembles by the HPQCD/WKxlaboration [(Graet al.,
2003,12005; Wingatet all, |2004). From fitting the 2S-1S splittings on the~ 0.12 fm en-
sembles with quark massas) /ams = 0.01/0.05, 002/0.05, 003/0.05 and 005/0.05, and the
a~ 0.09 fm ensembles with light massas) /ams = 0.0062/0.031 and 00124/0.031, to the form
ri(a.am.amy) = ri™
Grayet all (2005) used a different fitting procedure to estim&f&® = 0.321(5) fm.)

More recently, analysis of the light pseudoscalar mesonsesaand decay constants gave

+ 1@ + cpam /ams, we find r?hys: 0.318 fm with an error of MO7 fm.

an accurate value of;. The fitting procedure to arrive at this is complicated — see.&/1.
Requiring thatf in the continuum and chiral limits match its experimentalueagivesr; =
0.310815)(3) fm, where the errors are statistical and systematic, réispéc

To summarize, we set the scale for each ensemblebya/rq) x ri’hys, where(a/rq) is the
output of the smoothing function, EG(115), at the enservdiiees ofam, ams, andg?, andr?™®is

the physical value of;, obtained either fronbb mesons splittings of;;. The scheme is useful for
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generic chiral extrapolations, and tends to result inyiarhall dependence of physical quantities
on the sea-quark masses. However, chiral perturbatiomtl@Esumes a mass-independent scale
setting scheme, because all dependence on quark massepdésad to be explicit. So detailed
fits to chiral perturbation theory forms require a mass{ostelent scale procedure, especially if
one hopes to extract low energy constants that govern maesndence. Once tlrg smoothing
form is known, though, it is easy to modify the procedure tkendmass independent: instead of
using the ensembles’ valuesarhy andam in the smoothing function, Ed._(1115), use the physical
values. This mass-independent scheme is used for the analyight pseudoscalars described in
Sec[V].

C. Tuning the strange quark mass

In most of these ensembles, the original intent was to fix ttege quark mass at its correct
value, and to set the light quark mass to a fixed fraction ofstr@enge quark mass. The correct
strange quark mass, however, is actually not known untildtiees are analyzed. In practice, the
best that can be done is to estimate the correct strange quas® from short tuning runs or by
scaling arguments from results of earlier runs. As desdribeSec['Vl, the physical strange and
up/down quark masses are determined by demanding thatgtfiepseudoscalar meson masses
take their physical values. For the strange mass, wediind= 0.043918) ata~ 0.15 fm,ams =
0.035Q7) ata~ 0.12 fm, am; = 0.0261(5) ata =~ 0.09 fm andam; = 0.01864) ata ~ 0.06 fm.

For the up/down mass, we firadn = 0.001587) ata ~ 0.15 fm,am = 0.001262) ata~ 0.12
fm, am = 0.0009558) ata ~ 0.09 fm andam = 0.0006848) ata ~ 0.06 fm. The errors include

statistical and systematic effects, but they are dominlayatie systematic effects.

D. The topological susceptibility

The topological structure of the QCD vacuum is an importdaracteristic of the theory. A
stringent test for lattice simulations consists in collgecapturing the dependence of the topo-
logical susceptibility on the number of quarks and their seas since this susceptibility reveals
the effect of the quarks on the nonperturbative vacuum ttreic Chiral perturbation theory pre-
dictsXtopo(Nf, M) in the chiral limit (Leutwyler and Smil\,<z“_19J92). Latticelcalations, however,

have struggled to reproduce this dependence satisfgchmdause the topological charge is not
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uniquely defined and the fermion action typically breaksallsymmetry. The asqgtad action com-
bined with rXPT gives us good control over the taste and chiral symmeggKing effects; thus

we expect that a careful treatment of the topological chaifldead to an accurate computation

of the topological susceptibility. This has been explomedBé 2003d), Billeteret al
2004) and Bernardt al. (2007f).
As explained in_ Aubin and Bernard (2003a) £nd Billeteal. (2004), the chiral anomaly cou-

ples to thetaste-singletmeson, not the Goldstone pion, which is the usual focus ofdmaspec-
troscopy calculations. (Of course, in the continuum lirnége mesons are degenerate.) To leading
order in rXPT, the topological susceptibility depends on this mass as

- (2, /8
PO 14, /(2mey) + 32, /(2mg)

wheremy is the taste-singlet pion mass, amg comes from the term representing the coupling

(117)

of the anomaly to thg’ in the chiral Lagrangian, Ed._(P3). The strange flavor-ghgdhste-singlet
meson mass is denoteds;.

Equation [[(11F7) interpolates smoothly between the infirg@guark-mass (quenched) predic-
tion (Veneziano, 1979; Witten, 197%,= f2mj/12, which we can use to set, and the chiral

limit, m — 0, which is dominated by the pioX, = f2m2/8. Hence, to this order, we simply
replace the Goldstone pion mass with the mass of the tasgéesi(non-Goldstone) pion in the
Leutwyler-Smilga formula. Note that this means that, ataeva lattice spacing, the topological
susceptibility does not vanish ag — 0, a reminder that the continuum limit must be taken before
them — O extrapolation.

In order to compute the topological charge dengity) on our lattice ensembles, we use three

iterations of the Boulder HYP smoothing method (DeGrahél., |11997; Hasenfratz and Knechtli,

2001), which we have found_(Bernagtlal,, 2003&,d) compares well with the improved cooling
method of de Forcranet all (1997). We define the topological susceptibility from theretator

of q(x) via

Xiopo= (@) V = [ ¥ (a(n)a(0)) - (118)
On our lattices, the short-distance part of the densityetator has a strong signal, but the cor-
relator at large separation is noisy. To reduce the regultariance, we define a cutoff distance
re. In the integral above, far < r; where the signal is strong, we use the measured values of the

correlator(q(r)q(0)). Forr > rc we integrate a function obtained by fitting the measuredstator
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FIG. 13 Points used to computg(r)q(0)). Measured points (open symbols) are used farr. ~ 9a. For

r > rc the fit function (solid curve) is used in E§.(118). From Bedet all (2007f).

to a Euclidean scalar propagator

(a(r)a(0)) ~ AqKa(mqgr)/r + Ay Ke(myr)/r (119)

where we use priors for the masses ofhandn’, andK; is a Bessel function. This significantly
reduces the variance @°. An example of the measured valuesyof), the fit function, and the
fitting range are shown in Fig. 113.

Figure[14 shows this definition &fopo computed on our coarsa £ 0.12 fm), fine @~ 0.09
fm), and superfinea(~ 0.06 fm) lattices. The continuum limit is taken first by fittinget suscepti-
bility data to
2 (M2, a) = A+ Aa® + (Ao + Aga? + Asa) /M . (120)

Xtoporo
The solid black line in Figi_14 shows tree— 0 form of this function. Some representative

points along this line are shown with error bars reflectiregetrors of the continuum extrapolation.
Finally, the chiral perturbation theory prediction of Efj17), shown as a dotted line, is based on
the value formg set by the quenched data.

With the addition of the neva ~ 0.06 fm data, we see that the topological susceptibility is
behaving as expected in théLI — 0 limit of rooted staggered chiral perturbation theory.

These results lend further credibility to the use of the flowoot procedure to simulate single
flavors, since aberrant results from this procedure wouldXpected to arise first in anomalous
behavior of topological quantities and correlations, &séhare rather sensitive to the number of

flavors.
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FIG. 14 Topological susceptibility data, and its continuartrapolation, compared with the prediction of

Eq. (I1IT). Update of figure fro 2007f).

V. SPECTROSCOPY OF LIGHT HADRONS

Computing the masses of the light hadrons is a classic prolide lattice QCD, since the
masses and structures of these particles are highly nempatitve. By this point, hadron mass

computations, including the effects of light and strangeaiyical quarks, have been done for

several different lattice actions, including staggerearis, Wilson quarks (DUt al., (2008, 2009;
Ukita et all, 2007,/ 2009) and domain-wall quarks (Alltehal., 2008; Ukitaet all, [2007). It has

long been apparent from these and other studies that |&@®e reproduces the experimental
masses within the accuracy of the computations. For mogteofight hadrons, however, this
accuracy is not as good as for many of the other quantitiesisiéed in this review. The reasons for
this are that these masses have a complicated dependeedight quark mass, making the chiral
extrapolation (to the physical light quark mass) difficalhd that all but a few of these hadrons
decay strongly. Most of the lattice simulations are at heawyugh quark masses or small enough
volumes that these decays cannot happen, so the chirapeldtian crosses thresholds. With
staggered quarks there is the additional technical cortpdic that for all but the pseudoscalar

particles with equal mass quarks the lattice correlatorgaio states with both parities, with one
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of the parities contributing a correlator that oscillatesime.

Masses of the lowest-lying light-quark hadrons have beempeded on almost all of the MILC

asgtad ensembles. Hadron masses fronathd.12 fm ensembles were reported i

2001), masses from theex~ 0.09 fm ensembles were added.i ' 2004a), and nucleon
andQ™ masses from tha ~ 0.06 fm ensembles in Bernagd al. (2007¢). Simple extrapolations

of these masses to the continuum limit and physical quarlsniasluding results from several of

thea~ 0.06 fm ensembles, are compared to experiment in[Fig. 15. liiadgdthis figure shows

charm and bottom meson mass splitti ,12003, 2005; Wingatet al.,12004) compared

with experimental values (Amslet al., ).

A. Hadron mass computations

The theory behind hadron mass computations with staggevedks was developed in
Kluberg-Sterret all (1983a), | Golterman| (1986b) and Golterman and 'Smit (1986¢ (also
Kilcup and Sharpe (1987)). Early implementations, in whathnical aspects were addressed, in-
clude Marinariet all (1981a), Bowleet al. (1987)) Guptaet all (1991), and Fukugitat all (1993).

The calculation begins with a Euclidean-time correlatianction for any operator that can

produce the desired state from the vacuum. For instance,dparatoro can annihilate a particle
p and the adjoinio’ can createp, then we study the zero-momentum correlation function, or

“correlator”C,+,, given by
Cotolt) =S (0(x1)07(0,0)) . (121)

X

By putting in a complete set of states between the two opesate find

Coto(t) = 3 (0]0[n){n|0"0) exp(—Mnt) - (122)

m
If the particlep is the lowest-energy state then for large Euclidean time, the dominant contribu-
tion will be [(0|0|p)|?exp(—Mpt). Generally, there will be additional contributions frongher
mass states, and with staggered quarks there are usualhjbotions from opposite parity states
of the form(—1)texp(—M't). In addition, because of the antiperiodic boundary coandiin time

for the quarks, there will be additional terms of the form @xMy(T —t)), whereT is the time
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FIG. 15 The “big picture” — comparison of masses calculatedhe asqtad ensembles with experimental

values. For the light quark hadrons we plot the hadron mamsfa thecc and bb masses the difference

from the ground state (1S) mass. The continuum and chired@odations of the pion and kaon masses are

described in Se€. VI, and most other meson masses were @gziiegh to the continuum and physical light

guark masses using simple polynomials. Masses of hadrarainimg strange quarks were adjusted for the

difference in the strange quark mass used in generatingdenbles from the correct value. The nucleon

mass extrapolation, describedlin Bgrnat@ll 2007c¢), used a one-loop chiral perturbation theory form.

The charmonium mass splitting is from Follastzal _Z_OQ;JS), and théb splittings fro

Grawet al

2003

Wingateet al. (2004) and _Grat all (2005). Experimental values are from Amsétal

),

_ZO_O_ZL). TheY

2S-1S splitting and theaandK masses are shown with a different symbol since these gieantiere used

to fix ry in physical units and the light and strange quark massedieEgersions of the plot appeared in

ubin et all (2004a) and the PDG “Review of Particle Physic¢s” ,12008).
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FIG. 16 Pion and nucleon correlators plottes] the distance from the source. These correlators are from
the = 6.76,am /am; = 0.007/0.05 ensemble. The small symbols in the center of the octagaihe ipion
correlator are error bars. Note the increasing fractionalrg with distance in the nucleon correlator, and

the constant fractional errors in the pion correlator.
extent of the lattice. Thus, with staggered quarks a mesoelator generically has the form

COTo(t> _ A0<e—M0t+e—Mo(T—t))_|_A1 (e_Mlt+e_Ml(T_t))+...

(1A (e*“"ét n e*Mé(T*U) T (123)

Here the primed masses and amplitudes with the factqrdf' correspond to particles with

parity opposite that of the unprimed. For baryons the formingilar, except that the backwards
propagating termse{ M(T-1) have an additional factor qf-1)"*1. Here the overall minus sign

in the backwards propagating part is due to the antiperiodicydary conditions for the quarks in
the Euclidean time direction. Figurel16 shows correlatorgttie pion and nucleon in a sample
asqtad ensemble. Statistical errors on the pion corredathe tiny symbols in the center of the
octagons. The effect of periodic (for a meson correlatonaary conditions in time is clearly

visible. For short times, there are contributions from heaparticles.

For hadrons other than glueballs, evaluating this cowelaquires computingllxj)} whereM
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is the matrix defining the quark action. This can be done byinga& “source” vectob which

is nonzero only at lattice point, or in some small region, and solving the sparse matrix equa-
tion Ma = b, usually using the conjugate gradient algorithm. (Heendb are vectors with one
component for each color at each lattice site in the system -3V complex components. With
Wilson-type quarks there would also be four spin compongeitsattice site.)

The simplest possibility fop is an operator built from quarks and antiquarks located & th
same 2 hypercube, often even on the same lattice site. This is lysoalled a point source.
Because the point operatop tends to have a large overlap with excited states, it is isadlan-
tageous to take a “smeared” source operathrwhere the quarks in the hadron may be created at
different lattice sites. One common approach is to chooseemsed operator that creates quarks
and antiquarks with a distribution similar to that of the egfed quark model wave function of the
desired hadron. A cruder and simpler approach used in mase ®flILC light hadron mass calcu-
lations is to take a “Coulomb wall” source, where the lattechrst gauge transformed to the lattice
Coulomb gauge, making the spatial links as smooth as pessilihen a source is constructed
which covers an entire time slice, for example, with a 1 in sararner of each2cube in the
time slice. This works because with Coulomb gauge fixing Goutions from source components
within a typical hadronic correlation length interfere eoéntly, while contributions average to
zero if the quarks created ly'" are widely separated (although they do contribute to thestital
noise). In other wordez<M‘1 M > is significant only wherX; — Xo| is less than a typical

Xt Yot Yt Xt
hadronic size. For example, a Coulomb wall operator appatgpfor a Goldstone pion is

ow(t) = 3 XX (=D XF,1) . (124)
Xy

In a mass calculation, we want the state with zero spatial emum, which is isolated by
summing the sink position over all spatial points on a tiniegeslin many matrix element studies,
we need hadron states with nonzero momenta, and they aateidddy summing over the spatial
slice with the appropriate phase factors.

Statistics are usually further enhanced by averaging lewors from wall sources, or other types
of sources, from several time slices in the lattice. In gaheach different source requires a new
set of sparse matrix inversions.

For most hadrons, statistical error is the limiting factorthe mass computations. At long

Euclidean timet, a correlator with hadrom as its lowest mass constituent is proportional to
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e MHt, The variance of this correlator can itself be thought ohasdorrelator of the square of the
operator

(om0} of)on(y) | (125)

where in this correlator for flavor-nonsinglet hadrons itursderstood that quark lines all run

from the operators at to those aty (Lepage) 1990). The behavior of the variance at long dis-

tances is dominated by the lowest mass set of particlesecté&gtoy (x)o:| (x). Thus for mesons

oH(x)o,‘_](x) creates two quarks and two antiquarks which can propagateapseudoscalar

mesons. Then the variance decreases approximatedy?4ss, whereMps is the mass of the
pseudoscalar meson made from the quark}x,TjH. For baryons there are three quarks and three
antiquarks, and the variance decreases approximatedy®ss. This behavior can be seen in
Fig.[18, where the fractional error on the pion correlatcesinot increase with distance, while the
fractional error on the nucleon correlator grows quickly.

As discussed in Set. IL.LB.3, hadrons with staggered quarkseawith different “tastes,” all
of which are degenerate in the continuum limit. For pseuadlesanesons, the mass differences
between different tastes are large, but they are well utatmisas discussed in Séc. Il1.A. For
the other hadrons, for which chiral symmetry is not the mogiartant factor in determining the
mass, taste symmetry violations are much smaller. In paaticwe have computed masses for four

different tastes of the meson on many of our ensembles, and have failed to find angtstally

significant taste splittings. (See also Ishizmall 1994).)

B. Correlated fits

There are several kinds of correlations in the numericallte®f lattice gauge theory simu-
lations. The Markov chain that produces the configuratiaiosiyces correlated configurations.
Thus, there are correlations in “simulation time.” The etations vary with the algorithm, and
one can reduce them by increasing the simulation time gapeeet the configurations that are
analyzed. Generation of configurations is computatioredlyensive, however, and the autocor-
relation length is unknown until the run and some analysisoispleted, so one usually saves
configurations with some degree of correlation. A simple veagleal with these correlations is to
block successive configurations together and then to etgiareors from the variance of blocks.

However, if the number of blocks is not many times larger tthennumber of degrees of freedom,
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the finiteness of the sample size must be considered whenatstg goodness-of-fit or statistical

errors on the parameters in a fit (Michael, ; ) ,2008). In cases where

blocking is not practical, notably the pseudoscalar mesatyais in Sed. VI, we have estimated
elements of the covariance matrix by using the measurecau@ations in the data to rescale a
covariance matrix based on unblocked data.

Even if successive configurations are not correlated, reiffiephysical quantities are correlated
with each other. For example, if the pion correlator is lathan average at a separatidnom the
source on a particular configuration, it is likely to be larg&t 4+ 1. Thus, when extracting hadron
masses, or other fit parameters, we must use the full caoeliadatrix in the fit model, not just the
variance in each particular element fit. To be specific, lettilues of the independent parameters
be denoted; and corresponding lattice “measured” valuesypeThe fitting procedure requires
varying the model parametefa } that define the model functiom (X, {A}) in order to minimize

X?. For uncorrelated data,

=3 (m (5, A —w)?/of (126)

|
whereg; is the standard deviation gf. When the data is correlated, & = Cov(y;,y;j) and then

X% = ; (ym 06, A1) =) Gt (vm (%1, {A}) —vj) (127)
(In practiceCjj is almost always estimated from the same data ag, fla@d in this casg? is more
properly calledT2.) Uncorrelated data reduces @ = 6ij0i2. If Cij has positive off-diagonal
entries, then the data will look smoother than it would if amelated.

In Fig.[17, we show how the fitted pion and nucleon masses vitytive minimum distance
from the source that is included in the fit. The octagons andis are correlated fits, minimizing
X2 in Eq. (I27). For the pion, the octagons correspond to aesipgtticle (two-parameter) fit, and
the squares correspond to a two-particle (four-paramgteBor the nucleon, the octagons are fits
including one particle of each parity. We need to decide Wiitds best, and we do that based on
the confidence levels of the fits, which are roughly indicdigdhe symbol size. Figufe L7 also
contains fits ignoring correlations while minimizing tk@in Eq. (126). It can be seen that the error
bars on these points are in general incorrect — they areareithorrect estimate of how much the
parameters would likely vary if the calculation were repéanor of how much the parameters are
likely to differ from the true value. We also see that the cderfice levels are generally too large for

the uncorrelated fits. In particular, based on its confidéexaa, one might accept the uncorrelated
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FIG. 17 Result of fitting the correlators in F{g.]16 from a mmim distance to the center of the lattice
(for the pion) or distance at which the correlator losesisdteél significance (for the nucleon). For the
pion correlator (left panel), octagons correspond to shpglrticle fits and squares to two-patrticle fits. The
diamonds are from single-particle fits ignoring correlati@mong the data points. For the nucleon fits (right
panel), all the fits use two particles, one of each parity.a@ans are correlated fits, and diamonds are fits
ignoring the correlations. The sizes of the symbols aregtamal to the confidence level of the fits, with

the symbol size in the legends corresponding to 50% confedenc

pion fit with minimum distance five. But in fact it can be seeatth differs significantly from
the asymptotic value. The effects on the confidence leveh fignoring correlations can be quite
extreme. For example, in the single-particle pion fits Vidth, = 5, the correlated fit hge® = 180
for 25 degrees of freedom, for a confidence of ) while the uncorrelated fit hgg® = 14 for 25
degrees of freedom, or an (erroneous) confidenceS#.0

Jackknife or bootstrap methods are often used with coeeldata. These methods give esti-
mates of the errors in fit parameters, but they do not provifternation about goodness of fit.

Once the hadron propagators are fit, we still need to perftiralor continuum extrapolations.
In these cases, it is also imperative to deal with the cdrogla among the fitted quantities that
come from the same ensemble. With partial quenching thegarience matrices can become

quite large, so it is essential to have enough configuraiioesach ensemble to be able to get a
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FIG. 18 Thep mass in units of1, plotted versus the squared pion mass. Singél my, this is effectively

a plot versus light quark mass. The octagons are from enssmiitha ~ 0.12 fm, the squares from

ensembles witla~ 0.09 fm, and the bursts from ensembles vatiy 0.06 fm. The decorated plus at the left
is the physicap mass, with the error on this point coming from the errorqinFor reference, the upward

arrow indicates approximately where the quark mass edo@lsttange quark mass.

good estimate of the covariance matrix.

C. Results for some light hadrons

The pseudoscalar mesons are special for several reasass.VEry accurate mass computa-
tions are possible. This is because the statistical errthieicorrelator (square root of the variance)
decreases with the same exponential as the correlatdr-tged fractional error is nearly indepen-
dent oft, and accurate correlators can be computed out to the fdherf the lattice. Second, for

equal mass quarks the pseudoscalar correlator does nobseillating contributions from oppo-
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site parity particles, and the oscillating contributions aegligible for the kaon. Third, because of
the pions’ role as the approximate Goldstone bosons fordmrakiral symmetry, the breaking of
taste symmetry leads to large mass splittings among thereift taste combinations. Finally, be-
cause itis related to the decay constant of the meson, thitadepof the pseudoscalar correlator
is as interesting as the mass. Because of the exact U(1) shiranetry of the staggered quark
action, the axial-vector current corresponding to the Golde (taste pseudoscalar) pion needs no
renormalization, so the decay constants can also be ceddulahigh precision. For these reasons,
discussion of the light pseudoscalar mesons is deferreddd\8.

For the vector mesons, the fractional statistical errohadorrelator increases aé/v—Mes)t,
Also, the vector mesons decay strongly. On the lattice, @masion of momentum and angu-
lar momentum forbids the mixing of a zero-momentum vectosanewith two zero momentum

pseudoscalars, so the vector meson is “stable on the lafticpion masses large enough that

2\/M +(2m/L)2 > My. (Taste breaking adds some additional complications s)tHfor all

of the asqtad ensembles except those with the smallest quaskes, this condition is satisfied,
and the vector meson masses can be easily, if not accurtdelyl. However, the problem of
extrapolation through the decay threshold to the physigatkgmass has not been fully addressed.
Figure[18 shows the meson mass as a function of light quark mass for three diftdedtice
spacings. Results for th€* andg are similar, except that there is an added complicationan th

the mass needs to be adjusted to compensate for the fachéhstirange quark mass used in the

correlator computations differs from the physical. While the values in_Bernaret all (2001)

and Aubinet all (20044a) use the same valence and sea strange quark masseastes in Fig. 15

have been interpolated to the correct valence strange quask.

The nucleon is stable and chiral perturbation theory islalks to guide the extrapolation in
guark mass. However, computation of reliable masses isuliffiecause the fractional error in the
nucleon propagator increaseseldv—3Meslt, Also, there are excited states with masses not too far
above the nucleon mass that contribute to the correlatéactnwith staggered quarks the simplest
baryon source operators couple to fhas well as the nucleon, so the lowest positive-parity egcite
state in the correlator is the (Golterman and Sﬂl\it. 1985). Figure|19 shows nucleon masses f
three lattice spacings versus quark mass, together withtencom and chiral extrapolation.

Another hadron of particular interest is tliEe (Toussaint and Davies, 2005). This particle

is stable against strong decays. Also, in one-loop chirgupeation theory there are no pion-
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FIG. 19 The nucleon and a chiral fit. Nucleon masses are showdifferent light quark masses at
three lattice spacings. The cross at the left is the expatmhealue. The slightly curved line and the
diamond at the physical quark mass are a continuum and @hitedpolation. Lattice spacing errors are

assumed to be linear &fas. The particular chiral form used here is a one-loop cal@ratith T— N and

— A intermediate states (Bernagtial, 11993;/ Jenkins, 1992). This plot is an updated version ofione

Bernardet all (2007c¢).

baryon loops, so at this order there are no logarithnmg;gh the chiral extrapolation of the mass.
Therefore, we expect that a simple polynomial extrapafaitolight quark mass should be good.
Unfortunately, theQ™ is a difficult mass computation with staggered quarks, fiestaloise it is a

heavy particle and second because a baryon operator thétd1as as its lowest energy state has

its three quarks at different lattice sites (Golterman md $1985; Gupteet all, [1991). TheQ™
mass is strongly dependent on the strange quark mass, amich@pfe provides an independent
way to determine the correct lattice strange quark masauréfigd contain€2~ mass estimates,

using strange valence quark masses at each lattice spaeihwere independently determined

81



2.6

: a=0.12 fm
0: a=0.09 fm
¥%: a=0.06 fm
X: continuum extrap.
+: exptxr, (from f,) :

1.0 1.5

T rl)a
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value. Note that in this case the vertical axis does not baighero. Earlier versions of the plot appeared in

Toussaint and Davie

(2005) and.i

2007

).

from the pseudoscalar meson analysis in §elc. VI. To do@his;orrelators were generated using

two different strange quark masses near the desired onéhafd mass was obtained by linearly

interpolating to the strange quark mass determined sehardthis plot also shows a continuum

and chiral extrapolation using the simple foligr; = A+ Ba?as+ C(mprp)2.

Masses of other particles, such as #heand b; and particles including strange quarks

were calculated in_Bernast al. (2001,/2007c),
fied in|Bernarcet al. (2007¢).
ied in|Bernarcet al
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and the excited state of the pion was identi-

Light hybrid mesons with exotic quantum numbersewstud-

2003b,c), and exotic hybrid mesons with nonrelativisavy quarks in



Burch and TQussaHt_(;QOS), a\Jn_d_Bme 2001, 2002).

D. Flavor singlet spectroscopy

Determining the masses of flavor-singlet mesons is, perllapsnost challenging endeavor in
lattice QCD light hadron spectroscopy. The difficulty ingiso has three main sources:

(i) Flavor-singlet correlators have two different contriions: quark-line connected and quark-
line disconnected. The quark-line disconnected pieceimesjgo-called “all-to-all” correlators. To

avoid theo (V) inversions to compute these all-to-all propagators, ststith methods are used.

Kuramashet al. (1994) used a unit source at each site and let gauge invardgmthe averaging.

More common now is the use of random sources (Dong and Liw}; Mshkataraman and Kilcup,

1997) similar to Egs. SiZ),IZES), with various noise redoctiechniques. (Folesgt all, [2005;
Mathur and Dong, 2003; i ichagel, 2011;_S_Lr_us;km.lj, 2001;/ Wilco ,_19_9J9),
including low-eigenmode preconditionir: P002] Venkataraman and Kilcup,

1998).

(i) While the stochastic noise of the quark-line conneatedrelators falls off exponentially

(albeit with a smaller exponent than the signal), the naisthé quark-line disconnected part is
constant. So the signal to noise ratio falls off much fastetlie disconnected part.

(iif) The quark-line connected correlator is the same aafitavor-nonsinglet meson — in partic-
ular the pion for the pseudoscalar channel. Therefore, éngnoisy disconnected correlator first
has to cancel the connected correlator before giving theedksinglet correlator whose falloff
gives the flavor-singlet mass.

Since much larger statistics are needed for the computafidhe flavor-singlet correlators,
the UKQCD collaboration has extended a couple of the MILGdatensembles to around 30000

trajectories/(Gregoregt al.,[2007| 2008, 2009). Their simulations are still on-going f&, the only

result given is for the 0" glueball, whose correlator can be constructed from gaulgedigerators
and requires no noisy estimators and Dirac operator irmessiFor two different lattice spacings,
a~ 0.12 and 009 fm, the UKQCD collaboration findsy++ = 162932) MeV and 160071) MeV

Gregoryet all., 12009), respectively.

It is important to continue this investigation. In partiaylobtaining the correcf’ mass would

further support the correctness of the rooting procedusditoinate the unwanted tastes for stag-
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gered fermions.

E. Scalar mesonsfg and ag

In this subsection, we describe briefly the analysis of ¢atoes for two light, unstable scalar
mesons, hamely, the isosingligtand the isovectoap.

With the first good measurements of thg channel in the staggered fermion formulation a
peculiarity was encountered: it was found that on coarsieéattheag correlator appeared to have
a spectral contribution with an anomalously low mass, éghbhan any physical decay channel
ubin et al,,[2004a; Gregoret al,, 2006).
For sufficiently lightu andd quark masses, thig decays to two pions. Likewise, the isovector

scalar mesomy decays to a pion and ap On the lattice, the open decay channels complicate
the analysis of the scalar meson correlators. They are ddedrby the spectral contributions of
the significantly lighter decay channels. As a flavor singlet fg also suffers from the quark-line
disconnected contributions described in the previousesilzs. Finally, with staggered fermions
at nonzero lattice spacing, the splitting of the pseudasaaleson taste multiplets in the decay

channel deals a seemingup de gace

Fortunately, one can make progress usin§RBdescribed in SeC.ITA (Bernaet all, 2006a;

Prelovsek, 2006&,b). The essential idea is to match defisitof the desired correlator of local

interpolating operators in the lattice QCD formulation andSXPT. The lattice definition is the
basis for the numerical simulation of the correlator, aredr®PT definition provides a model for
fitting the result of the simulation, including all tastesbking effects in the decay channels. If we
take the taste-multiplet masses from separate calcuatiban, despite the rather complicated set
of two-meson channels, that portion of the fit model depemdsrdy three low energy constants.
In principle, even these constants can be determined frdependent measurements, leaving no
free parameters. So this fit provides a further test of thieiNtgof rSXPT as a low energy effective
theory for the staggered action.

The hadron propagator from lattice site Oytes defined in the same way from the generating
functionals for both QCD and the chiral theory:

0%logZ

om0/ (y)0me o(0) (128)
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FIG. 21 Best fit to they correlator (left panel) for five momenta and tiecorrelator (right panel) for four
momenta. The fitting range is indicated by points and fitteddiin red and blue (darker points and lines).

Occasional points with negative central values are notgaotData are determined from thex 0.12 fm

(coarse) ensemble witm = 0.005 andam; = 0.05. Figures from Bernardt al. (2007a).

In QCD, the source 1(y) generalizes the usual quark mass term and includes of6déadavor
mixing f, f’. The same correlator is defined inXfST, where the local soura®; 1/(y) appears

in the generalized meson mass matrix. This establishesraspandence between the correlator
defined in terms of the quark fieldgy)q(y) in QCD and in terms of the local meson fieB®?(y).

To lowest order in r®PT, the meson correlator is described by a bubble diagranchvgives
the contributions of the two-pseudoscalar-meson interatedtates, including all taste multiplets
and hairpins. These contributions are determined from thkipret masses and the XBT low
energy constant, d,, andd(, described in Se€.TlJA. In addition to the bubble diagrame adds
an explicit quark-antiquarky or fy state to complete the fit model. Results are shown in[Elg. 21,
and results for the low energy constants are listed in TaBle |

It is particularly instructive to examine the variety of typgseudoscalar-meson taste channels
contributing to the scalar meson correlators. To be physieées, the external scalar mesags
and fo must be taste singlets. Taste selection rules then reduatdliey couple only to pairs of
pseudoscalar mesons of the same taste. Thus, for examiptbefay, each flavor channel, such
astt—n, comes with a multiplicity of sixteen taste pairs, althougttice symmetries reduce the
number of distinct thresholds to six. There is also a satef’ channels. To get the energies

of the thresholds, we look at the taste splitting of the congmd hadrons. We have already seen
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fo andag correlators  Meson masses and decays
rimé/(2myq) 7.3(1.6) 6.7
Ov (prior) —0.016(23)
3n —0.056(10) —0.040(6)

TABLE IV Comparison of our fit parameters for the ST low energy constants with results from

ubin et all (2004b)

how the pion taste multiplet splits into the Goldstone statd a variety of higher-lying states,
all of which become degenerate in the continuum limit. Hhandn’, on the other hand, have
unusual splitting because they mix with the chiral anom8&lyce the anomaly is a taste singlet,
only the taste-singlef andn’ mix with it in the usual way. Thus, in the continuum limit only
the taste singlet states are expected to have the corresemabhey are the only physical states.
The fifteen taste nonsinglgfs andn’’s remain light. The pseudoscalar-taste eta pairs with the

pseudoscalar-taste pion. The unphysical pseudoscalarrta- n channel gives an anomalously

light spectral contribution to thay correlatori(Prelovsek, 2006a,b). A similar complicati@ewrs

in the fo correlator, but it is masked by the expected physical tvooitermediate state.

The unphysical taste contributions provide a concretstilition of the breakdown of unitarity
at nonzero lattice spacing as a result of the fourth-roote fheory heals the scalar meson cor-
relators in the continuum limit by a mechanism that paralktactly the one described for the
one-flavor model in Se€.TITIC. The pseudoscalar meson leutiibjram contains a negative-norm
channel. This unphysical ghost channel has the weight ueedzncel the contributions of all the
unphysical taste components in the continuum limit. Thukécontinuum limit only the physical
intermediate two-meson states survive.

The behavior of the isovector scalar correlator has alsa bealyzed for the case of domain-

wall valence quarks on the MILC staggered ensemt ah, 2008). In the mixed-action
case, theay correlator receives contributions from two-particle imtediate states with mesons
composed of two domain-wall quarks, mixed mesons compaoseaeodomain-wall and one stag-
gered quark, and mesons composed of two staggered quadaudiethe symmetry of the external
valence quarks restricts the sea-sea mesons to be tad&sitite correlator does not receive con-

tributions from all of the taste channels. As in the purebggiered case, the one-loop bubble
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FIG. 22 The isovector scalaad) correlator on the MILC coarsam /am; = 0.007/0.05 ensemble with

three different domain-wall valence masses. Overlaid endidita are the predicted bubble contributions,

which should dominate over the exponentially-decayingtrifmutions at sufficiently large times. Figure

from|Aubin et al _29_043).

contribution is determined by three low-energy constzJEtEImLs_ek 2006b), which are known
from tree-levelXPT fits to meson masses. For domain-wall quarks on the coadsére MILC

lattices, the contribution from the bubble term is predidt®be large and negative for several time

slices. Thus a comparison of the mixed-ac&tT prediction for the behavior of theg correlator
with lattice data provides a strong consistency check.
ubin et al. (200

) compare the mixed-actig®T prediction for the bubble contribution with
the latticeag correlator for several domain-wall valence masses on tlaeseoand fine MILC
lattices. They find that, in all cases the size of the bubbigrdaution is quantitatively consistent
with the data, and that the behavior of the data cannot beimaul if mixed-action lattice artifacts
are neglected. For fixed light sea quark mass, the size ofublel®term decreases as the valence

guark mass increases (see Higl 22). The bubble contribatsmndecreases as— 0. These
results of Aubiret al. (200

) support the claim that mixed-acti¥dRT is indeed the low-energy
effective theory of the domain-wall valence, staggeredlatie theory. Furthermore, mixed-
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actionXPT describes the dominant unitarity-violating effectshia mixed-action theory even when
such effects are larger than the continuum full QCD contrdms that one wishes to extract. Thus
mixed-actionXPT fits can be used to remove taste-breaking and unitartgtmg artifacts and

recover physical quantities.

F. Summary

In general these and other lattice spectrum calculationéiroo that QCD does predict the
hadron spectrum. However, although we can see the effediscafy thresholds as the quark mass

is varied €.9.,Sec[\VE), and though some scattering lengths can be inigideatermined through

chiral perturbation theory (Leutwyler, 2006), most hadcatecay rates and cross sections remain

to be calculated in the future.

VI. RESULTS FOR THE LIGHT PSEUDOSCALAR MESONS

A. Motivation

Precise computations are possible for light pseudoscaaons (see Selc. V.C), and they lead
to interesting physics. If lattice calculations of lightgosloscalar mesons and decay constants
can approach the chiral and continuum limits, we can detezrttie up, down and strange quark

masses and many of the low energy constants (LECs) of thal ¢ldgrangian, including several

combinations of the NLO Gasser-Leutwyler constdntGasser and Leutwyler, 1984). From the
ratio fx /fr, we can extractVys| from the kaon leptonic branching fraction, providing a tett

CKM matrix unitarity for the first row of the matrix.

B. From correlators to lattice masses and decay constants

Study of the light pseudoscalar mesons on MILC lattices bég2004 (Aubinet all, [2004b)

and has included several updates at the annual Latticeremcfes|(Bernardt al.,[2006d,e, 2007e).

We first review the methodology of Aubgt al. (2004b). In the Goldstone (taste pseudoscalar)

case, we can use the PCAC relation to relate the decay corigtan matrix elements of the spin-

and taste-pseudoscalar operatp(t) = Y(ys ® &5)P between the vacuum and the meson. In terms
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of the one-component staggered quark formalism,
OP(U = )za(xt)(_l)%_txa(xt) ) (129)
wherea is the (summed) color index. As in Eqs_(A21.1122), we definereetator by

Cop(t) = o 3 (0p(5.)0](%,0)) = cope ™3 ..., (130
Sy

wherempsis the mass of the (lightest) pseudoscalar @nid the spatial volume. After fitting the

correlator to this form, we can find the decay constant from

VsCpp
fps= (My+my) : (131)
PS my 4mgs

wheremy andm, are the two valence quark masses.
Although the decay constant is found from the overlap of tbimtpsource operator with the
meson state, most directly obtained from the point-pointatator Eq.[(13D), it is useful to use the

Coulomb wall source Ed.(124) and point sink to calculatecireelator
Cwp = (0p(X,) 0y (0)) = owpe ™% + ... . (132)

The advantage of this correlator is that it has less contaitnoim from excited states than ddgsp,
and helps in fixing the pseudoscalar mass.

A random-wall source can also be used instead of a pointsaoalculat€pp, giving smaller
statistical errors. The source for the quark on each sitdgiof@aslice is a three component complex
unit vector with a random direction in color space. Thus,tdbations where the quark and anti-
quark in a meson originate on different spatial sites avetagero. After dividing by the spatial
lattice volume, this source is used insteadjéfin Cpp. The preferred method is then to @y p

and the random-wall point-sir®pp with three free parametefpp, Awp andnmps

Cpp = MpgAppe ™,

Cwp = MisAwpe ™9, (133)
so thatApp is the desired combinatiakp/ Mg that appears in Eq._(IB1). An appropriate range of
Euclidean time must be selected to get a good confidencedétt fit. If the minimum distance

from the source point is too small, there will be excitedesintamination. It is essential to use

the full correlation matrix of the data to get a meaningfuifidence level and avoid contamination.
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For chiral fits used to extract LECs that govern the mass+u#grece of physical quantities, it
is important to fix the scale in a mass-independent mannes i3because all mass dependence
should be explicit iXPT, and none should be hidden in the scale-fixing scheme. gsitded in
Sec[IVB, a mass independent method is used to determrimehichry/ais extrapolated to the
physical, rather than simulated, quark masses on the givesmeble.

Partial quenching is very useful in order to obtain enoudfa tia perform the required chiral
fits. For the valence masses on a typical ensemble, nineefiffenasses from.0my to i, (my is
the simulated strange sea mass) may be used. This yields#ictipairs of valence masses, and
hence 90 values (meson masses and decay constants) forrdidichVithout partial quenching,
we would have only four values. Of course, the correlationsrag the 90 values must be taken
into account.

Finite volume corrections are included in the one-loo¥RS forms used to fit the lattice data.
Since the spatial box sizes are at least 2.4 fm, and for thdeshlight sea-quark masses they are
increased to about 2.9 fm or larger, these corrections esyalless than 1.5%. Smaller, additional
corrections representing “residual” effects from higlmap contributions are applied at the end of

the calculation, as described below. The results cannot katfiout the one-loop finite volume

corrections, nor can they be fit with continulRT. In|Aubinet al. (2004b), five coarse and two

fine ensembles were fit with continudt®T: however, the confidence level of the fit was 4!

In the remainder of this section, we present methods andtsésum|Bernardet al. (2007¢€). A

final version of the analysis, using added ensembles andawmehiral logarithms (Bijnenst al,
2004, 2006; Bijnens and Lahde, 2005), is in progress.
The fitting is done in two stages. In the first stage, the leadider (LO) and next-to-leading

order (NLO) low energy constants (LECs) are determined lindita restricted set of data that

is closer to the chiral and continuum limits than the addgigoints included later. Specifically,
the largest lattice spacin@ & 0.15 fm) is omitted and the valence quark masses are required
to obeyam, 4 am, <0.39 am (for a~ 0.12 fm), am, 4+ am, <0.51 am (for a~ 0.09 fm), and
am, +am, < 0.56 ams (for a=~ 0.06 fm). Further, foa~ 0.12 fm three higher-mass combinations
of sea-quark masses are omitted. Despite the restricitaagpund that due to the high precision

of the data it is necessary to add NNLO analytic terms in otdeget good fits. In the second
stage, the range of valence and sea-quark masses is extenoetlide the region around the

strange quark mass. The LO and NLO low energy constants astramed to be within the range
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FIG. 23 NNNLO fit to partially-quenched squared meson mas3a$/ the lightest sea-quark ensemble for

each lattice spacing is shown. The data fit includes the teefad decay constants and is reflected in the

number of degrees of freedom. Figure from Bernetrdl. (2007¢).

determined by the first stage of fitting. In this stage, NNNLf@lgtic terms are needed to get good
fits.

In Fig.[23, we show the squared meson masses in unfts&d)?. For the “pions’my, = my. For
the “kaons” a few fixed values ah, are picked for illustration, anthy is varied. The horizontal
axis ismy/m.. Only a small fraction of the points used in the fit are showar.dach lattice spacing,
the plot contains only the lightest sea-quark mass ensegiatdeno decay constant data is plotted.
For this fit,x? = 436 with 449 degrees of freedom, corresponding to a confelienel of 0.66. The
dashed red line shows the continuum prediction after dlcaspacing dependence in the fit pa-
rameters is extrapolated away, the strange sea-quark sfas=d to its physical value and the light
valence and sea masses are set equal. The physical valmgamdnmi= (m,+my)/2 are required
to simultaneously yield the kaon and pion masses dendtadd ftin the figure. These masses
correspond to what the kaon and pion masses would be withirsaad electromagnetic effects
removed. Some phenomenological input is needed to accouthtd electromagnetic effects. This
is explained in detail in Aubiet al. (2004b). The vertical dotted line is drawnrat .

[3)

The “residual” finite volume corrections are then appliedlabgelo, Dirr, and Haefeli (2005)
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FIG. 24 The meson decay constants are plotted along with ML fit that was shown for the masses
in Fig.[23. The left plot shows partially quenched data fromrénensembles than in Fig.123, but still only

a fraction of the data fit. On the right, still more ensemblesiacluded, but only full QCD data points are

plotted. Both figures are from Bernagtlall (2007¢).

have shown that higher than one-lo¥BT corrections can be significant in the current range of
quark masses and volumes. For 0.12 fm with sea masseam /ant = 0.01/0.05, there is a

direct test of finite volume effects on 2@nd 28 volumes that correspond to 2.4 and 3.4 fm box

sides.| Bernaret al. (2007€) detail the comparison between these calculatiodgre one-loop
result. On this basis, a small correction is applied to th&inoum prediction. This amounts to
0.25% for fy, 0.05% forfk, —0.15% formﬁ, and—0.10% formﬁ. These values are also added to
the systematic error.

By extending the kaon extrapolation line in Higl 23, one fitidsvalue ofm, that corresponds

to theK™ mass (see Aubigt al. (2004b)). Two important mass ratios are determined:

ms/m=27.2(1)(3)(0) , my/my = 0.42(0)(1)(4) . (134)

The errors are statistical, lattice-systematic, and edatagnetic (from continuum estimates). Note
that them, = 0 solution to the strong CP problem is ruled out at thes16vel.

Having found the continuum fit parameters and the physicatigmasses, the decay constants
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are predicted. Figure 24 (left) shows (some of) the decagten data and the fit through the
displayed data. For the continuum prediction (dashed reg),lthe strange sea-quark mass is set
to its physical value and the light valence and sea massesetiegjual. The left end of the curve
corresponds tay = my, = m. The vertical error bar to the left of the shows the systematic error.
The experimental result is shown as an octagon. It comes fhendecayrt™ — ptv, with the
assumption tha\,g| = 0.9737727) (Amsleret all, 2008). Figuré 24 (right) shows the full QCD

points from a slightly different fit with data from additionensembles. Note that the data points

ata= 0.06 fm are quite close to the full QCD continuum extrapolated/e.
Up to this point, the lattice spacing is set by calculatiothef heavy-quark potential parameter

r1, which yields relative lattice spacings between ensembied the continuum extrapolation of

Y splittings determined by the HPQCD collaboration (Geawll, [2005), which gives an absolute

scale. These results yield a value= 0.3187) fm. On this basis,

fr = 128340558 MeV,
fk = 1543+0.47%1 MeV,
fii/ fn = 1.2023)(*13) , (135)

where the errors are from statistics and lattice systematiis value forf;; is consistent with the
experimental resultte*”' = 1307+ 0.1+ 0.36 MeV (Amsleret all, [2008).

An alternative approach is to set the scale frgpitself. In this case, there are small changes in

the quark masses and
ry = 0.310815)(739) fm , (136)

which is 1o lower (and with somewhat smaller errors) than the value frloaY system. For the

decay constants,

fk = 1565+0.4 39 MeV,
fic/ fr=1.197(3)(",3) , (137)

where the errors are statistical and systematic.

Marciano (2004) noted that the lattice valuef@f/ f;; can be combined with measurements of
the kaon branching fraction (Ambrosiedall, 20064,b) to obtaifvys|. From Eq. [(13]7),

Vug| = 0.2246 753, (138)
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which is consistent with (and competitive with) the workkeage valueVs = 0.225519)

msleret all,[2008) coming from semileptonk-decay coupled with non-lattice theory.

Using the two-loop perturbative calculation of the massorgrmalization constantZn

Masonet all, 2006}, absolute quark masses can be found:

ms = 88(0)(3)(4)(0) MeV m=3.2(0)(1)(2)(0) MeV ,
my =1.9(0)(1)(1)(1) MeV , myg = 4.6(0)(2)(2)(1) MeV . (139)
The errors are statistical, lattice-systematic, pertivbaand electromagnetic (from continuum

estimates). Nonperturbative computationZgfare in progress.

The chiral fits also determine various Gasser-Leutwyler ém&rgy constants and chiral con-

densates:
2L —Lg=0.4(1)(19), 2lg—Ls=—-0.1(1)(1),
Ls=04(3)(*), Ls =2.2(2)(*9),
Le =0.4(2)(*%), Lg =1.0(1)(1),
fr/ f2 = 1.052(2)(*9) , (UU)2 = —(2781)(75)(5) MeV)®
fn/ fa = 1.2(5)(*%3) | (OU)3 = —(242(9)(*,3)(4) MeV)?
fo/fs=1.15(5)("%3) , (0U)2/(U)3 = 1.52(17)(*39) . (140)

The errors are statistical, lattice-systematic and pledttive for the condensates; (f3) denotes
the three-flavor decay constant in the two (three) flavorattimit, and (uu), ((uu)3) is the corre-
sponding condensate. The low energy constinise in units of 102 and are evaluated at chiral
scalemy; the condensates and masses are ifMBescheme at scale 2GeV. The indications are

that theL; will change significantly when the two-loop logarithms ameluded, just as they do in

~

phenomenological estimates (Bijnens, 2007). Other resud very stable, however.

The riXPT formalism relies on the replica proceedure, and takiegalirth root corresponds
to n, = 1/4 wheren, is the number of replicas. The fact that there are good fits thié rXPT

formulae, but not with continuurkPT, is a test of staggered chiral perturbation theory. Ahtent

L with this two-loopZ,-factor a tadpole improved definition of the bare quark massikl be used, in which what
we have denoted bam, throughout this review should be replaceduggamy. The tadpole factors for the various
MILC ensembles are listed in Talile |
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test of ”IXPT is to allown, to be a free parameter in the fits. For the low mass data,0.28(2)(3)
where the first error is statistical and the second systensatning from varying the details of
the chiral fits. We are encouraged by this strong constrairmi;pand the success of X8T in
describing the MILC data.

C. Other computations of f,;; and fx

Since the MILC collaboration’s initial calculation of thiglht pseudoscalar meson masses, de-

cay constants, and quark masses usingathe0.12 and 009 fm lattices [((Aubiret all, 2004b),

several other groups have also computgdnd fx on the MILC ensembles using different va-
lence quark formulations. All of the results are consisteith those of the MILC collaboration,
Eq. (I35), and with each other.

The HPQCD collaboration uses HISQ staggered valence quarttshe MILC asqtad stag-

gered sea quark ensembles with lattice spacangs0.15, 0.12 and 0.09 fm fm_(Follaret al.,

2008). They generate one “pion” point and one “kaon” pointgresemble, matching the masses

of the Goldstone HISQ pion to the asqgtad one, and the mas® ¢ilBQ ss meson to 696 MeV,

the XPT value. Although Follanet al. (2008) are performing a mixed action lattice simulation,

they extrapolate to the physical light quark masses andahgmuum using continuum NL&PT
augmented by analytic terms constrained with Bayesiarrgriderms proportional tosa® and
a* are included to test for conventional discretization esravhile those proportional ta3a?,
ada?log(my), andada?my are intended to test for residual taste-changing inteastivith the
HISQ valence quarks. HPQCD obtains the following resultsffe fx, and the ratio:

fr=1322)MeV, fx =1572)MeV, fy/fr=1.1897), (141)

where the largest source of error is the uncertainty in taées¢ (1.4% for f,; and 1.1% forfk).

The NPLQCD collaboration uses domain-wall valence quankkfaura ~ 0.12 fm ensembles

with m/m;, = 0.14 — 0.6 |(Beanet al,, 2007a). They tune to match the valence pion and kaon

to the corresponding asqtad particles. Due to the mixedmctihere are still unitarity-violating
artifacts that vanish only in the lima — 0. They compute only the ratifk / f, which has a
milder dependence upon the quark mass than the individealydeonstants, and extrapolate to

the physical light quark masses using the NLO continXih expression, which depends only on
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one free parametels. The resultis

fi / frr= 1.218+0.00230%%,
Ls(my) =2.224+0.027 0218 x 1073, (142)

where the first error is statistical and the second errorasstim of systematic errors added in
quadrature. The dominant source of uncertainty is from thecation of theXPT expression
(tg:g%% for the ratio), which they estimate by varying the fit functibrough the addition of NNLO
analytic terms and double logarithms. Although they do notude an error due to their use of

only a single lattice spacing, this is likely a small effatthe ratiofx / fr.

ubin et all (2009a) also use domain-wall valence quarks. In contrabtMPLQCD, however,

they compute many partially quenched points orethe0.12 and 0.09 fm ensembles, and use NLO

mixed actionrXPT with higher-order analytic terms to extrapolate to pbgsiuark masses and the

continuum |(Baeet all, I2005). Their preliminary results for the light pseudoacaheson decay

constants are
fr=1291(1.9)(4.0)MeV, fx =1539(1.7)(4.4)MeV, fy/fr=1.191(16)(17), (143)

where the first error is statistical and the second is the gwystematic errors added in quadrature.
The dominant source of error is from the chiral extrapolapoocedure (2.2% fof;; and 2.3% for
fk), and is estimated by varying the analytic terms includetthénfit function.

In Fig.[28, we compare results fdg / f; from a variety of 2+1 flavor calculations. The top four
results all use MILC agstad configurations and were disclabeve. The two lower results from
the PACS-CS Collaboration (Aokit all,[2009) and the RBC/UKQCD Collaboration (Allte al,

2008) use clover quarks with the lwasaki gauge action andagtemall quarks, respectively.

VII. HEAVY-LIGHT MESONS: MASSES AND DECAY CONSTANTS

Calculations oB- andD-meson masses and decay constants using the 2+1 flavor Mih-C co
figurations have been performed in joint work by the Fermilaltice and MILC collaborations,
and by the HPQCD collaboration. Of numerical quantitie®iming heavyb andc quarks, me-
son masses and decay constants are among the simplestigaantcompute numerically and

are often well measured experimentally. Thus they provalaable cross-checks of lattice QCD
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FIG. 25 The ratio of light decay constantg/f; from six calculations. The top four use MILC asqtad

configurations and the lower two use other types of quark&iBend references can be found in the text.

methods. In particular, once the treatment of the light sehvalence quarks has been validated
within the light pseudoscalar sector, calculations of lgdaght meson masses and decay constants
allow tests of the various lattice QCD formalisms used faavyequarks. In this section, we de-
scribe the 2+1 flavor calculations by Fermilab/MILC and HHRGF heavy-light meson masses
and decay constants, and show that, with one exceptionatieesonsistent with experiment. These
results give confidence in other lattice QCD calculatiom®lving b andc quarks, such as those

of semileptonic form factors described in Sec. VIIl.

A. Heavy quarks on the lattice

Heavy quarksj.e., those for which the quark mass in lattice uraiw is large, present spe-
cial challenges. As long aam< 1, heavy quarks on the lattice can be treated with lightdquar
formalisms such as staggered fermions. At the lattice sgaan common use, we haaen, ~
0.5-1.0 andam, ~ 2-3. For charm quarks, light-quark methods can only be us#tky are
highly improved to remove discretization errors. Bottonas still require special heavy-quark

methods.
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1. Nonrelativistic QCD

A straightforward way of formulating heavy quarks on thetitat is to rewrite the
Dirac-like light-quark action as a sum in a nonrelativistperator expansion, as is done
in HQET ise, 1992; Neubert, 1994) and in noniratdic expansions in QED

Caswell and Lepage, 1985_;Le_p_@gﬂ, 1992):

Svrqeo= Y 9'(¥) (—Dé” bon YA +§no~8<x>+8im3<zm>2+-.-> ox),  (144)

where
1 N
O W00 = 2 (UuO0w(x+a) — wi(x) (145)
and where the are two-component fermions representing the quarks. Alogoas term in the

action governs the antiquarks. The leading heavy-quarksrdapendence is absorbed into the

fermion field and vanishes from explicit calculations. Bajuarks in particles with a single heavy

quark, the first term in this action yields the static appmmadion (Eichten and Hill, 1990). In

heavy-light systems, the importance of operators in thggagion is ordered according to HQET
power counting X ~ /A/mg). In quarkonium systems, operators are ordered by heaagkqte-

locity.

2. Wilson fermions with the Fermilab interpretation

In NRQCD, the kinetic energy operator of the Dirac acti@(x) 3;yiiP(x) is replaced by the
leading kinetic energy operatcp?(x) %n Y0 ¢(x) plus a series of higher dimension operators. The
action for Wilson fermions contains the leading kineticrgiyeoperators of both the Dirac and the

nonrelativistic actions, as in Ed. (15):

Sv="> B(x) (Z Yulu— % > Dut m) P(x). (146)
X I I

The effects of the Laplacian term, which eliminates the deustates, vanish in the limam— 0.
As am becomes larger, the importance of the Laplacian term gradisenam>> 1, the Lapla-
cian term dominates the Dirac-like kinetic energy term, #mel theory behaves like a type of
nonrelativistic theory in which the rest mass = E(p? = 0) does not equal the kinetic mass

mp = 1/(20E/0p?). (Note that we use lower-caseto refer to quarks and capit™ to refer to
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mesons in this section.) Asm— 0, the two masses converge to the bare quark nrassor
heavy quarks the kinetic mass controls the physics, ancetarass may be absorbed into a field
redefinition. This means that the Wilson action and relaitas can be used as actions for
heavy quarks as long a%, with contributions from both terms in the kinetic energyadjusted to

equal the desired physical mass (EI-Khﬁall, 1997). Itis possible to sety = mp by breaking
time-space axis-interchange symmetry in the Lagrangiahid is not donem; andny, have the

tree-level form

am; = log(1+ an) (147)

and
1 2 . 1
amp amp(2+amp)  l+amp’
The action of the nonrelativistic expansion can be vieweariseng from a field transformation

of the Dirac field, the Foldy-Wouthuysen-Tani (FWT) trarmrsfation. The Wilson action, with

(148)

both types of kinetic energy operators, can be viewed aggrieom a partial FWT transforma-

tion. Like the action of NRQCD, it produces the same physgsha Dirac action as long as a

series of correction operators is added to sufficient pi@ti d, 2008). The
leading dimension-five correction operator has the sanma for heavy Wilson fermions as for
light clover/Wilson fermions [EqL(19)]Ssw = E‘Tgcswzxqj(x)owfw(x)w(x). All simulations to

date using this approach to heavy quarks have thereforecimest/Wilson fermions. A systematic

improvement program is possible as outlined in §ec] X.C.

3. The HISQ action

Because ®<am <1 at currently accessible lattice spacings, it is possiblede ordinary
light-quark actions to treat the charm quark. However, ttaimbhigh precision it is necessary to
correct the action to a high orderam This approach is followed with “highly improved staggered
quarks” (Follanzet al, |12007), as explained in Séc.11.E.
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B. Lattice calculations of masses and decay constants

As in the light pseudoscalar meson case, the heavy-liglgydeanstant is proportional to the

matrix element of the axial current:

(O] AulHqg(P)) = ifHy Py, (149)

where A, = qyuysQ. Because of the heavy-quark normalization in HQET, it i2ftseful to

consider the combination decay amplitude

Oy = fHgy /Mg (150)

which is computed from the correlators
Co(t) = (Ony ()0}, (0)),  Cay(t) = (Aa(t)O}, (0)). (151)

For the case of Fermilab heavy quarks or NRQ&dquarks, the heavy-light meson mass is obtained
from the kinetic massM?) in the dispersion relation, whereas for HISQ charm quadks= M,
so both are simultaneously set to fbeor Ds-meson mass.

The Fermilab Lattice and MILC collaborations’ calculatiohheavy-light meson decay con-

stants |(Aubiret al,, [2005a; Bernareét all, 2009b) employs the Fermilab action for the hedavy

andc quarks and the asqtad staggered action for the light ands quarks. They construct the

heavy-light meson interpolating operator and axial vectwrentA,, using the method for combin-

ing four-component Wilson quarks with 1-component stagdeuarks describedlin Wingateal

2003). Their most recent determination from Lattice 2 ,[2009b) uses data on the

medium-coarse, coarse, and fine lattices, with 8—12 plgrtjaenched valence masses per ensem-
ble. The clover coefficierdsy and hopping parameterin the Fermilab action are tuned to remove

errors ofo (1/mgq) in the heavy-quark action. In particular, they sgly = uy 3, the value given by

tree-level tadpole-improved perturbation theory (L Mackenzle, 1993). They choose the

charm quark hopping parametes so that the spin-averaged (kinet@)-meson mass is equal to
its physical value, and choose the bottom quark hoppingpeterk, to reproduce th&s-meson
mass in an analogous manner; this implicitly fixes bhendc quark masses. They also remove
errors ofo (1/mg) from the heavy-light axial vector curreAy, by rotating the heavy-quark field

in the two-point correlation function:
Pp — Wp = <1+ adry- 5|atllJb> : (152)
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where Dy is the symmetric, nearest-neighbor, covariant differenperator, and the tadpole-

improved tree-level value fal; is given by (El-Khadraet al.,11997):
1 1 1
dp=— + . 153
' W <2+amo 2(1+amo)) (133)
They obtain the renormalization factor needed to match attecé heavy-light current onto the

continuum using the method lof Hashimmll 1999):

28 = PRV 20 2 (154)

where the flavor-conserving factoZ§4Q and Z\(}‘f1 are determined nonperturbatively and the re-

maining factor is determined to 1-loop in lattice perturtwattheory (El-Khadraet al., 12007,
Lepage and Macken"i|e_‘Lc 93).
The Fermilab/MILC collaboration fits its decay constantadas a function of light-quark sea

and valence masses to the one-loop form given by NRIS(see Sed. IIL.B), supplemented by
analytic NNLO terms, which are quadratic in the light valerand/or sea masses. This is very
similar to the approach taken in the light pseudoscalaonseas described in Sdc.VI. While pure
NLO fits are adequate to describe the data for very light vaanass, once this mass gets to be
roughly half the strange quark mass or higher, at least soNlgONterms are necessary to obtain
acceptable fits.

Figure[26 shows the preferred HMBT fit to data at multiple lattice spacings fop and®p,,
which are functions of the light valence mass, the light seasrand the strange sea mass. In
addition to taste-breaking discretization effects thadesp as taste-splittings, taste-hairpins, and
taste-violating analytic terms, there are “generic” ligjotark discretization effects, which can be
thought of as changes in the physical LECs (suctb@she value of® in the SU(3) chiral limit)
with lattice spacing. With the asqtad action, such effec®dasa®). They can be (approximately)

accounted for by adding additional parameters to the MRISfit function, with variations limited

by Bayesian priors, following Lepagst all (2002). This is done in the fit shown in Fig.126, al-

though the effects are quite small, and fits without the &mlthil parameters give almost the same
results (and confidence levels), but with somewhat smatiistical errors. Once the parameters
of the HMSXPT fit are known, taste-violating and generic discretizagitiects througho (a?) can

be removed by setting= 0. After taking the continuum limit, the valence and seargumasses
are set to their physical values in order to obtain the decagtants of " andDs meson, up to

tiny isospin violations in the sea sector.

101



x%/dof=63/99

- -

O ¢ x coarger (a=0.15 fm) -
O ¢ x coarge (a=0.12 fm)
0 ¢ x fine (a=0.09 fm)

+ extrap

0.05 0.10
m, ry X (m/Zgne)

FIG. 26 Chiral extrapolation fofp (octagons) andpbp, (crosses or diamonds) by the Fermilab/MILC

collaboration

(Bernaret al

2009

). Solid lines are the HM®T fit to ®p; dotted lines, taPp,. Although

the full set of partially-quenched data is included in thefdit ®©p the plot shows only those full QCD points

for which the light valence and sea masses are equaj,tthe mass on the abscissa. [y, only points

with the strange valence magss() equal to the strange sea mass are shown, plotted eitheruastaoh

of m (crosses), or aing, (diamonds). The (red) dashed lines show the fit after remof/déight-quark

discretization errors, with the fancy plus signs giving th&ally extrapolated results with statistical errors.

200¢

The HPQCD collaboration’s calculation of tlBeand Bs-meson decay constan@,

) employs the NRQCD action for the hedwvguarks and the asqtad staggered action for the

light u, d, ands quarks. They use six data points in their analysis — four@@D points on the

coarse ensembles and two full QCD points on the fine ensemb
that the mass of Bb meson reproduces the physioa}
tion includes all currents ab (1/my) (

perturbation theory to match onto the continuum (Daégial.,

fix theb-quark mass so

Grayet al.,12005). The HPQCD computa-

higemitsu, 1€

Morningstar an

98) and uses 1-loop lattice
2004). Therefore, they include

all corrections to the heavy-light current througtiAqcp/my), 0(as), o0(aas), o(as/(am))
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and O(asAgcp/Mmy). The HPQCD collaboration uses HMBT for the chiral extrapolations
of ®g and ®g_ in a similar manner to Fermilab/MILC. They multiply the NLGg@ession by
[1+ casa® +ca®] in order to parameterize higher-order discretizationatffe They also include

an additional NNLO analytic terml (myq — ms)2 in the extrapolation of the rati®dg

The HPQCD collaboration’s calculation of tbeandDs-meson decay constan
2008) employs the HISQ action (Follartal., [2007) (see Se€. 1lE) for all of the, d, s, and
c valence quarks. Because they are treating the charm quaxHligist quark, the computation

is similar to the determinations df; and fx described in Se¢. VI, except for differences due to
the fact that this is a mixed-action simulation with HISQerate quarks and asqtad sea quarks.
They use the medium-coarse, coarse, and fine MILC latticebjreclude seven full QCD points
in their analysis. They fix the-quark mass so that the mass of the taste Goldstgrnmaeson
agrees with experiment. Because the HISQ axial currentrisafifg-conserved, it does not need
to be renormalized. Therefore this method avoids the usermdigbation theory, whose truncation
errors can be difficult to estimate. The HPQCD calculatioasdnot use HM®PT for the chiral
extrapolations offp and fp,, but simply applies continuuPT, supplemented by Bayesian fit
parameters. These parameters test for the expected tiaticet effects of the fornuga?, a?,
ada?, ada?log(myuark), andada®mguark from the asqtad action, and the effects of residual taste-
violating interactions with HISQ valence quarks.

All of the 2+1 flavor calculations of heavy-light meson deaanstants rely upon power-
counting in order to estimate the size of heavy-quark diszton errors. In the Fermilab method,
heavy-quark discretization errors arise due to the shist&iglce mismatch of higher-dimension op-
erators in the continuum and lattice theories. The sizebedd mismatches are estimated using
HQET as a theory of cutoff effects, as described in Kronﬁ@@) and Haradat all (2002b). This

typically leads to errors of a few percent on the fine MILCitas. In simulations with NRQCD

quarks, relativistic errors arise from higher-order catigns to the NRQCD action and the heavy-
light current. Although these are not all discretizatioroes proportional to powers of the lattice
spacing, many are proportional to inverse powers of the Jngason mass, and hence should

be considered heavy-quark errors. The leading relativéstior comes from radiative corrections

to theo - B term in the action, and is estimated to be@fasAocp/Ms) ~ 3% (Gamizet al.,

2009). The HISQ action is highly-improved, and the leadimgy-quark errors are formally

of o(as(mea)?) and o((mea)?) (Follanaet all, [2007), whereas ~ 0.3 andam, ~ 0.5 on the
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fine MILC lattices. The HPQCD collaboration, however, remadwerrors ofo (as(mea)?) in

the HISQ action by accounting for radiative correctionsha toefficient of the Naik term, and
also extended the traditional Symanzik analysis to remdve @mca)?) errors to leading order
in the charm quark’s velocity. Thus the leading charm quaskrétization errors should be of

o ((mea)*(v/c)?) ~ 0.5% or less folD mesons.

C. Results for masses, decay constants, and CKM matrix elemts

Although the heavy-light meson decay constants, in contisinavith experimental measure-

ments of leptonic branching fractions, can be used to ex@&1 matrix elements via the relation

MZ

2 \/ |2 me \ 2
M(H—vl) = %fﬁmﬁMH (1——f) : (155)
H

the matrix element$V/q

VCS

, and|Vp| can be obtained to better accuracy from other quanti-

ties such as neutrino scattering and semileptonic decayslgket all, [2008). Therefore lattice

calculations of heavy-light meson decay constants proymtel tests of lattice QCD methods, es-
pecially the treatment of heavy quarks on the lattice. Thaparison of lattice calculations with
experimental measurements, however, relies upon the agssunthat, because leptonic decays
occur at tree-level in the standard model, they do not redarge corrections from new physics.
This is generally true of most beyond-the-standard modsribes, but in a few models, such as
those with leptoquarks, this is not necessarily the caser@zu and Kronfeld, 2008).

CKM unitarity implies thatVeq| = [Vus| and|Ves| = [Vud| up to corrections ob (|Vys*). Because

both |V4| and|Vys| are known to sub-percent accuracy, experimentalists isesllation to extract

theD-meson decay constants from the measured branching fnacfidne latest determinations of

fp (Eisensteiret all, 2008) andfp, (Alexander, 2009) from the CLEO experiment are
for =2058+89MeV, fpy =2595+7.3 MeV. (156)

These results use the determinatiori\¢fj| = 0.9741826) from superallowed © — 0" nuclear
B-decay [(Towner and Harsz, 2008) and|dfs = 0.2256 (Eisensteiet al., [2008)1? The Fermi-

lab Lattice and MILC collaborations’ preliminary deterration of theD-meson decay constants

12 Although| Eisensteit all d200$) attributelV,s| = 0.2256 to FlaviaNet (Antongllll, 20b7), AntonJ}Ili (2d07) ofve

[Vus| = 0.224612) from K3 decays plus lattice QCD, and,s| = 0.22539) from K;» andK,3 decays plus lattice
QCD.
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FIG. 27 Comparison of lattice QCD and experimental resoitd$ and fp, (left panel) and of lattice QCD

results forfg and fg, (right panel).

are (Bernarcet all, [2009b)

fo = 207(11) MeV, fp, = 24911) MeV (157)

where the dominant errors come from tuning the charm quardsmaad from heavy-quark dis-
cretization effects, which are each3%. Both of these results are consistent with experimerg. Th

HPQCD collaboration’s determinations of tBemeson decay constants using HISQ fermions are

more precise_(Follanet all, 2007):

fo = 207(4) MeV, fp, = 241(3) MeV (158)

with total errors each below 2%. The largest contributioth®errors comes from the uncertainty
in the scale1, and is 14% (1%) for fp (fp,). Although HPQCD's result foffp is consistent with
experiment, their value fofp, is ~ 2.5-0 below the CLEO measurement, wheres dominated
by the experimental uncertainty. A comparison of latticeBR&hd experimental results for the
D-meson decay constants is shown in the left panel of [Fig. 27.

Many of the statistical and systematic uncertainties thegrethe lattice calculations df, and
fp, cancel in the ratio. Therefore the quantfty/ fp, allows for a more stringent comparison be-
tween the results of Fermilab/MILC and HPQCD. The Fermilalttice and MILC collaborations
find (Bernardet all,12009b)

fo/ fp, = 0.833(19), (159)

while the HPQCD collaboration finds (Follaeaal., 2007):

fp/ fo, = 0.859(8). (160)
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The lattice results for the ratio disagree slightly, butydny ~ 1.6-0. The experimental uncertain-

ties in fp and fp, are largely independent, and therefore add in quadratureiratio (Alexander,
2009)

fo+/ fpe = 0.793+0.040. (161)

This increases the experimental errors and reduces théicigice of the discrepancy with
HPQCD.
The HPQCD collaboration also uses HISQ charm quarks to cteninee D- and Ds-meson

masses (Follanet all, 12007):

Mp = 1.868(7) GeV, Mp, = 1.962(6) GeV, (162)

and their results agree with the experimental valudg = 1.869 GeV and Mp, =

1.968 GeV (Amsleet all, 2008). This lends credibility to their calculation &f,, and suggests

that both improved experimental measurements and latiicelations are necessary to determine
whether or not this discrepancy is new physics, a statisfiicetuation, or yet something else.
Currently, Fermilab/MILC’s determination of thes-meson decay constant lies between the ex-
perimental measurement and the calculation of HPQCD. Orearicertainties in the calculation
are reduced, which is expected to occur with the additiortaifsiics, finer lattice spacings, and a
more sophisticated analysis, the Fermilab Lattice and Méb{aborations hope to shed light on
this intriguing puzzle.

B-meson leptonic decays are much more difficult to observeERmeson decays because they
are CKM suppressed(|V,p|?). In addition,B-decays to light leptons are suppressed by the factor
m% in Eq. (I5%), and only decays 1 have been observed thus far. Furthermore, the branching

fractionl (B — tv) is known only to~ 30% accuracy (Amslegt al, 2008). Thus there are no

precise experimental determinations of Bxneson decay constants, and the lattice calculations
of fg and fg, should be considered predictions that have yet to be eith&irmed or refuted by
experiment.

The Fermilab Lattice and MILC collaborations preliminamterminations offg, fg,, and the
ratio are(Bernaret all,[2009b)

fB = 195(11) MeV, st = 243(11) MeV, fB/ st = 0803(28) (163)

The largest errors in the individual decay constants aretalseale and light-quark mass uncer-

tainties, light-quark discretization effects, and heguark discretization effects, all of which are
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~ 2%. The HPQCD collaboration’s determinations are consistad have similar total uncertain-
ties (Gamizet al., [2009):

fg = 190(13) MeV, fg, = 231(15) MeV, fg/fs, = 0.812(19). (164)

Their largest source of error is the4% uncertainty from 1-loop perturbative operator matching
A comparison of lattice QCD calculations of tBemeson decay constants is shown in the right
panel of Fig[2V.

There are currently no calculations of tBeandBs-meson masses using the 2+1 flavor MILC
lattices. This is, in part, because the stagge(Bd expressions for heavy-light meson masses
needed to extrapolate the numerical lattice data to theigdiyigyht-quark masses and the contin-

uum are not known, and would require a nontrivial extensiah® continuum expressions.

VIIl. SEMILEPTONIC FORM FACTORS

Lattice calculations of semileptonic form factors allovethxtraction of many of the CKM
matrix elements from experiment. The processes we confidéhnis purpose are dominated by
tree-level weak decays of quarks at short distances, budrassed by the strong interactions at
longer distances, such that only mesons appear on the aktegs. Given the nonperturbative
form factor that parameterizes the strong interactionshefrhesons, one can extract the CKM
parameters that accompany the flavor-changing weak vé#fitR.enough processes one can over-
constrain the four standard model parameters that appabei@KM matrix, and thus test the

standard model.

A. D— 1v and D — Kév

Semileptonic decays o mesons,D — K/v and D — 1¢/v, allow determinations of the
CKM matrix elementgVes| and Vqq|, respectively. Since these CKM matrix elements are well-
determined within the standard model by unitarity, withutesfor other processes, the form factors
can be obtained from experiment (assuming the standardljmadd thus serve as a strong check
of lattice calculations. Such calculations bolster confadein similar calculations 0B — 1wV,
allowing a reliable determination @¥,,|, one of the more important constraints on new physics

in the flavor sector. Precise calculations of semileptoarmffactors for charm decays are also
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interesting in their own right, given the discrepancy betwehe HPQCD and experimental values
for the Ds leptonic decay.

The necessary hadronic amplitu@®V,|D) (P = K, 1) is parameterized in terms of form factors

by

(PIVUD) = () (P + Pp — )+ fo(q) Ay, (165)
whereq = pp — pp, Ay = (M@ — m3)q,/q?, andV,, = qy,Q. The differential decay ratel” /d¢? is
proportional to|Vey|?| T4 (?)|%, with x = d,s. The CKM matrix elemeniV,,| is determined using

the experimental decay rate and the integral agesf the lattice determination df  (g?)|.
The matrix elementP|V,,|D) is extracted from the three-point function, where Ehemeson is

given anonzero momentum
CY Pt tyip) = 3 €PY(Op(0)Vu(Y)Op (X)), (166)
Xy

andOp andOp are the interpolating operators for the initial and final orestates. The calculation
of this quantity by the Fermilab Lattice, MILC and HPQCD Gddbrations|(Aubiret all, [2005b)
uses the Fermilab action [improved throu@tWocp/me), with Agcp in the HQET context] for

the c quark and the asqtad action for the light valence quarks. O'heeson and the heavy-light

bilinearsv, are constructed from a staggered light quark and a Wilspa-tiyermilab) heavy quark

using the procedure described in Wingatel. (2003) and Bailet al. (2009). In order to extract

the transition amplitudéP|V,|D) from Eq. [166), we need the analogous two-point correlation
function,
CY(tx,p) = 3 €P*(0m(0)0};(x))  withM =D,P. (167)

X

As in the case of decay constants, the renormalizationrfacébching the heavy-light currents on

25 = VLV AL A (168)

where the factors?_\%Q and Z\(}‘f1 are computed nonperturbatively, and the remaining fag(&lf_k

the lattice to the continuum is

(close to 1 by construction) is determined in one-loop pbstion theoryl(Haradat all, |12002b).

The quantitied|| andf, are more natural quantities th&n and fo in the heavy-quark effective

theory, and are defined as

(PIVHID) = v/2mp[Wf) (E) + P, fL ()], (169)
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wherev = pp/mp, p, = pp— EvandE = v- pp is the energy of the light meson. The chiral

extrapolation and momentum extrapolation/interpolatica carried out in terms of these param-

eters, which are then converted intgand f,. The chiral extrapolation in_Aubigt al. (2005b)
was performed at fixe&, where f; and f, were fit simultaneously to the parameterization of
Becirevic and Kaidalov (2000) (BK),

F F

WO i 1@

whered® = ¢’ /mg,, andF = f,(0), a andp are fit parameters. The BK form contains the pole

fo(q?) =

(170)

in f, (¢?) ato? = mz§. Even so, the BK parameterization builds into the calcakatinnecessary
model dependence. The more recent calculation of the sigglaileptonic proced3 — 1V does

not make use of this assumption, as described in the nex¢stids.

ubin et all (2005b) obtain for the form factors gf = 0
fO=T(0) = 0.64(3)(6), fP~K(0)=0.73(3)(7). (171)

where the first error is statistical, and the second is systiemThey also determine the shape

dependence of the form factor as a functiongdf This is shown in Fig[28, along with

experimental data from the Belle Collaboration (Adell, [2005) that confirms their predic-
tion. Taking the most recent CLEO resul\[s_@.al, 2009) fP~T(0)|Veq| = 0.143(5)(2) and
fP—=K(0)|Ved = 0.744(7)(5) we obtain

IVed| = 0.223(8)(3)(23), |Veg = 1.019(10)(7)(106), (172)

where the first error is the (experimental) statistical etitte second is the (experimental) system-
atic error, and the third is the total lattice error. If we uséarity along with\V,4| and|Vg|, then we
can use the CLEO measurements to predict the form factorshéMeobtainf P—™(0) = 0.634(25)
and fP—K(0) = 0.764(9), in good agreement with the result in EQ._(1L71). Clearly, gttice error
still dominates the uncertainties. The largest errors énllttice calculation are due to discretiza-
tion errors and statistics. Improved calculations at fia¢tide spacings and higher statistics are

underway.

B. B— /v and |Vyp|

Comparison between theory and experimentHer 1¢/v has been more troublesome than for

other lattice calculations in CKM physics. Leptonic decaysl BB mixing amplitudes are de-
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factor (bands) with the subsequent Belle results (diamoritise orange (dark gray) band is theserror

band from statistics, and the yellow (light gray) band is the band for all errors added in quadrature.

Figure from Kronfeld|(2006).

scribed by a single parameter. The semileptonic deBaysD*) /v andK — v can be described
to high accuracy by a normalization and a slope. Be# T¢/v, on the other hand, the form factors
have a complicated? dependence. Lattice data have covered only the low momettigin g2
end of the pion momentum spectrum, and errors are highigependent and highly correlated
betweerg? bins in both theory and experiment.

It has long been understood that analyticity, unitarityd @mossing symmetry can be used

to constrain the possible shapes of form factc , 11981; | Boydet all, 11995;

Boyd and Sava (3_‘_1_497: Lellouch, 1996). This has been usedthe to simplify the compari-

son of theory and experiment f& — 1/v. All form factors are analytic functions af® except
at physical poles and threshold branch points. In the casieed — v form factors, f(g?) is
analytic below théttproduction region except at the location of Biepole. The fact that analytic
functions can always be expressed as convergent powes sae/s the form factors to be written

in a particularly useful manner.
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Consider mapping the variabtg onto a new variable, in the following way:

VIS@ - VI,
CV1-@/t /I to/ty (173)

wheret, = (mg+mp)?,t_ = (mg—mp)?, andty is a free parameter. Although this mapping appears

2(¢?,to)

complicated, it actually has a simple interpretation imenfg?; this transformation mapg >t
(the production region) ontz| = 1 and mapsg® < t, (which includes the semileptonic region)
onto realz € [—1,1]. In the case oB — 1Wv, the physical decay region is mapped into roughly
—0.3<z<0.3. Interms ofz, the form factors can be written in a simple form:

1 (o]
HP) = 5 3 a(to)z(d,to)*. (174)
( ) P(qZ)(p<q2,to) kzo ( ) ( )

Most of theg® dependence is contained in the first two, perturbativelgutable, factors. The

Blaschke factoP(g?) is a function that contains subthreshold poles and the éunetion@(g?,to)

is an arbitrary analytic function (outside the cut freém< ¢? < «) which is chosen to give the

series coefficientgg a simple form. See Bailest al. (2009), Arnesert al. (2005), and references

therein for the explicit forms of these expressions. Wit pnoper choice of(q?, to), analyticity

and unitarity require they to satisfy
N

AR (175)
k=0

The fact that—0.3 < z < 0.3 means that according to analyticity and unitarity, onle for six
terms are required to describe the form factors to 1% acgurde B — D*}¢v andK — Ty,
zis on the order of a few per cent in the physics decay regionctwis why these decays can
be accurately described by just two parameters.) BecheHdht#ave argued that the heavy-
qguark expansion implies that the bound is actually mucheigihan analyticity and unitarity alone
|, 2006). They argue tfigt,aZ should be of ordefAqcp/my)3. This

would lead to the expectation that only two or three terms lvél sufficient to describe the form

demand|(Becher and Kk

factors to 1% precision.

Calculations have been performed by Fermilab Lattice andQvidollaborations using Fermi-
lab b quarks, and by the HPQCD collaboration using NRQ&@uarks. Many of the details of the
Fermilab/MILC calculations are the same as those for thenfal/MILC computation of heavy-
light decay constants, described previously. For the sgtahic decays, only full QCD valence
masses are used, as opposed to the partially-quenchedsmiasskin leptonic decays. The calcu-

lations use th@ ~ 0.12 and 009 fm gauge field ensembles. The HXFST continuum and chiral
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FIG. 29 Results for the normalize®l— 1v form factorP, @, f, from the Fermilab/MILC lattice calcu-

lations (circles) andBABAR (stars), from_Baileyet all (2009). The solid (red) line is the results of a fully

correlated simultaneous fit. Requiring that lattice andeexpent have the same normalization yiedg,|.

extrapolations are done with the full NLO expressions ptidittonal NNLO analytic terms. These
formulae allow the simultaneous interpolation in pion gyaalong with the continuum and chiral
extrapolations, thus reducing the total systematic uacest

Figure[29 shows the result of a fully correlated simultarsssiit to the Fermilab/MILC lattice

data and thdABAR 12-bin experimental results (Aubeat all,12007), with|V,,| being a parameter
in the fit. The resulting-fit parameters arap = 0.0218+ 0.0021,a; = -0.0301+ 0.0063,a; =
-0.059+ 0.032,a3 = 0.079+ 0.068, and

Vub| = (3.38+0.36) x 1073 (176)

Bailey et al, [2009). The coefficients of" are indeed of ordetAqcp/my)%/? as argued by
Becher and Hill [((2006). Because the11% uncertainty comes from a simultaneous fit of the

lattice and experimental data, it contains both the expamtad and theoretical errors in a way that

is not simple to disentangle. If we make the assumption treaetror in|Vyp| is dominated by the
most precisely determined lattice point, we can estimaitttte contributions are roughly equally
divided as~ 6% lattice statistical and chiral extrapolation (combined6% lattice systematic, and
~ 6% experimental. The largest lattice systematic unceréa@iare heavy-quark discretization, the
perturbative correction, and the uncertaintgiag;;, all of which are about 3%. Our determination
is ~ 1— 20 lower than most inclusive determinations|\dfp|, where the values tend to range from
4.0—4.5x 102 (Di Lodovico, 2008). Our determination is, however, in gamteement with
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the preferred values from the CKMfitter Collaboratidw,g| = (3.447222) x 10~3 (Charleset al,
2008)) and the UTfit Collaboratiof\(p| = (3.48+0.16) x 102 S_IJALe_leInL 2008)).

Many of the details of the HPQCD calculation®f— 1/v are the same as described for heavy-

light decay constants in the previous section. They use NRQGuarks and asqtad light quarks.
On the coarsea ~ 0.12 fm ensembles, they perform the calculation on four ungloed ensem-
bles plus an additional two partially quenched light quadsses on one ensemble. They also use
full QCD data on two finea ~ 0.09 fm ensembles in order to constrain the size of discrétizat
effects. They use HMEPT to perform the chiral extrapolations separately for aasifiducial
values ofE;; after interpolating irE. They also show that they obtain consistent results with sim
pler chiral extrapolation methods. They perform fits to thieita using the-fit method described
above, as well as several other functional forms includivgBecirevic-Kaidalov parameteriza-
2005). Note that

they do not use a combined fit of experimental and lattice datag thez-fit method to extract

tion (Becirevic and Kaidalov, 2000) and Ball-Zwicky form gBand Zwick

\Vup|. Rather, they use the various parameterizations to irtee¢ima form factorf  (g°) over?,

and they show that they obtain consistent results with athous. Applying their results to 2008

data from Heavy Flavor Averaging Group (HFAG) (Di Lodovi@§08) yields

Vup| = (3.40+0.207939) x 1073 (177)

Dalgic et all, [2006), where the first error is experimental and the secefrdin the lattice calcu-

lation. Figure 3D shows the comparison between an averathe dfermilab/MILC and HPQCD

results for|Vp| and two inclusive determinations of the same quantity udiffgrent theoretical

inputs (Gambineet all,'2007; Langeet al., 12005).

C. B— D¢/vandB — D*/v

The CKM parametefVcp| is important because it normalizes the unitarity triandiaracter-
izing CP-violation in the standard model, and must be datexthprecisely in order to constrain
new physics in the flavor sector. The standard model predidor kaon mixing containgv/qp|
to the fourth power, for example. It is possible to obtiig,| from both inclusive and exclusive
semileptonidB decays. The inclusive decays (Batiall, 11992a| 1997, 1993, 1992b_;_CL@)Lﬂ,

1990) make use of the heavy-quark expansion and pertundiigory, while the exclusive decays

require the lattice calculation of the relevant form-fastdcach of the exclusive chann&s- D/v
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FIG. 30 Values of|Vyp| obtained from averaging the exclusive determinations @eg with inclusive

determinations using different theoretical inputs.

andB — D*/v allows a lattice extraction d¥p|, and thus they provide a useful cross-check, both
of each other, and of the inclusive determination. We havfarsconsidered the calculations of the

necessary form factors only at zero-recoil, as this leadstsiderable simplification and reduced

theoretical errors (Hashimogi all, 12002).
The differential rate for the decdy— D/v is

dr(B—D¢v) G2

dw = 2gamD(me+mo) 2w — 1) ENenf G (w) 2 (178)
with
hw) BT
g (W> - h+ (W> Me + Mo h_ (W)7 (179)

whereGg is Fermi’'s constanth, (w) andh_(w) are form factors, anav =V - v is the velocity
transfer from the initial state to the final state. The ddfaral rate for the semileptonic decay
B — D*/vyis

dr(B— D*/v) G2
( de ):4—T|[:1*»m3D*(mB—mD*)2\/W2—1|Vcb|2X(W>|7 (w)|2, (180)

wherex (w)|# (w)|? contains a combination of four form factors that must bewated nonper-

turbatively. At zero recoil\ = 1) we havex(1) = 1, and# (1) reduces to a single form factor,

ha, (1).
We compute the form factdr, at zero-recoil using the double ratio (Hashimetal., 11999)

(D|cyab[B) (B|byac|D)
(D[cyac| D) (B|byb[B)

This double ratio has the advantage that the statisticare@nd many of the systematic er-

= h (). (181)

rors cancel. The discretization errors are suppressedveyse powers of heavy-quark mass as
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as(Aqcp/2mg)? and (Aqep/2mg)® (Kronfeld, [ 2000), and much of the current renormalization

cancels, leaving only a small correction that can be contjpseturbatively (Haradat al.,2002a).

The extra suppression of discretization errors by a fadtdr/@mg occurs at zero-recoil for heavy-

to-heavy transitions, and is a consequence of Luke’s The@teke, 1990).

In order to obtairh_, it is necessary to consider nonzero recoil momenta. Incése, Luke’s
theorem does not apply, and the HQET power counting leadsdet heavy-quark discretization

errors. However, this is mitigated by the small contribntad h_ to the branching fraction. The

form factorh_ is determined from the double ratio (Hashimetal.,11999)

(DlcybB)(DloyscD) [ h ()] [. . h(w
' [1‘h+<w>} [1+2h+<w>(w‘1) ’

(D[cysb|B)(DJcy;b|D)
which is extrapolated to the zero-recoil pomt= 1. Combining the determinations bf (1) and
h_(1), we obtain the preliminary result (1) = 1.082(18)(16) (Okamoto, 2006), where the first

error is statistical and the second is the sum of all systieneators in quadrature, and where

(182)

we have included a.0% QED correction (Si[IJ ,1982). Combining this with thedst average
from the (HFAG),G (1) |Vep| = (42.3+1.5) x 102 (Di Lodovico, 2008), we obtain the preliminary

result

Vep| = (39.1+1.440.9) x 102, (183)

where the first error is experimental, and the second is ¢tieat.
The form factor at zero-recoil needed f8r— D*/v is computed using the double ratio
Bernardet al., [2009a)

(D* [ey;ysb/B) (Blby, ysclD")
(D" [oyaclD") (BlbyablB)

where again, the discretization errors are suppressedvieysim powers of heavy-quark mass as

= [ha, (D)7, (184)

ds(Aacp/2mg)? and (Agep/2mg)3, and much of the current renormalization cancels, leaving

only a small correction that can be computed perturbatidlﬂbr_a.dﬁel_al, 2002a). We extrapolate

to physical light quark masses using the appropriate rMRMIS(Laiho and Van de Water, 2006).
Including a QED correction of .@% (Sirlin, [1982), we obtainy (1) = 0.927(13)(20)

Bernardet al,, 2009a), where the first error is statistical and the secerttié sum of system-

atic errors in quadrature. Taking the latest HFAG averag¢hefexperimental determination
7 (1)|Vep| = (35.49+0.48) x 102 (Di Lodovica, 2008), we obtain

Vep| = (38.3+0.54+1.0) x 103, (185)
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FIG. 31 Values ofVp| from the exclusive decay®d — D/v, B — D*/v, and the inclusive determination.

The experimental average includes all available measursnoé7 (1)|Vyp|, but we point out that
the global fit is not very consisteng{/dof = 39/21 (CL=0.01%)]. The Particle Data Group
handles this inconsistency by inflating the experimentadrdsy 50% (Amsleeet all, 2008). The

dominant lattice errors are discretization errors andssies, and work is in progress to reduce
these. Note that there is some tension between this and thesive determination ofVep| =
41.6(6) x 102 (Barberioet al.,[2007), as can be seen in Fig] 31.

IX. OTHER COMPUTATIONS USING MILC LATTICES

In this section, we describe a variety of additional reshidtsed on the MILC ensembles. Over
eighty-five physicists outside the MILC collaboration haged the MILC configurations in their
research. This includes colleagues at nearly forty irtsbis throughout the world. Their research
covers a very broad range of topics including determinatimithe strong coupling constant, the
guark masses, the quarkonium spectrum and decay widtheydke spectrum of mesons with a
heavy quark and a light antiquark, the masses of baryonsomighor more heavy quarks, as well
as studies of the weak decays of mesons containing heavikgjuhe mixing of neutrak andB
mesons with their antiparticles, the quark and gluon stineodf hadrons, the scattering lengths of
pions, kaons and nucleons, the hadronic contributionsdarthon anomalous magnetic moment,

and meson spectral functions.
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A. Determination of the strong coupling constant and the chem quark mass

1. The strong coupling constant from small Wilson loops

The HPQCD collaboration used MILC lattice ensembles to aaeathe strong coupling con-

stantas (Davieset all, 2008; Masoret all, 2005). They compute nonperturbativelye(, numeri-

cally on the MILC lattices) a variety of short-distance qtit@esY , each of which has a perturbative

expansion of the form
Y=Y cal(d/a), (186)
n=1

wherec, andd are dimensionlesa-independent constants, ang (d/a) is the running QCD

coupling constant in the so-call&schemel(Lepage and Mackenzie, 1993)rfpr= 3 flavors of

light quarks.

The couplingay (d/a) is determined by matching the perturbative expansion,[E&g)( to the
nonperturbative value for. Perturbatively converting from thé to theMS scheme and running
up to theZ boson mass, switching to; = 4 and then 5 at the andb quark masses, gives a
determination of the strong coupling constegis(Mz,ns = 5).

The HPQCD collaboration considered 22 short distance diesY, consisting of the loga-
rithms of small Wilson loops and ratios of small Wilson Ioimyieset al,, [2008). The scaled
in Eq. (186) are determined perturbatively by the methaded ziE_(J_E)QB},for
n=1, 2 and 3 were computed in lattice perturbation theory :ﬁaﬁﬁodf), and higher orders, up

ton=10 were included in a constrained fitting procedure. In feapty (d/a) for all the different

scaled/a used was run to a common scale of 7.5 GeV, ape: ay (7.5GeV) was used as a free
fitting parameter in the constrained fits for each of the olzdges.

Corrections to the perturbative form, E@._(186), from carsdges appearing in an operator
product expansion (OPE) for short-distance objects, warkided in the constrained fitting pro-
cedure. Other systematic errors such as finite lattice sgadfects and scale-setting uncertainties

were considered. As their final result, the HPQCD collaboraquotes
ay(7.5GeV,ns =3) =0.212028) and ayg(Mz,nf =5) =0.11838) . (187)

The lattice determination afy;s(Mz) is compared to other determinations in Figl. 32.

In Maltmanet al. (2008) a reanalysis of three of the short distance quasititged by the
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lattice QCD determination is the most precise one.

HPQCD collaboration was performed with the result

Ogs(Mz,nf = 5) = 0.119211) , (188)

in good agreement with other next-next-to-leading-oragedinations (Bethke, 2007). The two

analyses differ in the way the perturbative running and hatz was done, the value of the
gluon condensate used in the OPE subtraction, the way tle setting for each lattice ensem-

ble is treated and a slight difference of the value used fersttale setting. For more details see

Maltmanet al. (2008).
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2. The charm quark mass and the strong coupling constant dtoment-current correlators

A new approach to extraalis and to determine the charm quark mass was used in

llison et al. (2008). It consists of comparing moments of charmoniumenrcurrent correlators

computed nonperturbatively on the lattice with high-ordentinuum QCD perturbation theory.

Vector current-current correlators have previously besgduo obtain some of the most precise

determinations afn. from the experimentad™ e~ — hadrons cross section (Kiihn and Steinhauser,

2001; Kuhnet al.,12007). On the lattice, many types of correlators are avklthat are not acces-
sible to experiment. In particular, the pseudoscalar ciitarrent correlator can be computed to
very high statistical accuracy, and the presence of a jigrtianserved axial vector current makes
current renormalization unnecessary.

Consider the) current-current correlator

G(t) =a° ;(arrb,c>2<0| j5(%,)5(0,0)[0) , (189)
with moments
T/2
Gh = Z (t/a)"G(t) . (190)
t="7T/2

In the continuum limit, these moments can be computed deatively as

On(Oz(H), /M)
(amy(p))n—4

Gn(a=0) = : (191)

wheregy, is known too (ad) for n = 4, 6 and 8. The approach to the continuum limit is improved
by dividing by the tree-level results, and tuning erroramgand errors in the scale setting are
ameliorated by multiplying with factors of the lattigg mass

_ (0 _ Ay (0 /(=4
Re=G4/G,” and R,= A, (Gn/Gn ) for n>4. (192)

The ratiosR,, are extrapolated to the continuum limit using constrained fiComparing with
continuum perturbative ratias, = g4/g, andr, = (gn/gv)Y/ "4 for n > 4, allowsays to be
extracted fronR4 and ratiosR,/R,12 given the charm quark mass, and the charm quark mass can

be obtained from th&, with n > 4, given the value of the strong coupling constant,

exp L
me(p) = m; r”g‘ﬂ“{':fgr;k) (193)
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llison et al. (2008) used eight MILC lattice ensembles with four diffdriitice spacings. The
charm correlators were computed using HISQ staggered q&dﬁdﬂaﬂﬁe_t_al, 2008, 2007). They
obtained form.

me(3GeV,n; = 4) =0.986(10)GeV, or mg(mg,ns =4) = 1.2689) GeV. (194)

This is in good agreement, and about twice as precise as tbiepoevious determination
Kuhnet all,[2007). They obtain foo

Oys(Mz,nf = 5) = 0.117412) (195)

in good agreement with the lattice determination descrdatier and with other NNLO determi-
nations|(Bethke, 2007).

B. Onia and other heavy mesons

Heavy quarkonia were important in the early days of QCD bseaotential models could be
used to approximately understand their dynamics beforegiisciples calculations were possi-
ble. The approximate validity of potential models helpdie selection of operators needed in the
improvement program for quarkonia. The several method$ofonulating heavy quarks on the
lattice have various advantages and disadvantages fokapiar NRQCD employs the operators
of the nonrelativistic, heavy-quark expansion. The omgraxpansion converges poorly for char-
monium, and fails wher\qcp/my is not small. The Fermilab interpretation of Wilson fermson
interpolates between a nonrelativistic type of actiomats> 1 and the usual Wilson-type action
atma< 1. It can be used for alha but has a more cumbersome set of operators, and has been
less highly improved than other heavy-quark actions. THe(Haction is a light quark action that
fails whenma:> 1, but has been improved at tree level to high ordersaand works well forma

closeto 1.

1. Bottomonium with NRQCD heavy quarks

The HPQCD and UKQCD collaborations have studied bottomurspectroscopy on several

MILC ensembles with lattice spacings~ 0.18, 012 and 009 fm (Grayet all, 2005). Even on

the finest of these ensemblesty, ~ 2. The authors have used lattice NRQCD to formulatethe
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quarks in the regimam> 1 (Davieset al.,|11994; Lepaget al,, (1992 Thacker and Lepage, 1991).
The form of the action of NRQCD was shown in Eq. (I144). Bhguark is nonrelativistic inside
the bottomonium bound states, with veloc#y~ 0.1. NRQCD, as an effective field theory, can
be matched order by order to full QCD in an expansiog?imndas. The action currently in use
includes corrections af (v?) beyond leading order. Discretization errors have also beercted
to the same order iv?.

The spin-averageld” mass splittings are expected to be quite insensitive to nhettige un-

certainties, such as light sea quark masses and normaiizatticorrection operators. They are,

therefore, expected to be calculable to high accuracy otattiee. | Grayet al. (2005) compute
spin-averaged mass splitting® 4+ 1S (i.e., 1P, — 13S)), 25— 1S (i.e., 23S, — 13S)), 2P — 1S, and

3S— 1Sin lattice units, and then use the experimental splittimgddtermine the lattice scale, as

described in Se€.TVIB. Figute B3 shows the results, wheaxddtice spacing has been set by the
25— 1S splitting, andmy, has been set fromly. The left-hand figure compares the results in GeV
at two lattice spacings, for quenched and unquenched ediloas. The right-hand figures show
the splittings calculated on the lattice divided by expemt) in the quenched approximation (left
narrow figure) and unquenched (right narrow figure). Clesaglieements with experiment in the
guenched approximation are removed in the unguencheda@dns.

As for theY(1S) hyperfine splitting, Grat all (2005) quoteAM = 61(14) MeV, corresponding

to r1AM = 0.09922), following an extrapolation to the physical point. Thisukds consistent
with the recent observation of timg by the BABAR collaboration (Aubest al., 2008/ 2009) who
found a splitting of 71(4) MeV from th¥(1S).

2. Onia with Fermilab quarks

The Fermilab and MILC collaborations have computed charomrand bottomonium masses

on many of the MILC lattice ensembles with lattice spacingsnfa ~ 0.18 fm toa ~ 0.09 fm

Gottliebet al., 12006 di Pierret all, [2004). For the heavy charm and bottom quarks they use
Fermilab quarks (El-Khadret all,11997). An updated study is underway (De&aal., [2009).

In Fig.[34 (DeTaret all, 12009) all the resulting masses for charmonium and bottaumomre

shown as splittings from the spin-averag&stiate. Plotted are the chirally-extrapolated values for

each lattice spacing. They are compared with the experahealues given by solid lines, where
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the experimental results are known. In the cases where teayod known and are estimated from
potential models, they are shown as dashed lines. The cnarmapectrum shows good agree-

ment with experiment for the ground states, except fotgewhich may be slightly heavier than

122



the experimentally measured value. The excBaudave states are also heavier than their respective
experimental results, but one has to bear in mind that thasessare difficult to determine without
careful consideration of finite-volume effects since they @ose to thédD threshold. The bot-
tomonium summary panel shows the general tendency of thé tesapproach the experimental
values as the lattice spacing decreases.

Charm annihilation processes give a possible additionmagcton to the charmonium hyperfine
splitting. |DeTar and Levkova (2007) and Levkova and E_)Ieilm_@ have started to study these
guark-line disconnected diagrams using MILC ensemblés lattice spacinga ~ 0.06 and 0.09
fm. They use stochastic estimators with unbiased sutxhraéﬂﬂhul'_a.nd_m[ MJB) to compute

the disconnected contribution to the propagator. They find that annihilation processesease
then: mass a small amount (byZ8) MeV for a fine lattice and 3(3) MeV for superfine), thereby
decreasing slightly the predicted hyperfine splitting (k@xa and DeTar, 2009).

3. Charmonium with highly improved staggered quarks

The HPQCD and UKQCD collaborations have studied charmosip@ctroscopy on MILC en-
sembles using the HISQ action for the valence quarks. TheyMIEC ensembles with lattice
spacinga= 0.12 and 009 fm, wheream. = 0.66 and 043, respectively, to demonstrate the advan-
tages of the HISQ action, and compute the charmonium spectrsing then: mass to tune the
input value foram.. They have corrected discretization errorgimup to orderlam)*, and shown
that this produces a speed of light that is independemqt ahd equal to 1, within errors, in the
equationE? = p?c? + méc®. The results are shown in Fig. 7|of Follaatall (2007). In particular,

they find for the hyperfine mass splitting , — Mn. = 1095) MeV. This result is the closest to
the physical value of 117(1) MeV that has yet been achieved.

4. TheB. meson

The HPQCD, Fermilab Lattice and UKQCD collaborations usddd®lensembles to predict

the mass of th&; meson|(Allisoret all, 2005) before it was accurately measured. They used two

different fermion actions for the heavy bottom and charneneé quarks, choosing the more op-

timal action in each case. For the bottom quark, they us¢iddatiRQCD (Davie%t all, [1994;
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Lepageet al, 11992; Thacker and Lepage, 1991), because it has a bettémaet of the/ inter-
actions, where is the velocity of the heavy quark. For the charm quark, thesduthe relativistic
Fermilab action|(El-Khadret all, [1997; Kronfeld, 2000), which treats higher order effeats4

better. This is appropriate, since the velocity of trgpiark inBg is not particularly smallvg ~ 0.5.

llison et al. (2005) calculated mass splittings, for which many of theéeysitic errors cancel,
namely

Ayy=mg, — (My+my)/2,  Apg, = Me, — (Mp, +Me,) , (196)
wheremmy = (my, + 3my)y)/4, Mp, = (Mp, + 3mp;) /4, andmg, = (Mg, + 3me;)/4 are spin-
averaged masses. They found no visible lattice-spacingralgmce using ensembles wéh~
0.18, 012 and 009 fm. Extrapolating the ~ 0.12 fm results linearly in the light sea quark mass
they obtain

Apy=398+3.84+112738MeV, Apg, = —[1238+30+ 1113 |MeV . (197)

The errors are from statistics, tuning of the heavy-quarkses, and heavy-quark discretization

effects. Since the statistical error on the first splittisgmaller, Allisoret al. (2005) used that to

predict theB; mass as
mg, = 6304+ 4+11"8MeV . (198)

Shortly after the lattice calculation was published, theFGiollaboration announced their precise

mass measurement (Abuleneigal., 2006)
mg, = 6287£5MeV (199)

in good agreement with the lattice predictioe,, slightly more than 1e away.

C. Heavy baryons

Baryons containing a heavy quark comprise a rich set ofst&i@ example, there are currently

17 known charmed baryons (Am l, 2008). However, for bottom baryons, there are only a

few known states. Thus, itis possible both to verify caltiates by comparison with known masses
and to make predictions for as yet undiscovered states.

Many of the heavy baryons contain one or marer d quarks, thus requiring a chiral ex-

trapolation. Although some early work on MILC configurats ' ar, 2003;

124



Tamhankar, 2002) used clover quarks diod ands, this limited how closely one could approach

the chiral limit, and recent work has used staggered ligharkgiinstead (Na and Gottlieb, 2006,
2009,2007). The heavy quark is dealt with as in S§ec. VII.A.
The pioneering lattice work on heavy baryons by the UKQCDOadaration (Bowlelet all,
1996) considered two operatoBs = eapc(WET CysW3) W, and Oy = anc( W3 Cy Wh)WE,, where

€anc IS the Levi-Civita tensonp, and ., are light valence quark fields for up, down, or strange

quarks,Wy is the heavy valence quark field for the charm or the bottonrkquzis the charge
conjugation matrix, and, b, andc are color indices. The former operator can be used to sty th
spin-1/2 baryong\, and=,. The latter can be used, in principle, for both spin-1/2 gnd-8/2

baryons. However, with the current formalism, for operaitwith two staggered quarks, there are

cancellations in the spin-3/2 sector adglcan only be used for spin-1/2 baryons (Na and Gottlieb,

2007). In.Gottliebet all (2008) the taste properties of staggered di-quark operaterconsidered

in much the way that Bailey (2007) studied staggered barpemators. However, this method has

not yet been applied in calculations. For states with twahegarks, both spin-1/2 and spin-3/2
states have been studied.

Another issue when dealing with states containing heavykgua the distinction between the
rest and kinetic masses (see $ecl VII). Calculation of kimeasses requires looking at states with
nonzero momentum and fitting a dispersion relation. Thisrtwasyet been done for the heavy

baryons, which means that we are restricted to reporting syalgtings.

So far, ensembles with three lattice spacings have beeredt ieb, 2009). With
a~0.15fm, three ensembles with /ms= 0.2, 0.4 and 0.6 were used. Wigh~ 0.12 fm,m /ms=
0.007, 0.01 and 0.02, and witw: 0.09 fm, onlym /ms = 0.2 and 0.4 were studied. Seven to nine

light quark masses are used to allow for chiral extrapatatithe charm and bottom quark masses

are as in the meson work. Since mass splittings are desagds 1of hadron propagators are fit
in preference to fitting each hadron and subtracting the @sag3or baryons with a heavy quark,
rSXPT has not been worked out yet, so the chiral extrapolatidraged on a polynomial in the

valence and sea masses,

Pguad= Co + C1my + szz + C3Ms + C4Msea, (200)

wherecy to ¢4 are the fitting parametersy is the light valence quark massy is the strange

valence quark mass, amie,is the light sea quark mass. These fits are denoted “quad’ein th
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FIG. 35 Independent mass differenceslbt= %+ singly charmed baryons (a), and singly bottom baryons

(b). Figures fro ieb (2009).

figures. Alternative chiral extrapolations use only thd @CD points,i.e., those in which the
valence and sea light quark masses are equal. These ared&iudit in the figures.

For the singly-charmed baryons in Fig] 35(a), three of the thfferences are in good agree-
ment with the experimental results. The result that is n@aod agreement is one that involves
one hadron fronOs and one fromO,,. The other differences come from particles that are both
determined using the same operator. This behavior is a ngyste

In Fig.[33(b), we consider the singly-bottom baryons and fijedd agreement for the one

observed difference fat, — A\p. Also shown is the comparison with a recent lattice calonhabf

Lewis and Woloshyn (2009). The large value for fhg-/\,, splitting is again noticeable.
In Fig.[38, we compare with the results|of Leweisal. (2001) and Lewis and Woloshyn (2009)
for both spin-1/2 and spin-3/2 baryons. The earlier cataueof charmed baryons used quenched

anisotropic lattices generated with an improved gaugemciihe more recent calculation of bot-
tom baryons uses configurations containing the effects n&dycal quarks. In order to compare
the two calculations, and because kinetic masses are nitatadean the calculation on MILC con-
figurations, a constant was added to the static masses thatdieon lattice spacing and whether
the state contains charm or bottom quarks, but not upon spight quark content.

There are a number of ways to improve upon the current woilkidireg increasing statistics,
extending the calculations to the finer ensembles, studyiadkinetic masses and studying new

operators that will allow us to explore the properties of¢pa-3/2 baryons. It is also possible to
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FIG. 36 The mass spectrum of doubly charmed and bottom bsry®he error bars are statistical only.

Figures from_Na and Gottlieb (2009).

use HISQ quarks for all o, d, sandc quarks to explore the charm sector using only staggered

operators.

D. K®— K mixing: Bk

Experimental measurements of the size of indirect CP-trarlan the neutral kaon systesg

can be combined with theoretical input to constrain the agf¢tie CKM unitarity trianglel(Buras,

1998). Becausex has been measured to better than a percent accur 2008), the

dominant sources of error in this procedure are the thealatincertainties in the CKM matrix
element|Vp|, which enters the constraint as the fourth power, and inatieé determination of
the nonperturbative constaBy.

The kaon bag-parameteBx encodes the hadronic contribution tB% — K® mix-
ing (Buchallaet all,11996; Buras, 1998):

(K°|Qas_2(H) KO

BK(U’) = —0, — _ ) (201)
8(K”|svoysd|0) (0| Syoysd|K©)
whereQas-» is the effective weak four-fermion operator
Qas=2(X) = [syud]v—a(X)[syud]v-a(X) (202)

andp is a renormalization scale. The dependencgicancels that of a Wilson coefficieG{ )

that multipliesBg (1) in physical observables such as the mass difference betiteamd K, .
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The denominator in EqL(2D1) is the value of the matrix eleméth vacuum saturation of the
intermediate state. Often quoted is the value of the renlarat®n group invariant form oBg,

Bk, defined by
Bk = C(W)Bk () - (203)

Gamizet all (2006) carried out a calculation &g using two MILC ensembles with lattice

spacinga~ 0.12 fm. They employed asgtad valence quarks with valenceskaale of degenerate
quarks of mass/2. Using one-loop matching with the coupling takerogg1/a) they find the

following value forBg in the naive dimensional regularization scheme:

BMS-NPR(2 GeV) = 0.618(18)(19)(30)(130) , (204)

where the errors are from statistics, the chiral extrammwdihﬂ' e, 2006), dis-

cretization errors, and the perturbative conversion tdBe- NDR scheme. The value Eq.(204)

corresponds t@x = 0.83+0.18. The error is dominated by the uncertainty frorfo2) correc-
tions to the perturbative lattice-to-continuum matching.

Because the matching coefficients are known only to one ld@presult in Eq.[(204) is not
competitive with the published domain-wall fermion cabtion by the RBC and UKQCD Col-

laborations, in which the operator renormalizatio is dooaperturbatively using the method of

Rome-Southampton_(MartinebBit al., [1995) and mixing is suppressed due to the approximate

chiral symmetry. They obtain, using a single, comparahtiick spacingBx = 0.720+ 0.019

[lton et all, 2008), where the dominant uncertainty is due to discretizeerrors, and is esti-

mated to bev- 4% from the scaling behavior of quenched data.
Recently Aubin, Laiho, and Van de Water obtained the firstuemghed determination

at two lattice spacings using domain-wall valence quarkshenMILC ensembles (Aubiet al.,

2009b). Because dynamical domain-wall lattice simulaiare computationally expensive, this
mixed-action approach is an affordable compromise thastaklvantage of the best properties of
both fermion formulations. Since the MILC ensembles aralake at several lattice spacings
with light pion masses and large physical volumes, thisnalfor good control of the chiral ex-
trapolation in the sea sector and the continuum extrapolaibbomain-wall fermions do not carry
taste quantum numbers, so there is no mixing with operafarther tastes. Furthermore, the ap-
proximate chiral symmetry of domain-wall fermions supgessthe mixing with wrong-chirality

operators and allows the use of nonperturbative renorataizin the same manner as in the purely
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domain-wall case. Finally, the expression By in mixed actionXPT contains only two more pa-

rameters than in continuukPT (Aubinet all,[2007b), both of which are known and are, therefore,

not free parameters in the chiral and continuum extrapoia#hubinet all (2009b) obtain
BMS-NPR(2 Gev) = 0.527(6)(20), (205)

where the first error is statistical and the second is sydtem@/ith data on the coarse and fine

MILC lattices, Aubinet al. (2009b) find that the discretization errorsBp are small. The largest

error inByk is ~ 3% and is from the renormalization factég, , which is computed nonperturba-
tively in the RI/MOM scheme, but must be converted to Mh&-scheme using 1-loop continuum

perturbation theory.

Baeet al. (2009) are also computinBx with a mixed-action approach using HYP-smeared

staggered valence quarks (Hasenfratz and Knechtli, 2001he MILC ensembles. They have

preliminary data on the coarse, fine, and superfine MILC eb&ssrand are computings, non-
perturbatively in the RI/MOM scheme using the Rome-Soutbtam method. When completed,
their result should be competitive with those of RBC/UKQQmIa&ubinet al. (2009b).

E. B%— B° mixing

The mass differences between the heavy and Bﬁhq =d,s, are given in the standard model
by (Buraset al.,11990)

GZMg,
612
Wherer]g is a perturbative QCD correction factor agglis the Inami-Lim function of = n‘E/M\%,.

theor __
AM® =

[ViaVib N5 So (%)M, f, By - (206)

I_3>Bq is the renormalization group invariaBg bag parameter that can be computed in lattice QCD.
. . _0
The four-fermi operators whose matrix elements beth&and Bg are needed to stu®8

mixing in the standard model are

OLY = [bev_alb°Clv-a, OS' = [bPe¥s p[o%cC]s p ,
034 = [b_aqc]&P[Ban]&P ; (207)

wherea, c are color indices. The Ieading-ordag-gg mixing matrix element is parameterized by
2 RMS.
the productfs Bg >: .

(B3lOLIBY) (W = 3

M3, 3. BY>(H) . (208)
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WhereB'g;"_qS is related td.%Bq in Eq. (206) in an analogous manner to Eq. (203). Beyond &ed |
the operato©OLY mixes withOS!, both on the lattice and in the continuum. Including the tup
correction, the renormalized matrix element is given by
a3
2Mg,

(OLDMS (1) = [1+as- pLo (W, Mb)] (OLN 2 @) + s - prs(pt, mp) (OS2 a) . (209)

The operato©3 is only needed to compute the width differerfdfe; (Lenz and Nierste, 2007).
The HPQCD collaboration calculat&g,, with g = d,son four MILC ensembles with~ 0.12

fm and two ensembles witli~ 0.09 fm, using an asqtad light valence quark and lattice NRQCD

for the bottom quark (Dalgiet al.,2007] Gamizt al.,[2009). With NRQCD for the heavy quark, a

dimension seven operator contributes to the relevant xigiment at ordep (ACP/Mg), which

was also taken into account. The HPQCD collaboration fi\n_@('ﬁet_il, 2009)
fe.\/Bs, = 0.266(6)(17)GeV ,  fg,y/Bg, = 0.216(9)(12) GeV , (210)

and for the ratio

& = fas\/Bay/(fay1/Be,) = 1.258(25)(21) , (211)
where the errors are from statistics plus chiral extrapmaand from all other systematic errors
added in quadrature, respectively. The chiral and contmeytrapolation is shown in the left
panel of Fig[ 3. Using the result in EQ. (211) and the expenitally measured mass differences
AMy, x = s,d, (Amsleret all,[2008) they find

Vid|
is|

where the errors are experimental and theoretical, respsct

= 0.214(1)(5) (212)

A similar calculation is being performed by the Fermilabtict and MILC collaborations
Evanset al,, 12009, 2007). They use Fermilab fermions for the heavy qakd, like HPQCD,
asqtad fermions for the light valence quarks. The prelimyichiral and continuum extrapolation
is shown in the right panel of Fig. B7. As a preliminary resh#y findg = 1.20552), with the

statistical and systematic errors added in quadratur L, 12009).

F. Hadronic contribution to the muon anomalous magnetic monent

One of the most precisely measured quantities, and hencstanighingly accurate test of

QED, is the anomalous magnetic moment of the mugns= (g— 2)/2. The QED contribution
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FIG.37 Theratid' =&/Mg,/Mg, = fg, /Ms,Bs,/( fg,1/Mg,Bg,) as a function of the light valence quark
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collaboration|(Gamizt all,[2009) and the right panel from the Fermilab/MILC collakitma (Evanset al,

2009).
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FIG. 38 The lowest-order diagram for the QCD correction ® iuon anomalous magnetic moment at

0(a?). The bubble represents all possible hadronic states. éfgum| Aubin and BIan (2007).

is known to four loops, with the five-loop term having beerireated — see Jegerlehner (2007,

2008) for recent reviews. With the experimental precismwhichay, is known, QCD corrections

are important at leading order via the QCD contribution te acuum polarization, shown in
Fig.[38.

This leading contribution can be estimated from the expenital values of the" e~ — hadrons
total cross sectiorg;-° = (6921 +5.6) x 10~1° (Jegerlehnet, 20077, 2008). Using this value the

difference between experimental and theoretical value is

Sa, = a®®— alhe — (287+91) x 1011, (213)
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FIG. 39 Two different r&PT fits to M(g?) for three light massesam = 0.0031 (diamonds), 0.0062

(squares) and 0.0124 (circles) wiln, = 0.031, from_ Aubin and Bluim (2007) which contains the details.

about a 3lo effect and a possible hint at effects from physics beyondstaedard model. The
leading hadronic contribution can also be estimated from v+ hadrons, giving a result of
10— 20x 10~ 19 higher than from thete~ cross section, but this estimate is on somewhat weaker
footing due to isospin-breaking effects. A purely theaatcalculation otafl”-o is thus desirable.
The muon anomalous magnetic moment can be extracted frofultheuon—photon vertex.

The first effects from QCD, at order(a?), are shown in Fig. 38, and can be computed from the

vacuum polarization of the photofikg?) via (Blum,/2003)

o= () [Cact@ni). @19

Tt

with the kernelf (g?) given inB_IunJl (2008). The kernél(g?) diverges agf — 0. This makes a

precise calculations dfl(g?) at low momentum necessary, and, in particular, makes fretive

computations unreliable.

ubin and Blum|(2007) describe such a calculation basedree thILC ensembles with lattice

spacinga ~ 0.09 fm, and three different light quark masses. The vacuurariaition(g?) is

computed from the correlator of the electromagnetic curireterms of quark fields. Aubin and

Blum use rgPT to fitM(g?) at lowq, (see Figl39), and use the result in the integral in Eq.](214)
Finally, they extrapolate to the physical light quark madgaining

aft9 = (721+£15) x 10 1% and af{*® = (748+21) x 107 1° (215)
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with a linear and quadratic fit, respectively. The errorssagistical only. Systematic errors in
Eq. (2I%) other than due to the quark mass extrapolation doone finite lattice spacing and
finite volume effects. Given this, the lattice result shdoddtaken as in broad agreement with the
estimate from the&" e~ cross section. Further improvements need to be made bédferdattice

calculation becomes competitive with other determination

G. Quark and gluon propagators in Landau gauge

Quark and gluon propagators contain perturbative and maurpative information about QCD.
Quark propagators play a crucial role in hadron spectrgsaaod the study of three and four-point
functions used in form factor and matrix element calculeioThe propagators are not gauge in-
variant, and thus have to be studied in a fixed gauge, ustnlyandau gauge. Nevertheless, they
contain gauge independent information on confinement, mjoca mass generation and sponta-
neous chiral symmetry breaking. Quark and gluon propagatam, obviously, be studied on the
lattice. They are often treated semi-analytically in thetegt of Dyson-Schwinger equations, see
Roberts|(2008) and Fischer (2006) for recent reviews.

The Landau gauge gluon propagator has been studied in ful) Q€ng MILC lattices by

Bowmanet al. (2004, 20077). In the continuum, the Landau gauge gluon gatoa has the tensor

structure

0
Di(q) = (% — ;2“) 3D (o) , (216)

where, at tree levdD(q?) = 1/9°. The bare propagator is related to the renormalized prdpaga

Dr(g% W) by the renormalization condition

D(c?,a) = Z3(a;WDR(0% W) ,  DR(G% W) |q—ye = : (217)

? .

The gluon propagator in full QCD is somewhat less enhancednfimenta around 1 GeV than

the quenched propagator, see Figl 40 (left), and shows gealthg behavior (Bowmast al.,

2007). The gluon spectral function shows clear violatiohpasitivity in qualitative agreement

with Dyson-Schwinger equation studies (see Fischer (2808)eferences therein).

The quark propagator has been studied in full QCD using Mlb@ide ensembles with

lattice spacingsa ~ 0.12 and 009 fm in|Bowmaret al. (2005b), Parappillet al. (2006) and
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FIG. 40 The gluon dressing functiafD(q?) for quenched and dynamical configurations watk: 0.09

fm, from|[Bowmaret al. (2007) (left), and the quark mass function for light sea guaass in full QCD at

a~ 0.12 and 009 fm, from Parappillyet all (2006) (right).

Furui and Nakajimal (2006). The bare propagator can be parnaed and related to the renor-

malized propagator, by

S(p%a) = Z(p%a)fiy- p+M(p%)] = Za(a SR(P% 1) (218)

whereZ,(a; 1) = Z(pz;a)lpz:uz, and the mass functioll(p?) is renormalization point indepen-

dent. Its asymptotic behavior @s— « is related via the OPE to the RGI quark mass and the chiral

condensate, see,g.,Bowmanet al. (2005a).

The quark mass function for light sea quark mass in full QGBusations at two different lattice
spacings is shown in Fig. 40 (right). It shows good scaling @ear indication of dynamical mass

generation (“constituent mass”) at low momenta.

H. Further uses of MILC lattices

Besides the calculations described in the preceding stibsscthe MILC lattice ensembles

have been used in other QCD calculations. These includduldg ef hadronic scattering lengths

andn-body interactions, reviewed in Beageal. (2008a). Furthermore, computations of nucleon

structure, moments of parton and generalized parton lligioin functions, axial nucleon cou-
plings, electromagnetic form factors, and nucleon tramsiamplitudes have been done using
MILC lattice ensembles — see Orginos (2006), Hagler (2G0W) Zanotti [(2009) for recent re-

views of lattice computations of these quantities.
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X. FURTHER IMPROVEMENTS: A LOOK TO THE FUTURE

While the lattice QCD simulations described in this revie® quite mature, the errors of many
of the observables computed can be reduced in various wagsy bf the calculations have omit-
ted some of the available MILC ensembles, in particular tlegenthallenging ones with small
lattice spacings. Sometimes, not all the available cordijoms in an ensemble have been an-
alyzed. Electromagnetic effects, where needed, have lad@m from nonlattice estimates (see
Sec[V]). They can be included directly in lattice simulago Discretization effects coming from
the fermion actions used can be further reduced by usingowepnents to the Fermilab action
for heavy quarks, and by using highly improved staggeredksufar both valence and sea light

guarks. These improvements are briefly outlined in thiseect

A. Impact of new ensembles

The superfineg ~ 0.06 fm) and ultrafineq ~ 0.045 fm) ensembles listed in Table | were com-
pleted only during the past year, as was the coase .12 fm) ensemble with three degenerate
light quarks. The fine ensembles with/ms = 0.05 and with three degenerate light quarks are still
running, but should be completed in the near future. In tajsep, we have presented some prelim-
inary results from the superfine ensembles for the hadroctrspe, the light pseudoscalar mesons

and the topological susceptibility, and the HPQCD/UKQCDakmwration has recently used some

2008); however, the physics

v/

of the superfine ensembles in its studies of charmed phySaa
analysis of the new ensembles is in a very early stage. Whisncampleted, we expect these
ensembles to have a major impact on many of the calculatiessrithed above.

As indicated earlier, the leading finite lattice spacingfacts for the asqtad action are of order
a?/log(a). So these artifacts for the superfine and ultrafine ensenalpéesiown from those of
the fine ensembles by factors of 2.6 and 5.2 respectively. nescan see from Figs. 114,119 and
[24, results obtained to date from the superfine ensemblegayeclose to the r&PTcontinuum
extrapolations, which should significantly reduce diseegton errors in calculations that make
use of them. Furthermore, as is illustrated in Elg. 6, theekse in taste splitting among the pions
with decreasing lattice spacing is consistent aifilog(a)?, as expected. Thus, this major source
of systematic error will be significantly reduced by use & sliperfine ensembles.

The a =~ 0.045 fm, m = 0.2ms ensemble will provide an anchor point for extrapolations to
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the continuum limit, and is particularly important for calations which use the Fermilab method
for heavy valence quarks. For many of these quantities theretization errors in the heavy-
guark action are the largest single source of systematie. eAlthough the size of heavy-quark
discretization errors can be estimated using power-cogrdarguments, the precise form of the
lattice spacing dependence is not explicitly known. It isstimportant to have a range of lattice
spacings in order to study the heavy-quark discretizatifates. The heavy-quark errors decrease
asa/log(a) at the worst, so we expect the 0.045 fm ensemble to reduceethe/fguark errors
by a factor of two in quantities of interest involving B and Besons, which thus far have only
been computed on ensembles with lattice spacangd0.09 fm and larger. The reduction of the
heavy-quark discretization errors does not require thesttlof light-quark masses that we have
calculated at coarser lattice spacings; thus, we have gtkeonly one ensemble ats 0.045 fm.

By including the superfine and ultrafine ensembles into oukwao heavy-light mesons, in con-
junction with improving the statistics, we expect to detgrenthe leptonic decay constants, the
mixing parameters and the corresponding semileptonic faotors to an accuracy of better than
5%.

The physical strange quark mass is not light enough for kch@durbation theory to converge
rapidly in its vicinity. To anchor chiral fits and to test thenvergence of chiral perturbation theory,
it is therefore extremely helpful to have ensembles withstiange sea quark mass held fixed at
a value well below the physical strange quark mass. Furthexnwith three dynamical quark
flavors, there are two interesting chiral limits to be coesadl: the two-flavor limit, in which the
u andd quarks become massless while gh&tays at its physical mass, and the three-flavor chiral
limit, where all three quarks become massless. The difteref various quantities in these two
limits is an important probe of the nature of chiral symmétrgaking in QCD. The extrapolation
to ms = 0 necessary for the three-flavor chiral limit is a long onethvdttendant large errors.
The new ensembles with three degenerate light quarks weagett to help address these issues.
We estimate that incorporating all the superfine ensemblesthe analysis, as well as all the
configurations with the strange sea quark mass held fixedvbd&dghysical value, will allow us
to reduce the systematic errors tpand fx to 2% or better, and should dramatically reduce the
errors in low energy constants and quantities such as tie ohthe two flavor to three flavor
condensateguu),/(uu)3. This would be an important milestone for lattice QCD cadtiains. We

also expect corresponding improvements in other physicanhtties of interest. In particular, our
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evaluation of\\Vs| should become significantly more accurate than the currerithaverage.

B. Electromagnetic and isospin breaking effects

Most lattice calculations have not included electromaigrmtisospin breaking effects. How-
ever, as the precision of calculations increases, inctuthese effects will become increasingly
important. In fact, we have already seen in $eg¢. VI that Bdetagnetic effects are important in
the determination of the andd quark masses. Another interesting challenge for latticd®QC
would be to determine the proton-neutron mass differenteciwwill require accounting for the

differences of both tha andd quark masses and their charges.

The pioneering work by Duncan, Eichten, and Thacker ( 1 regarding electromag-

netic effects was done with quenched U(1) and quenched Slg(8%. More recently, the RBC

collaboration has been pursuing such calculations but datmain-wall dynamical quarks. In

Yamadaet al. (2006) and Blunet al. (2007), electromagnetic effects anand K meson masses
were calculated ilNg = 2 configurationswﬁm ge (2007b) hateMH.C

configurations witha ~ 0.12 fm to study isospin breaking for the nucleons using doraait

valence quarks.
Electromagnetic effects in lowest order chiral perturmatineory were first studied some 40
years ago bLDiSﬂe (1969). A key result known as Dashen'sréheis that electromagnetic

splittings of the pions and kaons are equal at this oidey,

AME = AME — AMZ = (MZ: —MZo) .., — (M2 —MZ (219)

Jem

vanishes.

Recently, Bijnens and Danielssan (2007) have calculatectreimagnetic corrections in par-

tially quenched perturbation theory, which are partidylgertinent for analysis of lattice QCD
calculations. They have emphasized that a combination sbmmasses with varying charges and
guark masses is a very close approximationM%:
AMZ - Mz(X].? X3, 01, CI3) - Mz(XL X3,03, CI3)
- MZ(XL X1, 91, CI3) + M2<X17 X1, 03, CI3) : (220)

Herex; = 2Bmy;, whereB is the continuum version of the low energy constant defindebin39),

andq; is the quark charge. In their notatian; 1(3) refers to the valence (d) quark, respectively.
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FIG. 41 Correction to Dashen’s theorem, as a function of t@erimass squared (equivalent to the pion

mass squared wite? = 0). Figure from Basalkt all (2009).

MILC has recently begun to explore electromagnetic effemisthe pseudoscalar masses

Basaket all, 12009), using the quenched approximation for electromié@gmne The initial study

ona~ 0.15 fm ensembles yielded promising results. The key reswdtrsugh estimate of the

correction to Dashen’s theorem. In Figl41, we show resoltsvo dynamical ensembles for
various light valence masses. After fitting the results aadgoming the chiral extrapolation,

we find that 07 x 10 3GeV? < AM2 < 1.8 x 10~3GeV2. A recent phenomenological estimate is
1.07 x 10-3GeV? (Bijnens and Danielsson, 2007).

It will be very interesting to extend this work to smallertie¢ spacings and eventually to
include dynamical electromagnetic effects. There is dsgtospect of including isospin breaking

in the generation of the configurations.

C. Heavy Wilson fermion improvement program

The leading discretization errors contained in the Wilstmver action applied to heavy quarks

have been analyzedanKLa)Land_KLo_n\f 2ld (2008), in an eidaris the original Fermilab formal-

ism. Since the heavy quarks introduce an additional scaie,lthey consider all the operators

which have power counting o2 (A ~ Aa or N/ mg) and\® for the heavy-light (HQET) and

heavy-heavy (NRQCD) systems, respectively. This leadstioras containing all possible dimen-
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sion six and some dimension seven operators. Many of theseedundant and may be chosen
for calculational convenience by considering field transiations. For example, multihop time
derivative operators (which spoil nice properties of tlamsfer matrix) may be eliminated in this
way. Tree-level matching of observables in the continuuthlattice QCD actions shows that six
new operators beyond the original Fermilab action are reduat this level of improvement, four
of dimension six and two of dimension seven. In all, thereaatetal of nineteen nonredundant
operators at this level, and one-loop matching will presbisnantroduce more of these. One can
estimate the uncertainties due to nonzero lattice spagirgglculating the mismatch between the
lattice short-distance coefficients and their continuunmnterparts. Initial estimates show that the

new lattice action reduces the errors to the few-perceet.lev

D. Preliminary studies of the HISQ action

As discussed in Secl I, the HISQ action improves taste syimyraed is well suited for future
studies with dynamical quarks. Subtleties with dynamicE® simulations, in particular from

the reunitarization step, Ed. (85), which can lead to lamributions to the force, are described

inBazavovet al. (2009).

The first study of how the HISQ action reduces the splittingveen different tastes of pions
was undertaken by the HPQCD and UKQCD collaborations inaRakt al. (2007). They used

valence HISQ on the asqtad sea quark configurations geddmgt®ILC. Similar findings for

HISQ sea quarks were reported in Bazaebwal. (2009). The results of a more recent study are
summarized in Fid. 42: The splittings between the Goldssmkthe other pion tastes for the HISQ

action are reduced by a factor of 2.5—-3 compared to asqtditére vertical line that indicates a
factor of 3 in logarithmic scale in Fig. #2). Two HISQ enseashlwitha ~ 0.09 and 0.12 fm, are

shown. The difference between the results presented hdrim @Bazavowet all (2009) is that the

current study uses the improved gauge action with the oogdermion corrections induced by

the HISQ fermions (Hart all, [20094,b), and the ensembles were tuned to be close to ¢heflin

constant physics withn = 0.2ms.
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FIG. 42 The taste splittings as functionata? for the asqtad and HISQ actions (with the latter indicated

by dashed boxes).

XI. SUMMARY AND CONCLUSIONS

There has been a dramatic improvement in the accuracy afdd@CD calculations over the

past decade due to a combination of developments:

e The use of improved actions significantly reduces finitedatspacing artifacts, greatly im-
proving the accuracy of extrapolations to the continuumtlirihe asqtad improved stag-
gered quark action the MILC collaboration has used provédearticularly strong reduction
in taste symmetry breaking, the most challenging finitedatspacing artifact for staggered
quarks. The HISQ action improves on asqtad in this respeahkadditional factor of three.
In general, one finds that a HISQ ensemble has lattice aditguproximately half the size

of an asgtad ensemble with the same lattice spacing.

e The inclusion of up, down and strange sea quarks with reafissses is critical for reducing

errors to the few percent level, as is illustrated in Elg. 1.
e The use of partially quenched chiral perturbation theony, dor staggered quarks, rooted
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staggered chiral perturbation theory have greatly impadkie accuracy of the extrapolation

of lattice data to the physical masses of the up, down andgdrguarks.

e Improved algorithms, such as RHMC, have enabled the geoem@itgauge field ensembles
with significantly smaller lattice spacings and lighter dumasses than had previously been
possible. These new algorithms have changed the balangedregauge field configuration
generation and physics analysis on the configurations. ®dlsehe former used to take the
bulk of the computing resources, now the resources reqfiredn analysis project often

rival those that went into the generation of the configuretio

e The vastly increased computing resources available tcdagfauge theorists over the past
decade have enabled us to take advantage of the developgnentgrated above. For exam-
ple, between 1999 and 2008, the total floating point opearatised per year by the MILC

Collaboration increased by approximately three ordersagmitude.

The MILC collaboration has taken advantage of these dewedops to generate, over the past
ten years, the ensembles of asqtad gauge field configuratetasged in Tabl¢ll. This is the first
set of ensembles to have a wide enough range of small lafia@rggs and light quark masses to
enable controlled extrapolations of physical quantiteethe continuum and chiral limits. These
ensembles are publicly available, and we and others arg tis&m to calculate a wide range of
physical quantities of interest in high energy and nuclégsirs. This work has included calcula-
tions of the strong coupling constant, the masses of ligatkgiand hadrons, the properties of light
pseudoscalar mesons, the topological susceptibilityyigses, decays and mixings of heavy-light
mesons, the charmonium and bottomonium spectrak the KO mixing parameteByg, the mass
of the B meson, thet— rmandN — N scattering lengths, generalized parton distributions, an
hadronic contributions to the muon anomalous magnetic moniehe errors in these quantities
have typically decreased by an order of magnitude as tharyilsf ensembles has grown, with
further improvements expected as the superfine and ultrafisembles are fully analyzed, and
HISQ ensembles become available.

A number of quantities have been calculated to an accuraayfeW percent, and some predic-
tions have been made that were later verified by experimeme. work of the Fermilab Lattice,
MILC and HPQCD/UKQCD collaborations on the decays and nggiaf heavy-light mesons and

the decays of light pseudoscalar mesons has reached aflaceLwacy where it is having a signifi-
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cant impact on tests of the standard model and the searcbvoplnysics. However, high precision
has been obtained only for quantities that are most stifaigtdrd to calculate. There are many
guantities, such as scattering phase shifts, the massegdthg of hadrons that are unstable under
the strong interactions, and parton distribution fundiomhich are of great interest, but continue
to pose major challenges.

Because it is relatively inexpensive to simulate, the abqteaark action was the first to produce
a set of gauge field ensembles with a wide enough range afdattiacings and sea quark masses
to enable controlled extrapolations to the continuum amektlmit. However, such ensembles are
also being produced with other quark actions, such as Witkover, twisted mass, domain wall
and overlap. These ensembles are already producing inngressults. Over the next few years
one can expect major advances on a wide variety of calcaktath critical checks coming from
the use of different lattice formulations of QCD. Finallgettechniques that have been developed
for the study of QCD can be applied to study many of the theahat have been proposed for
physics beyond the standard model. Such work is just bagnbut appears to have a very bright

future.
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