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The study of final states with an isolated high energy
photon and an identified b-quark jet is a testing ground
for quantum chromodynamics (QCD) predictions at the
Tevatron. At photon transverse energies Eγ

T below 70
GeV Compton scattering processes gb → γgb or qb → γqb
dominate production, while above that value the domi-
nant process is quark annihilation qq → bbγ [1]. A cross
section measurement provides a probe of the hard scat-
tering dynamics within the proton, and a cross-check of
the predictions of its b-quark content, whose parton den-
sity function is indirectly extracted from constraints on
the gluon density functions.

The first measurement of photon and heavy flavour
jets (identified by the presence of a muon in the jet) was
performed on 86 pb−1 of integrated luminosity taken at√

s = 1.8 TeV with the CDF I detector [2]. The results
were interpreted as limits to new physics involving de-
cays of Techni-Omega states [3], or supersymmetric par-
ticles [4]. Recently the D0 collaboration has measured
the cross section of heavy flavour jets and photons [5]
using data collected at

√
s = 1.96 TeV. In this paper we

exploit the improved CDF II detector to identify b jets
by a lifetime based secondary vertex tag, use a larger
dataset collected at a somehow higher energy probe, ex-
plore lower photon transverse energies, and employ a su-
perior analysis technique where all backgrounds are de-
termined from data.

The CDF II detector is described in detail in [6]. It is
composed of a central spectrometer inside a 1.4T mag-
netic field, surrounded by electromagnetic and hadronic
calorimetry and muon chambers. The inner spectrome-
ter measures charged particle trajectories with a trans-
verse momentum (pT ) precision of ∆pT /p2

T = 0.07%
(GeV/c)−1, and an uncertainty on the transverse im-
pact parameter of about 40 µm for tracks of pT above 1
GeV/c, which includes the intrinisic beam size of about
30 µm. Information from the central tracker can be
sent to the hardware tracker SVT[7], that compares hits
from the tracking detectors with pre-fitted tracks stored
in an associative memory to extract their parameters.
An impact parameter resolution less than 50 µm, in-
cluding the contribution from the beam, can be ob-
tained in time to be used at the trigger level. Central
calorimeters [8] cover the region | η |< 1.1, with an elec-
tromagnetic (hadronic) energy resolution of σ(E)/E =

13.5%/
√

E ⊕ 2.0% (σ(E)/E = 50%/
√

ET ⊕ 3%). The
end-wall hadronic calorimeter extends this coverage to
| η |< 1.3 [9] with an energy resolution of 75%/

√
ET ⊕4%,

uUniversity of Notre Dame, Notre Dame, IN 46556, vUniversity de
Oviedo, E-33007 Oviedo, Spain, wTexas Tech University, Lubbock,
TX 79609, xIFIC(CSIC-Universitat de Valencia), 56071 Valen-
cia, Spain, yUniversidad Tecnica Federico Santa Maria, 110v Val-
paraiso, Chile, zUniversity of Virginia, Charlottesville, VA 22906
aaBergische Universität Wuppertal, 42097 Wuppertal, Germany,
bbYarmouk University, Irbid 211-63, Jordan jjOn leave from J. Ste-
fan Institute, Ljubljana, Slovenia,

whilst the region 1.3 <| η |< 3.6 is covered by forward
calorimeters [10], with hadronic and electromagnetic en-

ergy resolutions of 80%/
√

E ⊕ 5% and 16%/
√

E ⊕ 1%
respectively.

To distinguish electromagnetic clusters from photons,
electrons, and decays of neutral pions, the central elec-
tromagnetic calorimeter is equipped with a preshower de-
tector (CPR) in front of the calorimeter to detect early
photon conversions in the solenoid coil, and a shower
maximum detector (CES) placed inside the calorimeter
to measure the shower profile. For each electromagnetic
cluster a weight related to its probability of being a pho-
ton is given by comparing signals from these detectors to
the expected shapes.

We use data obtained by two triggers; one which re-
quires a photon-like object with transverse energy larger
than 25 GeV (‘high Eγ

T photon’), and one (‘SVT pho-
ton’) which requires a photon-like object with trans-
verse energy larger than 12 GeV, a jet with transverse
energy larger than 10 GeV, and a track, measured by
the SVT [7], with transverse momentum larger than 2
GeV/c, and an impact parameter larger than 120 µm.

An integrated luminosity of 340 (208) pb−1 of data was
analyzed in the high Eγ

T photon (SVT photon) triggered
dataset.

The high Eγ
T photon trigger has an efficiency close to

100% for events with Eγ
T above 28 GeV, while the SVT

photon trigger has an efficiency of (50 ± 4)% (estimated
from data, in the overlap region with the Eγ

T dataset),
for photons down to 12 GeV.

Selected events must pass at least one of the two pho-
ton triggers, contain an isolated central (| η |< 1.1) pho-
ton of Eγ

T > 20 GeV, and a b jet of ET > 20 GeV within
| η |< 1.5.

Photon candidates must have a calorimeter cluster
with hadronic energy fraction smaller than 0.055 +
0.00045∗Eγ, where Eγ is the photon energy. The shower
profile must also agree with that expected for an elec-
tromagnetic deposit. In order to reduce contamination
from neutral mesons, photon candidates must be isolated
from nearby calorimeter deposits and tracks. We require
that the total transverse energy deposits for clusters in

a cone of radius R =
√

∆φ2 + ∆η2 = 0.4 around the
photon candidate is smaller than 2.0 + 0.02(Eγ

T − 20),
and the same quantity for tracks must be smaller than
< 2.0 + Eγ

T ∗ 0.005 to ensure isolation in the tracking de-
tectors. Events containing adjacent calorimeter clusters
in the CES are rejected.

Jets are reconstructed using the JETCLU algo-
rithm [11] with a cone radius 0.4 (0.7) for events con-
taining photons of Eγ

T < (>)26 GeV. To recover the true
hadronic energy, jets are corrected for instrumental ef-
fects [12]. We select events containing at least one jet
with ET > 20 GeV, with ∆R > 0.7 to the photon candi-
date. Jets originating from b hadrons are identified from
displaced secondary vertices [13]. The secondary vertex
must be more than two standard deviations away from
the beam position, in the same direction as the jet mo-
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FIG. 1: Fit to the invariant mass of tracks composing the sec-
ondary vertex, for photon candidates having ET > 26 GeV.
The points are data, and the stacked, shaded histograms rep-
resent the estimated contributions of the b, c- and light-quark
jets.

mentum. At least one b jet must be identified for each
event. The efficiency of the b-tagging algorithm is 25%
for b jets of ET = 20 GeV, increasing to 40% at ET = 50
GeV.

The pythia [14] Monte Carlo code is used to estimate
the photon and jet selection efficiencies, using a Q2 scale
of the interaction of 225 GeV2, and the CTEQ5L [15] par-
ton distribution functions. A simulation of the underly-
ing event is included [16]. Backgrounds to photons from
high energy π0’s, decaying to pairs of overlapping pho-
tons that cannot be distinguished, were estimated from
data, using the signals from the CPR and CES detectors,
following the procedure detailed in [17]. The fraction of
correctly identified photons in the sample passing those
selection criteria increases with ET , going from about
50% at the lower end of the spectrum considered here
(20 GeV) to around 80% at high Eγ

T . Backgrounds to
b jets can arise from c-quark jets (charm hadrons have
a lifetime between a quarter and two thirds that of b-
hadrons), and light quark jets where random combina-
tions of tracks mimics a displaced vertex. The purity of
the selected sample is determined from fitting the invari-
ant mass of tracks composing the secondary vertex using
Monte Carlo templates of the shapes expected for b-,
charm (c-) and light-quark jets. Fig. 1 shows an exam-
ple of the fit to the data. Here, about a third of jets arise
from b quarks. This invariant mass is lower than the cor-
responding hadron mass due to mis-assigned tracks and
unreconstructed neutral hadrons, but template shapes of
the different quark jet types are sufficiently different to
provide reasonable discriminating power.

To estimate the b-purity of the fake photon candidates,
we assume that the composition of the tagged jet sample
in π0 + tagged jet events is similar to π± + tagged jet
events, so we use di-jet data. Events are required to con-
tain two jets, one of which must be tagged and have sim-
ilar transverse energy and pseudorapidity requirements
to the b jet, and a second which passes similar kinematic

requirements to the photon in our analysis. The fraction
of b jets in this sample can be found by fitting the invari-
ant mass at the secondary vertex of the tagged jets. The
purity of the selected jets ranges from 50% for jets of ET

around 20 GeV, to about 15% for jets of ET around 75
GeV where the rate of light-quark jet tagging increases.
This b fraction is then normalised to the estimated num-
ber of misidentified photons, and subtracted from the
estimated number of b jets in the whole event sample.

Some 10900 (55800) events pass the selection criteria
in the high transverse energy photon (SVT photon) trig-
gered datasets. Candidate events are divided into bins
of photon transverse energy. The numbers of events in
each bin are corrected for background, trigger, selection
and acceptance efficiency, and divided by the appropri-
ate integrated luminosity. The results are given in Ta-
ble I, which also lists the systematic uncertainties de-
tailed later. The statistical uncertainty for the high Eγ

T

photon dataset includes contributions from finite Monte
Carlo statistics.

Sources of systematic uncertainty studied are: photon
identification, jet energy scale, b jet identification, and
luminosity. In the following only the largest contributions
will be quantified.

The variables used in photon identification have been
validated by comparing data and simulation in Z →
e+e− decays [18], showing good agreement. Uncertain-
ties in the fake photon estimate arise from assumed values
of the hit rate in the preshower detector, backscattered
showers rate and the composition of fake photon back-
grounds. The associated systematic uncertainty is about
6%.

The uncertainty on the jet energy scale has been stud-
ied in detail elsewhere [12] and the findings applied to
this analysis. It decreases with increasing jet ET , being
about 5% for jets of 35 GeV ET . Uncertainties have also
been determined for multiple interactions overlapping in
the same event, and the uncertainty on the b-jet scale.
Uncertainties in the b quark purity arise from imperfect
modelling of the MonteCarlo template shapes. Differ-
ences in shape can arise between secondary vertex invari-
ant mass of jets containing one or two b quarks, or if track
efficiency is incorrectly modelled. For the first effect we
fit the data to templates composed of mixtures of single
and double quark templates (ranging from 0 to 100%),
and the χ2 of the resulting distributions with respect to
the default is computed. We take as a 1 − σ deviation
the value for this mixture for which the χ2 increases by
one unit with respect to its minimum, and recalculate
the cross section using this mixed template. The system-
atic uncertainty is the difference between this value and
the cross section obtained with the default diquark frac-
tion. This is the largest single source of uncertainty and
is about 17%. Previous studies [19] suggest a difference
in tracking efficiency between data and simulation which
is a function of isolation, momentum, and position in the
detector. We remake the invariant mass templates incor-
porating the inefficiency derived from data, and take the
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full difference (5%) as a systematic uncertainty.
Other systematic uncertainties on b jet identification

arise from the difference in tagging efficiency between
data and simulation, between single and double b jets,
and from b hadron multiplicity. The difference in scale
between tagging efficiency in data and simulation was
found in [13] to be 0.91 ± 0.06. This results in a 6%
uncertainty on the measured cross-sections. The uncer-
tainty on tagging efficiency for single and double b jets
is determined as the difference between results obtained
using the fractions of single and double quark templates
corresponding to ±1 standard deviation, as found ear-
lier, and is about 7%. We have adopted the findings of
previous studies [19] of the effect of assumed b hadron
multiplicity (a 1% effect on the measured cross section).
The SVT-based analysis is also affected by the statistical
precision of the trigger efficiency determination (about
10%). Finally, the luminosity is subject to a ±6% uncer-
tainty [20].

The cross section for photons produced in association
with b jets is tabulated in Table I, separately for the two
datasets. There is overlap in the high-ET range between
the two datasets, and due to its greater statistical preci-
sion, the inclusive photon one is used in the final results.
The measurements are corrected to hadron level so that
they can be directly compared to a next-to-leading order
calculation[1]. This prediction was derived analytically,
using the CTEQ6.6M parton density functions [21], and
a renormalisation, factorisation and fragmentation scale
set to the transverse momentum of the photon. It does
not include non-perturbative effects (hadronisation and
underlying event), and is presented in terms of parton
level jets.

The measured cross sections are compared with this
prediction in Fig. 2. Also shown are the theoretical un-
certainties due to choice of scale and uncertainty in par-
ton density functions. Agreement with next-to-leading
order is good over the entire photon Eγ

T range probed.
It should be noted that due to numerical stability prob-
lems, the first bin in the NLO calculation starts at 18
GeV instead of 20 as for the data.

The total cross section σ(pp → γ+ ≥ 1b-jet; Eγ
T > 20

GeV) has been measured to be 54.22 ± 3.26 (stat) +5.04
−5.09

(syst) pb. This is consistent with the next-to-leading
order prediction of 55.62± 3.87 pb.

In summary, the cross section for photon production
in association with b jets has been measured in proton
antiproton collisions at

√
s = 1.96 TeV with the CDF

II detector. The measurement has been made for b-jets
with ET > 20 GeV inside | η |< 1.5, and for photons of
at least Eγ

T > 20 GeV inside | η |< 1.1, including the
lowest photon transverse energies probed to date. The
results are consistent with next-to-leading order peturba-

tive QCD predictions, using CTEQ6.6M parton density
functions, throughout the photon Eγ

T range measured,
while leading-order calculations would predict a cross sec-
tion smaller by about 30%. The level of accuracy of this
measurement is therefore already sufficient to discrimi-
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FIG. 2: Top: b + photon cross section as a function of photon
ET , compared to NLO QCD calculations. The light dashing
is a quadrature sum of uncertainties coming from scale varia-
tion (both renormalisation and factorisation scales varied by
a factor 2 and 0.5) and PDFs, while the darker dashing rep-
resents the scale variation contribution only. The inner error
bars for data represent the statistical uncertaintiess, the outer
the combination of statistical and sytematic. The bottom plot
shows the ratio of data to NLO calculation, where the error
bars and shading have the same meaning as before.

nate between the first orders of perturbative expansion,
and favor the most precise NLO predictions.
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