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A. Annovi,20 J. Antos,15 G. Apollinari,18 A. Apresyan,49 T. Arisawa,58 A. Artikov,16 W. Ashmanskas,18 A. Attal,4

A. Aurisano,54 F. Azfar,43 W. Badgett,18 A. Barbaro-Galtieri,29 V.E. Barnes,49 B.A. Barnett,26 P. Barriaaa,47

V. Bartsch,31 G. Bauer,33 P.-H. Beauchemin,34 F. Bedeschi,47 D. Beecher,31 S. Behari,26 G. Bellettiniz,47

J. Bellinger,60 D. Benjamin,17 A. Beretvas,18 J. Beringer,29 A. Bhatti,51 M. Binkley,18 D. Biselloy,44 I. Bizjakee,31

R.E. Blair,2 C. Blocker,7 B. Blumenfeld,26 A. Bocci,17 A. Bodek,50 V. Boisvert,50 G. Bolla,49 D. Bortoletto,49

J. Boudreau,48 A. Boveia,11 B. Braua,11 A. Bridgeman,25 L. Brigliadorix,6 C. Bromberg,36 E. Brubaker,14

J. Budagov,16 H.S. Budd,50 S. Budd,25 S. Burke,18 K. Burkett,18 G. Busettoy,44 P. Bussey,22 A. Buzatu,34

K. L. Byrum,2 S. Cabrerau,17 C. Calancha,32 M. Campanelli,36 M. Campbell,35 F. Canelli14,18 A. Canepa,46

B. Carls,25 D. Carlsmith,60 R. Carosi,47 S. Carrillon,19 S. Carron,34 B. Casal,12 M. Casarsa,18 A. Castrox,6

P. Catastiniaa,47 D. Cauzdd,55 V. Cavaliereaa,47 M. Cavalli-Sforza,4 A. Cerri,29 L. Cerritoo,31 S.H. Chang,28

Y.C. Chen,1 M. Chertok,8 G. Chiarelli,47 G. Chlachidze,18 F. Chlebana,18 K. Cho,28 D. Chokheli,16 J.P. Chou,23

G. Choudalakis,33 S.H. Chuang,53 K. Chung,13 W.H. Chung,60 Y.S. Chung,50 T. Chwalek,27 C.I. Ciobanu,45

M.A. Ciocciaa,47 A. Clark,21 D. Clark,7 G. Compostella,44 M.E. Convery,18 J. Conway,8 M. Cordelli,20

G. Cortianay,44 C.A. Cox,8 D.J. Cox,8 F. Crescioliz,47 C. Cuenca Almenaru,8 J. Cuevass,12 R. Culbertson,18

J.C. Cully,35 D. Dagenhart,18 M. Datta,18 T. Davies,22 P. de Barbaro,50 S. De Cecco,52 A. Deisher,29

G. De Lorenzo,4 M. Dell’Orsoz,47 C. Deluca,4 L. Demortier,51 J. Deng,17 M. Deninno,6 P.F. Derwent,18

A. Di Cantoz,47 G.P. di Giovanni,45 C. Dionisicc,52 B. Di Ruzzadd,55 J.R. Dittmann,5 M. D’Onofrio,4 S. Donatiz,47

P. Dong,9 J. Donini,44 T. Dorigo,44 S. Dube,53 J. Efron,40 A. Elagin,54 R. Erbacher,8 D. Errede,25 S. Errede,25

R. Eusebi,18 H.C. Fang,29 S. Farrington,43 W.T. Fedorko,14 R.G. Feild,61 M. Feindt,27 J.P. Fernandez,32

C. Ferrazzabb,47 R. Field,19 G. Flanagan,49 R. Forrest,8 M.J. Frank,5 M. Franklin,23 J.C. Freeman,18 I. Furic,19

M. Gallinaro,52 J. Galyardt,13 F. Garberson,11 J.E. Garcia,21 A.F. Garfinkel,49 P. Garosiaa,47 K. Genser,18

H. Gerberich,25 D. Gerdes,35 A. Gessler,27 S. Giagucc,52 V. Giakoumopoulou,3 P. Giannetti,47 K. Gibson,48

J.L. Gimmell,50 C.M. Ginsburg,18 N. Giokaris,3 M. Giordanidd,55 P. Giromini,20 M. Giunta,47 G. Giurgiu,26

V. Glagolev,16 D. Glenzinski,18 M. Gold,38 N. Goldschmidt,19 A. Golossanov,18 G. Gomez,12 G. Gomez-Ceballos,33
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We present the results of a search for pair production of the supersymmetric partner of the top
quark (the stop quark t̃1) decaying to a b-quark and a chargino χ̃±1 with a subsequent χ̃±1 decay
into a neutralino χ̃0

1, lepton `, and neutrino ν. Using a data sample corresponding to 2.7 fb−1

of integrated luminosity of pp̄ collisions at
√
s = 1.96 TeV collected by the CDF II detector, we

reconstruct the mass of candidate stop events and fit the observed mass spectrum to a combination

of standard model processes and stop quark signal. We find no evidence for t̃1
¯̃t1 production and set

95% C.L. limits on the masses of the stop quark and the neutralino for several values of the chargino
mass and the branching ratio B(χ̃±1 → χ̃0

1`
±ν).

PACS numbers: 12.60.Jv, 14.65Ha, 14.80.Ly
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Supersymmetry (SUSY) [1] is a plausible extension to
the standard model (SM) of particle physics that natu-
rally solves the hierarchy problem, predicts the unifica-
tion of the gauge coupling constants, and provides a pos-
sible candidate for dark matter. In SUSY, a new spin-
based symmetry turns a bosonic state into a fermionic
state (and vice versa) postulating the existence of a su-
perpartner for each of the known fundamental particles.
To be reconciled with experimental data, SUSY must be
broken, and thus supersymmetric particles are expected
to be much heavier than their SM partners. An exception
to this might come from the partner of the top quark t,
the stop quark, whose low-mass eigenstate t̃1 may be
lighter than the top quark due to the substantial top-
Yukawa coupling [2]. This mass inequality mt̃1

<∼ mt is
favored in supersymmetric electroweak baryogenesis sce-
narios [3].

In canonical SUSY models R-parity is conserved, the
lightest supersymmetric particle (LSP) is the neutralino
χ̃0

1, and stop quarks are expected to be pair-produced
via the strong interaction. The t̃1

¯̃t1 cross section de-
pends primarily on the mass of the stop quark mt̃1

, and
at the Tevatron is expected to be an order of magnitude
smaller than that for top quarks of the same mass [4, 5].
If the chargino χ̃±1 is lighter than the stop quark, the
decay channel t̃1 → bχ̃±1 becomes dominant. Subse-
quent chargino decays via χ̃±1 → χ̃0

1`
±ν result in exper-

imental event signatures with two energetic, oppositely
charged leptons, two jets from the bottom quarks, and
large imbalance in energy from the lack of detection of
the neutrinos and neutralinos. This event signature is
identical to the dilepton final state of top pair decays
(tt̄ → W+bW−b̄ → `+νb`′−ν̄′b̄). Therefore, an admix-
ture of stop events with the top dilepton events could

Amherst, Massachusetts 01003, bUniversiteit Antwerpen, B-2610
Antwerp, Belgium, cUniversity of Bristol, Bristol BS8 1TL,
United Kingdom, dChinese Academy of Sciences, Beijing 100864,
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impact measurements of the properties of the top quark,
such as the mass value. This search was in part moti-
vated by apparent inconsistencies in the top mass mea-
surements between different top decay channels observed
in the early CDF and D0 Run II data [6]. Previous
searches for stop decays t̃1 → bχ̃±1 [7] did not exclude
any region in the SUSY parameter space.

In this Letter we present the results of a search for
pair production of scalar top quarks, each decaying as
t̃1 → bχ̃±1 → bχ̃0

1`
±ν. We analyze a data set correspond-

ing to 2.7 fb−1 of integrated luminosity from pp̄ collisions
collected by the upgraded Collider Detector at Fermi-
lab (CDF II) [8, 9], and fit the data with the stop pair
production hypothesis.

We identify and record events containing e or µ can-
didates with large transverse momenta (pT ≥ 18 GeV/c)
using high-speed trigger electronics. The performance of
the trigger and lepton identification (ID) algorithms is
described elsewhere [10]. We identify final state quarks
as jets of hadrons in the calorimeter. Jet reconstruc-
tion employs an iterative cone-based clustering algorithm
that associates calorimeter energy deposits within a cone
of R ≡

√
(∆η)2 + (∆φ)2 = 0.4. The energies of recon-

structed jets and the missing transverse energy ( /ET ) [11]
are corrected for detector non-uniformity and other ef-
fects [12]. Bottom quark candidates are identified (or
“b-tagged”) through the presence within the jet cone of
a displaced secondary vertex arising from the decay of a
long-lived bottom hadron [13].

The first stage of stop candidate event selection re-
quires two leptons (e or µ) with pT > 20 GeV/c, |η| <
2.0(1.0) for e(µ), at least one of which is isolated [14],
and m`+`′− > 20 GeV/c2. We also require two or more
jets with ET > 12 GeV within the region |η| < 2.4,
and /ET > 20 GeV. For events with leptons compati-
ble with originating from a Z boson in the mass win-
dow from 76 GeV/c2 to 106 GeV/c2, we apply a re-
quirement on the missing transverse energy significance
/EsigT > 4

√
GeV [15]. Selected events are divided into two

categories based on whether any of the jets is identified
as a b jet (b-tagged channel) or not (non-b-tagged chan-
nel). Further optimized event selection criteria are used
in the last stage of the analysis.

The dominant SM process that contributes to the
dilepton + jets + /ET event signature is tt̄ production.
Other SM processes include Z/γ∗+ jets, diboson, and
W+ jets production, where a real lepton comes from the
W decay and one of the jets is misidentified as a second
lepton. We use the pythia v6.216 Monte Carlo (MC)
event generator [16] to simulate t̃1¯̃t1, tt̄, and diboson pro-
cesses. The stop signal is normalized according to the
next-to-leading order (NLO) theoretical cross section ob-
tained from prospino2 [17] using the CTEQ6M [18] par-
ton density functions (PDF). For tt̄ we use the theoretical
cross section value of 7.3 pb, corresponding to the world
average top mass of 172.5 GeV/c2 [19], which is domi-



5

nated by the measurements in the lepton + jets chan-
nel of tt̄ decays. Diboson processes (WW,WZ,ZZ) are
normalized to their theoretical cross-sections [20]. Z/γ∗

events with associated jets are simulated with the alp-
gen v2.13 matrix element generator [21], interfaced to
pythia v6.325, and normalized to data in the Z-mass-
peak region. The detector response in all MC samples
is modeled by a geant-based CDF II detector simula-
tion [22]. The W+ jets background is modeled using
data by measuring relative rates of jets being misiden-
tified as charged leptons in inclusive jet data samples
and applying them to data events with exactly one lep-
ton plus jets. We validate the background modeling of
dilepton events by comparing the predictions with obser-
vations using control samples that are independent of the
signal sample. These include samples of events with low
/ET , events with zero or one jet, and events with same-sign
charged leptons.

To enhance the search sensitivity, we perform a kine-
matic reconstruction of events under the stop production
and decay hypothesis. We use as inputs the measured
four-momenta of the two leptons and of the two largest
ET jets, and the ~/ET . Due to the unknown masses of
the supersymmetric χ̃±1 and χ̃0

1, and because the two
neutrinos and the two massive neutralinos escape detec-
tion, the kinematics of stop events is severely undercon-
strained. Therefore, we employ the following strategy.
First, we use mχ̃±1

as a fixed parameter, and perform
the reconstruction for different values of mχ̃±1

. Second,
we treat the χ̃0

1ν pair corresponding to each t̃1 decay as
one “massive particle.” To compensate for non-resonant
structure of the invariant mass of the χ̃0

1ν pair we as-
sign to this “massive particle” a large width. Based on
studies carried out on MC samples for a wide range of
neutralino masses (mχ̃0

1
≈ 46 − 90 GeV/c2) we fix the

values of mχ̃0
1ν

and Γχ̃0
1ν

to 75 GeV/c2 and 10 GeV/c2,
respectively. Third, to avoid the two-fold ambiguity in
assigning a b-jet to a lepton, we always choose the com-
bination that yields the smallest sum of invariant masses
of a paired b-jet and lepton. This approach identifies the
correct pairing in ∼90% of cases in the stop mass regime
considered.

The system of kinematic equations consists of con-
straints imposed on the particle masses mχ̃±1

, mχ̃0
1ν

,
mt̃1

= m ¯̃t1
, and the requirement of transverse momen-

tum conservation: ~/ET = ~pT (χ̃0
1ν)1 + ~pT (χ̃0

1ν)2. If the az-
imuthal directions φ1 and φ2 of the four-momenta of the
(χ̃0

1ν)1 and (χ̃0
1ν)2 pairs are fixed, the event kinematics

(with the exception of the singular points φ1 − φ2 = kπ,
where k is an integer) is constrained. There exist four
solutions due to the two-fold ambiguities in resolving the
z-components of the (χ̃0

1ν)1 and (χ̃0
1ν)2 four-momenta.

We perform a scan of the entire parameter space of az-
imuthal angles wherein we repeat the reconstruction for
different values of (φ1, φ2), avoiding the aforementioned

singular points. The stop quark mass is reconstructed by
minimizing the event χ2, which takes the following form:

χ2 =
∑
k=1,2


(
mfit

(χ̃0
1ν)k
−mχ̃0

1ν

)2

Γ2
χ̃0

1ν

+

(
mfit

(χ̃0
1ν`)k

−mχ̃±1

)2

Γ2
χ̃±1

+

(
mfit

(χ̃0
1ν`j)k

−mrec
t̃1

)2

Γ2
t̃1

+
∑

i=2`,2jets

(
pfitT,i − pmeasT,i

)
σ2
pT,i

.

(1)
Here we assume Γχ̃±1 ≡ 2 GeV/c2 and Γt̃1 ≡ 1.5 GeV/c2,
the k-index represents the decay products from stop or
anti-stop respectively, and the mfit are the invariant
masses of the final decay products from stop quark de-
cays. We let the four-momenta of the leptons and the
jets vary in the fit, and use the minuit package [23] to
minimize the χ2. At each step during the minimization
procedure the ~/ET is re-calculated according to the values
of pfitT of the leptons and jets. The longitudinal compo-
nents of (χ̃0

1ν)1 and (χ̃0
1ν)2 are free parameters in the fit

with starting values initialized to the values correspond-
ing to solutions of the system of kinematic equations.
All four starting values are tried in the fit, but only the
one that gives the lowest χ2 is kept. The value mrec

t̃1
at

which χ2 is minimized yields the reconstructed mass of
the stop quark for a given pair of the azimuthal angles
(φ1, φ2). Finally, we integrate mrec

t̃1
(φ1, φ2) weighted by

the goodness of fit term e−χ
2(φ1,φ2) over φ1 and φ2 to

obtain the reconstructed mass of the stop quark for each
event. Running the reconstruction algorithm over simu-
lated stop events yields a distribution with a peak near
the generated mass of the stop quark, and provides dis-
crimination between stop and SM backgrounds. Details
about the performance of the stop quark mass recon-
struction algorithm can be found elsewhere [24].

We perform an extended likelihood fit of the observed
mass spectrum simultaneously in the b-tagged and the
non-b-tagged channels. To quantify the level of agree-
ment we employ a modified frequentist method, CLs [25],
based on a log-likelihood ratio test statistic, which in-
volves computing p-values under the hypothesis of the
SM background only and the hypothesis of signal plus
background. The systematic uncertainties for both sig-
nal and background, described below, enter the fit as
Gaussian-constrained nuisance parameters. The uncer-
tainties due to kinematic mis-modeling are taken into
account by allowing the reconstructed mass distributions
to change according to the values of the nuisance param-
eters [26].

Imperfect knowledge of various experimental and theo-
retical parameters leads to systematic uncertainties that
degrade our sensitivity to t̃1¯̃t1 signal. The dominant sys-
tematic effect is due to the uncertainties in the NLO the-
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Events per 2.7 fb−1 in the signal region.

Top Z/γ∗+jets Diboson W+jets Total Data
b-tag 49.0±6.9 4.0±0.4 0.5±0.1 2.8±0.9 56.4±7.2 57

no tag 25.2±3.3 25.0±5.6 6.0±1.3 9.8±2.9 65.9±9.8 65

TABLE I: The expected event yields from SM processes with
the total uncertainties and the observed numbers of events in
the signal region.
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FIG. 1: The reconstructed stop mass distribution in the b-
tagged channel. The contribution from stop events corre-
sponds to an example point in the SUSY parameter space
that is excluded at 95% C.L.

oretical cross sections for t̃1¯̃t1 and tt̄ production. These
uncertainties come from two sources: the renormaliza-
tion and factorization scale (11% and 7% for t̃1¯̃t1 and tt̄,
respectively) and PDFs (14% and 7%) [4, 5]. We assume
that the scale uncertainty is uncorrelated for t̃1¯̃t1 and tt̄
processes, while the PDF uncertainty is fully correlated.
The theoretical uncertainty of the diboson cross sections
is 10% [20], and assumed to be uncorrelated with other
systematic uncertainties. The experimental uncertainties
applied to MC-based background estimates include those
due to jet energy scale (3%), b-tagging probability (5%),
lepton ID and trigger efficiencies (1%), initial and final
state radiation (2%), and the integrated luminosity (6%).
The uncertainty on W+jets is dominated by the uncer-
tainties in the rate to misidentify jets as leptons (30%),
while the uncertainty on Z/γ∗+ jets comes from MC mis-
modeling of the high- /ET tail, jet multiplicity distribution
and Z/γ∗+ heavy-flavor contribution (16%).

Prior to looking at data in the signal sample we study
the sensitivity of the search, taking into account all sys-
tematic effects, for various event selection criteria im-
posed separately for the b-tagged and the non-b-tagged
channels. An algorithm based on biological evolution (a
so-called genetic algorithm) [27] is employed to deter-
mine the most sensitive selection criteria. Requirements
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FIG. 2: The observed 95% C.L. exclusion regions in the mχ̃0
1

and mt̃1
mass plane for several values of B(χ̃±1 → χ̃0

1`
±ν) and

m
χ̃±1

. The excluded region corresponds to the area below the

lines. Universality of e, µ, and τ in the χ̃±1 decays is assumed.

yielding poorer expected 95% C.L. limit are culled, while
those improving the limit are bred together until reaching
a plateau. This procedure optimizes the event selection
criteria directly to produce the best expected 95% C.L.
limit in the no-signal hypothesis.

In the b-tagged (non-b-tagged) channel the optimiza-
tion procedure yields the following event selection crite-
ria: the leading jet ET is required to be greater than 15
(20) GeV, and the sub-leading jet ET must be greater
than 12 (20) GeV. In both channels we require /ET > 20
GeV, while this requirement is tightened to 50 GeV in
the non-b-tagged channel if there is a lepton or jet within
an azimuthal angle of 20◦ from the ~/ET direction. Due
to the fact that the stop quark is a scalar particle, and
the top quark is a fermion, the angular distributions of
their final decay products are very distinct. Therefore
we implement an additional topological cut in both the
b-tagged and non-b-tagged channels to suppress tt̄ events:∑

pT <

(
∆φjj ×∆φ``

π2
× 325 + 215

)
GeV/c, (2)

where
∑
pT is the scalar sum of transverse momenta of
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the leptons, jets and the /ET , and the ∆φjj and ∆φ``
are the azimuthal angles between the jets and leptons,
respectively. This requirement rejects about 50% of tt̄
events and only about 10% of stop events.

After applying these event selection requirements we
obtain the numbers of predicted and observed events
listed in Table I. The data distribution of the recon-
structed stop mass in the b-tagged channel is shown in
Fig. 1, together with the expectations from SM processes
and an example of stop signal. The data are consistent
with the SM alone and there is no evidence of t̃1¯̃t1 pro-
duction. We use these results to calculate the 95% C.L.
exclusion limits in the mχ̃0

1
vs mt̃1

plane for several values
of the branching ratio B(χ̃±1 → χ̃0

1`
±ν) and mχ̃±1

, assum-
ing equal branching ratios into different lepton flavors
and B(t̃1 → χ̃±1 b) = 100%. The limits for two different
values of chargino mass are presented in Fig. 2. For a
given branching ratio of the pair of stops decaying into
leptons, equal to B2(χ̃±1 → χ̃0

1`
±ν), we exclude the stop

and neutralino masses below the respective curve shown
in the plot. The values B2(χ̃±1 → χ̃0

1`
±ν) are expected

to range from almost 100%, corresponding to the sce-
nario with light sleptons and sneutrinos (m˜̀,mν̃

>∼ mt̃1
),

where the leptonic decay of the chargino goes mostly
through virtual sleptons and sneutrinos, down to 11%,
where sleptons and sneutrinos are heavy (m˜̀,mν̃ � mW )
and the chargino decay through a virtual W is dominant.
For the scenario corresponding to the case in which the
masses of the chargino and neutralino are near the cur-
rent lower LEP exclusion limits, mχ̃±1

= 105.8 GeV/c2,
mχ̃0

1
= 47.6 GeV/c2 [28], we exclude a stop quark with

masses between 128 and 135 GeV/c2 at 95% C.L. in-
dependent of the value of B2(χ̃±1 → χ̃0

1`
±ν). The limits

obtained are applicable to any R-parity conserving SUSY
scenario where the neutralino is the LSP and the stop de-
cays exclusively into χ̃±1 b, and are the first lower limits
on stop mass in this mode.

In conclusion, we have presented the results of a search
for pair production of supersymmetric top quarks decay-
ing via t̃1 → bχ̃±1 → bχ̃0

1`
±ν using a data sample corre-

sponding to 2.7 fb−1 of integrated luminosity in 1.96 TeV
pp̄ collisions. Our fit to the observed mrec

t̃1
distribution

reveals no evidence for t̃1¯̃t1 production, and we place the
world’s first limits on the masses of t̃1 and χ̃0

1 for several
values of mχ̃±1

and branching ratio of B(χ̃±1 → χ̃0
1`
±ν) in

this mode.
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