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We present the results of a search for supersymmetry with gauge-mediated breaking and eχ0

1 → γ eG
in the γγ+missing transverse energy final state. In 2.6±0.2 fb−1 of pp̄ collisions at

√
s=1.96 TeV

recorded by the CDF II detector we observe no candidate events, consistent with a standard model
background expectation of 1.4±0.4 events. We set limits on the cross section at the 95% C.L. and
place the world’s best limit of 149 GeV/c2 on the eχ0

1 mass at τχ̃0

1

≪1 ns. We also exclude regions in

the eχ0

1 mass-lifetime plane for τχ̃0

1

<∼2 ns.

PACS numbers: 13.85.Rm, 12.60.Jv, 13.85.Qk, 14.80.Ly

∗Deceased †With visitors from aUniversity of Massachusetts Amherst,
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The standard model (SM) of elementary particles has
been enormously successful, but is incomplete. The-
oretical motivations [1] and the observation of the
‘eeγγ+missing transverse energy (E/T)’ [2, 3] candidate
event by the CDF experiment during Run I at the Fer-
milab Tevatron provide compelling rationale to search
for the production and decay of new heavy particles that
produce events with final state photons and E/T in collider
experiments. Of particular theoretical interest are super-
symmetry (SUSY) models with gauge-mediated SUSY-
breaking (GMSB) [1]. These models solve the “natu-
ralness problem” [4] and provide a low-mass dark mat-
ter candidate that is both consistent with inflation and
astronomical observations [5]. Since many versions of
these models have a similar phenomenology, we consider
a scenario in which the lightest neutralino (χ̃0

1) decays al-
most exclusively (>96%) into a photon (γ) and a weakly
interacting, stable gravitino (G̃). The G̃ gives rise to
E/T by leaving the detector without depositing any en-
ergy [6]. In these models, the χ̃0

1 is favored to have a
lifetime on the order of a nanosecond, and the G̃ is a
warm dark matter candidate with a mass in the range
0.5<mG̃<1.5 keV/c2 [7]. Other direct searches [8–10]
have constrained the mass of the χ̃0

1 to be greater than
100 GeV/c2 for various points in parameter space. At
the Tevatron sparticle production is predicted to result
primarily into gaugino pairs, and the χ̃0

1 mass (mχ̃0

1

) and
lifetime (τχ̃0

1

) are the two most important parameters in
determining the final states and their kinematics [1]. Dif-
ferent search strategies are required for χ̃0

1 lifetimes above
and below about a nanosecond [11].

This Letter describes a search for GMSB in which
gaugino pairs are produced and decay to the γγ+E/T+X

Amherst, Massachusetts 01003, bUniversiteit Antwerpen, B-2610
Antwerp, Belgium, cUniversity of Bristol, Bristol BS8 1TL,
United Kingdom, dChinese Academy of Sciences, Beijing 100864,
China, eIstituto Nazionale di Fisica Nucleare, Sezione di Cagliari,
09042 Monserrato (Cagliari), Italy, f University of California
Irvine, Irvine, CA 92697, gUniversity of California Santa Cruz,
Santa Cruz, CA 95064, hCornell University, Ithaca, NY 14853,
iUniversity of Cyprus, Nicosia CY-1678, Cyprus, jUniversity Col-
lege Dublin, Dublin 4, Ireland, kUniversity of Edinburgh, Edin-
burgh EH9 3JZ, United Kingdom, lUniversity of Fukui, Fukui
City, Fukui Prefecture, Japan 910-0017 mKinki University, Higashi-
Osaka City, Japan 577-8502 nUniversidad Iberoamericana, Mexico
D.F., Mexico, oUniversity of Iowa, Iowa City, IA 52242, pKansas
State University, Manhattan, KS 66506 qQueen Mary, Univer-
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aaBergische Universität Wuppertal, 42097 Wuppertal, Germany,
bbYarmouk University, Irbid 211-63, Jordan jjOn leave from J. Ste-
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final state, where X denotes other high-ET final state
particles [12]. We use a dataset corresponding to an in-
tegrated luminosity of 2.6±0.2 fb−1 of pp̄ collisions col-
lected with the CDF II detector [13] at

√
s=1.96 TeV.

This dataset is ten times larger than the one used in our
previous search [8]. For the first time in this channel we
use a new photon timing system [14] and a new model
of the E/T resolution (metmodel) [15]. These additions
significantly improve our rejection of backgrounds from
instrumental and non-collision sources, which allows us
to considerably enhance the sensitivity of the search for
large χ̃0

1 masses compared to other Tevatron searches [9].
We also extend the search by addressing χ̃0

1 lifetimes up
to 2 ns, which are favored for larger mχ̃0

1

.

Our strategy is to select γγ candidates and optimize
the search for the presence of both significant E/T and
large total event transverse energy (HT) which would in-
dicate the decays of heavy gauginos. We perform an a

priori analysis based on the expected sensitivity, taking
into account signal predictions and backgrounds from SM
with mismeasured (“fake”) E/T, electroweak production
with real E/T, and non-collision sources.

Here we briefly describe the aspects of the detector [13]
relevant to this analysis. The magnetic spectrometer con-
sists of tracking devices inside a 3-m diameter, 5-m long
superconducting solenoid magnet that operates at 1.4 T.
A 3.1-m long drift chamber (COT) with 96 layers of sense
wires measures the z position, time of the pp̄ interaction,
and the momenta of charged particles. The calorimeter
consists of projective towers with electromagnetic (EM)
and hadronic (HAD) compartments and is divided into a
central part that surrounds the solenoid coil (|η|<1.1) [2]
and a pair of end-plugs that cover the region 1.1<|η|<3.6.
The calorimeters are used to identify and measure the
4-momenta of photons, electrons, and jets (j) [16] and
to provide E/T information. The EM calorimeter is in-
strumented with a timing system (EMTiming) [14] that
measures the arrival time of photons.

Our analysis begins with diphoton events passing the
CDF three-level trigger. The combined trigger selection
efficiency is effectively 100% if both photons have |η|<1.1
and ET>13 GeV [12, 15]. Offline, both photons are re-
quired to be in the fiducial part of the calorimeter and
to pass the standard CDF photon identification and iso-
lation requirements [8], with two minor modifications to
remove instrumental and electron backgrounds [15, 17].
The remaining events are dominated by SM production
of γγ, γj with j→γfake, and jj→γfakeγfake, where γfake

is any object misidentified as a photon. To minimize the
number of these events with large E/T due to calorimeter
energy mismeasurements, we remove events where the
azimuthal angle between the E/T and the second-highest
ET photon is |∆φ|<0.3 or if any jet points to an unin-
strumented region of the calorimeter [15]. We require a
primary collision vertex position with |zvertex|<60 cm in
order to reduce non-collision backgrounds and to main-
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tain the projective nature of the photon reconstruction in
the calorimeter. For events with multiple reconstructed
vertices we recalculate the ET of both photons and E/T

values if picking a different vertex for them reduces the
event E/T.

Non-collision backgrounds coming from cosmic rays
and beam-related effects can produce γγ+E/T candidates,
and are removed from the inclusive γγ sample using a
number of techniques. Photon candidates from cosmic
rays are not correlated in time with collisions. There-
fore, events are removed if the timing of either photon,
corrected for average path length (tγ), indicates a non-
collision source [15, 17]. Photon candidates can also
be produced by beam-related muons that originate up-
stream of the detector (from the more intense p beam).
These are suppressed using standard beam halo identifi-
cation requirements [17]. A total of 38,053 inclusive γγ
candidate events pass all the selection requirements.

Backgrounds to the γγ+E/T final state from SM γγ/
γγfake/γfakeγfake and fake E/T arise due to energy mis-
measurements in the calorimeter or to event reconstruc-
tion pathologies. We use the metmodel to select events
with real and significant E/T, as part of the optimization,
and to predict the contribution of SM backgrounds with
fake E/T due to normal energy measurement fluctuations.
This algorithm considers the clustered (jets) and unclus-
tered energy in the event and calculates the probability
for fluctuations in the energy measurement to produce
E/T

fluct equivalent to or larger than the measured E/T,
P

E/T
fluct≥E/T

. This probability is then used to define a E/T-

significance as −log10

(
P

E/T
fluct≥E/T

)
. Events with true

and fake E/T of the same value have, on average, different
E/T-significance. We use pseudo-experiments to estimate
the expected E/T-significance distribution for SM events
with fake E/T, and the number of mismeasured events
above a given E/T-significance requirement. The jets and
unclustered energy are smeared according to their resolu-
tion functions in the event. The systematic uncertainty
in the metmodel is dominated by the uncertainty in the
resolution functions [15].

The metmodel does not account for reconstruction
pathologies in SM events without intrinsic E/T, such as
a wrong choice of the primary interaction vertex or tri-
photon events with a lost photon. To obtain the predic-
tion for this background we model SM kinematics and
event reconstruction using a γγ sample generated with a
pythia Monte Carlo (MC) [18] that incorporates a de-
tector simulation [19]. Since the pathologies from γj and
jj sources are similar in nature, but not included directly
in the simulation, we normalize the sample to the number
of events in the inclusive γγ data sample. We subtract
the expectations for energy mismeasurement fluctuations
in the MC to avoid double counting. Uncertainties are
dominated by the statistics of the MC sample.

Electroweak production of W and Z bosons which de-

cay to leptons can also produce the γγ+E/T signature
where one or more of the photons can be fake, but the
E/T is due to one or more neutrinos. To estimate the con-
tribution from these backgrounds we use MC simulations
normalized to their theoretical cross sections, taking into
account all the leptonic decay modes. The Baur MC [20]
is used to simulate Wγ and Zγ production and decay
where initial and final state radiation (ISR/FSR) pro-
duce W/Z+γγ events. The pythia MC is used to simu-
late backgrounds where both photons are fakes: namely,
W and Z, with photons from ISR/FSR removed, and tt̄
sources. To minimize the dependence of our predictions
on potential “MC-data” differences we scale our MC pre-
dictions to the observed number of eγ events [15] in data
where we use the same diphoton triggers and analysis se-
lection procedures used to select the inclusive γγ sample.
Uncertainties are dominated by the statistics of the MC
and eγ normalization data sample.

Non-collision backgrounds are estimated using the
data. We identify a cosmic-enhanced sample by us-
ing the selected inclusive γγ sample, but requiring one
of the photons to have tγ>25 ns. Similarly, we create
a beam halo-enhanced sample. We estimate the non-
collision background events in the signal region using
the ratio of events outside the timing requirements to
events inside the signal region and using the measured ef-
ficiencies of the non-collision rejection requirements [15].
The uncertainties on both non-collision background es-
timates are dominated by the statistical uncertainty on
the number of identified events. Figure 1 (top) shows the
E/T-significance distribution for the inclusive γγ sample,
along with the predictions for all the backgrounds.

We estimate the sensitivity to heavy, neutral parti-
cles that decay to photons using the GMSB reference
model [6] in the mass-lifetime range, 75≤mχ̃0

1

≤150 GeV

and τχ̃0

1

<∼2 ns. Events from all SUSY processes consid-
ered [21] are simulated with pythia followed by a de-
tector simulation. The fraction of χ̃0

1 decays that oc-
cur in the detector volume, and thus the acceptance, de-
pend on both the lifetime and the masses of the sparti-
cles [11]. The total systematic uncertainty on the accep-
tance, after all kinematic requirements (discussed below),
is estimated to be 7%, dominated by the uncertainty in
the photon identification efficiency (2.5% per photon).
Other significant contributions come from uncertainties
on ISR/FSR (4%), jet energy measurement (2%), E/T-
significance parameterizations (1%) and parton distribu-
tion functions (PDFs, 1%).

We determine the final kinematic selection require-
ments by optimizing the mean expected 95% confidence
level (C.L.) cross section limit using a no-signal assump-
tion, before looking at the data in the signal region [22].
To compute the predicted cross section upper limit we
combine the luminosity, the acceptance, and the back-
ground estimates with their systematic uncertainties us-
ing a Bayesian method [23]. The predicted limits are
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FIG. 1: The top plot shows the E/T-significance distribution
for the inclusive γγ candidate sample, along with the back-
ground predictions. The bottom plot shows the predicted HT

(total ET of photons, jets, and E/T) distribution after all but
the final HT requirement.

optimized by simultaneously varying the selection re-
quirements for E/T-significance, HT (scalar sum of ET

of photons, jets, and E/T), and the azimuthal angle be-
tween the two leading photons, ∆φ(γ1, γ2). The large
E/T-significance requirement eliminates most of the SM
background with fake E/T. GMSB production is domi-
nated by heavy gaugino pairs which decay to high-ET

light final state particles via cascade decays. The GMSB
signal has, on average, larger HT compared to SM back-
grounds so that an HT requirement can remove these
backgrounds effectively. Electroweak backgrounds with
large HT typically consist of a high-ET photon recoil-
ing against W→eν, identified as γfakeE/T, which means
the gauge boson decay is highly boosted. Thus, the two
photon candidates in the final state are mostly back-to-
back. Also, the high-ET diphotons with large HT from
SM background are mostly back-to-back with fake E/T;
the ∆φ(γ1, γ2) requirement, therefore, reduces both these
backgrounds.

The optimal set of requirements is slightly different
for each point in the τχ̃0

1

vs. mχ̃0

1

space considered. We
choose a single set of requirements to maximize the region
where the predicted production cross section at next-to-
leading order [24] is above the expected 95% C.L. cross
section limit. The exclusion region also takes into ac-
count the production cross section uncertainties, which
are dominated by the PDFs (7%) and the renormaliza-
tion scale (3%). We find the optimal set of require-
ments, before unblinding the signal region, to be: E/T-

 mass (GeV)
1

0χ∼
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)
σ
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1
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1

0χ∼

FIG. 2: The predicted and observed 95% C.L. cross section
upper limits as a function of the eχ0

1 mass at τχ̃0

1

≪1 ns (top)

and as a function of the eχ0

1 lifetime at mχ̃0

1

=140 GeV/c2 (bot-

tom). Indicated in green (darker shading) is the production
cross section, along with its 8.0% uncertainty-band. In yellow
(lighter shading) is the RMS variation on the expected cross
section limit.

significance>3, HT>200 GeV, and ∆φ(γ1, γ2)<π−0.35.
With these requirements we predict 1.4±0.4 background
events, 0.9±0.4 of which are from electroweak sources
(dominated by Zγγ production) with real E/T, 0.5±0.2
from SM with fake E/T, and 0.001+0.008

−0.001 from non-collision
sources. The acceptance for mχ̃0

1

=140 GeV/c2 and
τχ̃0

1

≪1 ns is estimated to be 7.8±0.6%.
No events in the data pass the final event selection.

The predicted HT distribution is shown in Fig. 1 (bot-
tom), after all but the final HT requirement. The data
are consistent with the no-signal hypothesis and is well
modeled by SM backgrounds alone. We set cross sec-
tion limits as a function of mχ̃0

1

and τχ̃0

1

, respectively,
as shown in Fig. 2. The mχ̃0

1

reach, based on the pre-
dicted and observed number of events for τχ̃0

1

≪1 ns, is

141 GeV/c2 and 149 GeV/c2 respectively. These limits
significantly extend the search sensitivity beyond the re-
sults of D0 [9], expand the results to include exclusions
for τχ̃0

1

≤2 ns, and, when combined with the complemen-
tary limits from CDF and LEP [10, 17], cover the region
shown in Fig. 3.

In conclusion, we have performed an optimized search
for heavy, neutral particles that decay to photons in the
γγ+E/T final state using 2.6±0.2 fb−1 of data. There is
no excess of events beyond expectations. We set cross
section limits using a GMSB model with χ̃0

1 → γG̃, and
find an exclusion region in the τχ̃0

1

-mχ̃0

1

plane with the
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FIG. 3: The predicted and observed exclusion region
along with the limit from ALEPH/LEP [10] and the CDF
γ+E/T+jet ‘delayed’ photon analysis [17]. We have a mass
reach of 141 GeV/c2 (predicted) and 149 GeV/c2 (observed)
for lifetimes up to 1 ns. The shaded band shows the parame-
ter space where 0.5<m eG

<1.5 keV/c2, favored by cosmological
models [7].

world’s best 95% C.L. lower limit on the χ̃0
1 mass of

149 GeV/c2 at τχ̃0

1

≪1 ns. By the end of Run II, with

an integrated luminosity of 10 fb−1, we estimate a mass
reach of ≃ 160 GeV/c2 at a lifetime well below 1 ns.
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