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ABSTRACT
Using numerical simulations of structure formation, we investigate multiple methods of determining the

strength of the proximity effect in the HI Lyα forest. We analyze three high resolution (∼ 10 kpc) redshift
snapshots (z = 4, 3 and 2.25) of a Hydro-Particle-Mesh simulation to obtain realistic absorption spectra of
the HI Lyα forest. We model the proximity effect along the simulated sight lines with a simple analytical
prescription based on the assumed quasar luminosity and theintensity of the cosmic UV background. We
begin our analysis investigating the intrinsic biases thought to arise in the widely adoptedstandard technique
of combining multiple lines of sight when searching for the proximity effect. We confirm the existence of this
biases, albeit smaller than previously predicted with simple Monte Carlo simulations. We then concentrate
on the analysis of the proximity effect along individual lines of sight. After determining its strength with a
fiducial value of the UV background intensity, we construct the proximity effect strength distribution (PESD).
We confirm that the PESD inferred from thesimple averaging techniqueaccurately recovers the input strength
of the proximity effect at all redshifts. Moreover, the PESDclosely follows the behaviors found in observed
samples of quasar spectra. However, the PESD obtained from our new simulated sight lines presents some
differences to that of simple Monte Carlo simulations. At all redshifts, we identify in the smaller dispersion of
the strength parameters, the source of the corresponding smaller biases found when combining multiple lines
of sight. After developing three new theoretical methods ofrecovering the strength of the proximity effect on
individual lines of sight, we compare their accuracy to the PESD from thesimple averaging technique. All our
new approaches are based on the maximization of the likelihood function, albeit invoking some modifications.
The new techniques presented here, in spite of their complexity, fail to recover the input proximity effect in an
un-biased way, presumably due to some (unknown) higher order correlations in the spectrum. Thus, employing
complex 3D simulations, we provide strong evidence in favorof the proximity effect strength distribution
obtained from thesimple averaging technique, as method of estimating the UV background intensity, free of
any intrinsic biases.
Subject headings:diffuse radiation – intergalactic medium – quasars: absorption lines

1. INTRODUCTION

The transition from a neutral to an ionized state of the bary-
onic matter in the Universe, known as theepoch of reion-
ization, also resulted in the appearance of the cosmic ultra-
violet background radiation field (UVB). While it is still de-
bated whether more exotic objects and processes (like mini-
quasars or dark matter annihilation) had significant influ-
ence on the process of reionization (Haiman & Loeb 1998;
Ricotti & Ostriker 2004), it is widely accepted that young
star-forming galaxies and quasars are the primary sources
of this radiation field in the post-reionization era (z < 6).
Thus, after reionization, any change in the properties of the
source population is reflected in the evolution of the UV
background (UVB, Haardt & Madau 1996; Fardal et al. 1998;
Haardt & Madau 2001). Accurate estimates of the UVB in-
tensity at different redshifts therefore provide important con-
straints on the evolution of star-forming galaxies and quasars
in the Universe.

The most direct probe for the UVB is the ionization state of
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the intergalactic medium (IGM). Mainly consisting of hydro-
gen and helium, the IGM becomes detectable as the light from
high redshift (z > 2) quasars travels toward us through the
intergalactic space. Numerous absorption lines observed at
wavelength shorter than the rest frame Lyα transition, known
as the Lyα forest, arise from the small fraction of neutral mat-
ter (about 1 part in 100,000) in the IGM (Sargent et al. 1980;
Weymann et al. 1981; Rauch 1998). The UVB is directly re-
sponsible for keeping the IGM ionized at this level, thus en-
coding its intensity (and, to a lesser extent, its spectrum)in
the absorption profiles of the Lyα forest.

Observationally, the only technique known so far todirectly
infer the photoionization rate or, equivalently, the UVB inten-
sity over some a range of wavelengths is based on the so-
calledproximity effect. This effect is the manifestation of the
IGM response to a systematic enhancement of UV radiation
around bright quasars.

In the vicinity of a bright quasar, its UV radiation be-
comes several orders of magnitudes stronger than the cos-
mic UVB, leading to the decreased absorption blueward
of the quasar Lyα emission line (Weymann et al. 1981;
Carswell et al. 1982; Murdoch et al. 1986). If the quasar
luminosity is known, and the relative enhancement in the
UV flux near the quasar relative to the average Universe is
measured from the Lyα absorption spectra, the strength of
the cosmic UVB can be deduced from the proximity effect
(Carswell et al. 1987; Bajtlik et al. 1988). While the proxim-
ity effect has been detected for more than a decade, primarily
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Table 1
Input parameters of the HPM simulation.

Parameter Value Parameter Value
Ωm 0.237 Np 10243

ΩΛ 0.763 Mesh 10243

Ωb 0.041 Cell size 0.01‡

h 0.735† Box size 10.24‡

σ8 0.742 z 4.0, 3.5, 3.25,
2.75, 2.5, 2.25

†: in units of 100 km s−1 Mpc−1

‡: in units of Mpc

in large samples of quasars (e.g. Bajtlik et al. 1988; Lu et al.
1991; Giallongo et al. 1996; Cooke et al. 1997; Scott et al.
2000; Liske & Williger 2001), recent investigations of its sig-
nature along individual lines of sight have been employed to
develop a new technique for estimating the UVB intensity
(Dall’Aglio et al. 2008b,a).

This new approach is based on the analysis of the proxim-
ity effect strength distribution (PESD). Two distinct features
appear in the analysis of the PESD. First, the strength distribu-
tion shows a clear peak and, second, it is significantly asym-
metric. The peak of the PESD directly relates to the intensity
of the UVB, whereas its asymmetry is mainly the result of
low number statistics in the absorber counts near the quasar
emission (Dall’Aglio et al. 2008a, hereafter Paper II).

This approach is nevertheless subject to a large dispersion,
as it is based on the detection of the proximity effect along
individual sight lines. Such a dispersion is inversely related
to the change in the opacity in the Lyα forest, and it is fur-
ther amplified by effects like overdensities or quasar variabil-
ity which are poorly understood. We are therefore motivated
to initiate a theoretical investigation on the methodological
approach of estimating the strength of the proximity effect.

The plan of the paper is as follows. We begin with a descrip-
tion of the type of simulations employed in Sect. 2. We then
describe in detail in Section 3 the computation and calibration
of the synthetic sight lines generated through the simulation
box. Section 4 introduces the theoretical approach adopted
to include the proximity effect on the lines of sight. We re-
port in Sect.5 our results for different approaches in estimat-
ing the proximity effect signature on individual objects. We
then present our conclusions in Sect. 6.

2. SIMULATIONS

In order to simulate moderate volumes of the Universe
at high accuracy but with limited computational resources,
we use the Hydro-Particle-Mesh (HPM) code developed by
Gnedin & Hui (1998). This particular class of numerical
codes differs from those following only the dark matter, in its
capability of modeling both the dark matter and the baryonic
components of the Universe. However, an HPM simulation
is not as computationally expensive as a full hydrodynamical
one.

The IGM consists of the low density cosmic gas between
collapsed objects. In this low density regime there exists a
tight correlation between the gas density and temperature in
the form

T = T0(1+ δ)γ̃−1, (1)

whereδ is the baryonic density contrast,T0 is the tempera-
ture at the mean density, which is of the order of 104K and γ̃

Figure 1. Adopted evolution ofT0 andγ̃ with redshift, in comparison with
measurements of the equation of state from Ricotti et al. (2000) (triangles).

ranges between 1 and 1.6. For this reason, the thermal history
of the low density component of the IGM can be described
with high accuracy by the evolution of the two parametersT0
and γ̃. Both parameters are functions of time and are sen-
sitive to the ionization history of the Universe. Equation 1,
also known as theeffective equation of state, immediately pro-
vides the thermal pressure of the gas as a function of density,
thus removing the need for a full hydrodynamical solver in
the code (Hui et al. 1997; Gnedin & Hui 1998).

The thermal evolution of the IGM after reionization is
mainly determined by the balance between adiabatic cool-
ing (expansion of the Universe) and photoionization heating
of cosmic gas. Additional effects that influence the effective
equation of state include Compton heating from X-ray sources
(e.g. Madau & Efstathiou 1999) and radiative transfer effects
during HeII reionization (e.g. Maselli & Ferrara 2005). In
this work we adopt an empirical approach, and use observa-
tional constraints on the effective equation of state to ensure
that the thermal state of the Lyα forest in our models is real-
istic.

Observational constraints on the parametersT0 andγ̃ come
from analyses of Lyα absorption lines (Ricotti et al. 2000;
Schaye et al. 2000; McDonald et al. 2001a), from the Doppler
parameter distribution as a function of column density. The
lower cut-off of theb−N distribution can be fitted by a power
law b = bN0(N/N0)β, in which the proportionality constantbN0

and the power law indexβ directly relate toT0 andγ̃, respec-
tively.

The effective equation of state in the simulation was set in a
piece-wise manner in three different intervals. Atz< 4.5 we
used the observed evolution ofT0 and γ̃ (Ricotti et al. 2000;
Schaye et al. 2000; McDonald et al. 2001a). Betweenz= 6.5
andz= 4.5 we used the effective equation of state from reion-
ization simulations of Gnedin & Fan (2006); these simula-
tions match well the observed Lyα opacity in the spectra of
high redshift quasars discovered in the Sloan Digital Sky Sur-
vey (SDSS) and smoothly merge with the observational con-
straints onT0 and γ̃ at z≈ 4.5. Finally, during the reioniza-
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Figure 2. Example of a sight line drawn through the simulation box at red-
shift z= 3. Top panel:baryonic overdensity as a function of position along the
line of sight. The distance scale corresponds to thex coordinate of Equation 2
(see text for more details).Bottom panel:the inferred hydrogen transmitted
flux as a function of wavelength.

tion era (z> 6.5) T0 andγ̃ were assumed to increase linearly
with the scale factor. This assumption is somewhat uncertain,
but it is approximately consistent with high resolution numer-
ical simulations of reionization (Gnedin 2004; Gnedin & Fan
2006) and has a negligible effect on the thermal state of the
Lyα forest at our redshifts of interest, 2< z < 4. Figure 1
shows the parameterized values ofT0 and γ̃ as a function of
cosmic time up to the final redshift used in the simulation.

For the purpose of this work we are not interested in an
accurate calibration of the effective equation of state with
all observational constraints, simply because these parame-
ters are poorly estimated yielding a large scatter of results
(McDonald et al. 2001b; Schaye et al. 2000). The relevant
fact is that Eq. 1 defines the underlying equation of state and
that T0 and γ̃ do evolve with redshift according to a specific
ionization history.

Following the results of the Wilkinson Microwave
Anisotropy Probe three years data (WMAP3, Spergel 2006),
Tab.1 lists the parameters adopted to generate the simulations
discussed in this work. HereΩm is the total matter density pa-
rameter,ΩΛ is the cosmological constant andΩb is the baryon
density parameter. The Hubble constant ish expressed in
units of 100 km s−1 Mpc−1 andσ8 represents the rms den-
sity fluctuation on 8h−1 Mpc scales atz= 0. We fixed the box
size to 10.24h−1 Mpc with Np = 10243 particles on a 10243

mesh. This yields a resolution element of 10h−1 kpc ensuring
an accuracy on a few km s−1 scale in the generation of the ar-
tificial quasar spectra (see section 3.1). We recorded the state
of the simulation of seven different redshifts denoted byz.

3. THE LYMAN FOREST

3.1. Computation of theH I absorption

The final product of an HPM simulation consists of a cos-
mological box (one at eachz), containing information about
the hydrogen density contrastδb and the relative spatial ve-

locity (vx,vy,vz). We use this information to compute a set of
absorption spectra as follows. We draw a set of 500 randomly
distributed sight lines through the box obtaining along each
line of sight a spatial coordinate plus velocity and densityin-
formation. In order to compute the absorption spectrum of the
Lyα forest, we follow the methodology of Hui et al. (1997),
which we briefly summarize here.

The optical depth of the Lyα forest at the observed wave-
lengthλ0 is given by

τ (λ0) =
∫ xB

xA

nH iσα

dx
1+ z

, (2)

with x being the comoving radial coordinate along the line of
sight,z is the redshift andnH i is the neutral hydrogen density
at locationx. The Lyα absorption cross section isσα.

If we expand the redshift scale around the mean redshift of
interestz (in our case the snapshot redshift of our simulation),
we can introduce a new coordinateu defined as

u≡ H
1+ z

(x− x) + vpec(x) (3)

wherex is the position at which the redshift due to cosmo-
logical expansion is equal to the snapshot redshiftz. For sim-
plicity we assume that the line of sight starts at the snapshot
redshift, thus atx = 0.

It is convenient to substitute the observed wavelengthλ0
with a new velocity coordinateu0, which is related toλ0 by

λ0 = λα (1+ z)
(

1−
u0

c

)−1
(4)

whereλα = 1215.67Å. In this notation the optical depth be-
comes

τ (u0) =
∑

∫ uB

uA

nH i

1+ z
σα

∣

∣

∣

∣

du
dx

∣

∣

∣

∣

−1

du, (5)

where

σα = σα,0
c

b
√

π
exp

(

−(u− u0)2/b2
)

. (6)

The limits of integrationuA anduB correspond to the velocity
values of the positionsxA andxB. The value ofσα,0 depends
only on fundamental constants and is approximately 4.5×
10−18 cm2. The Doppler parameterb is equal to

√

2kBT/mp,
wherekB is the Boltzmann constant,T is the gas tempera-
ture at the velocityu, andmp is the proton mass. In order
to compute the gas temperature at a given velocity and for a
particular snapshot, we used our equation of state parameter-
ization (T0, γ̃)z. The sum in the integral accounts for velocity
caustics, where one value ofu corresponds to more than one
x.

The final step in the computation of an absorption spectrum
consists of deriving the neutral hydrogen fractionXH i from the
baryonic overdensityδb estimated with our HPM code. The
neutral fraction is determined by the balance between pho-
toionization and recombination, and it depends both on the
temperatureT and the intensity of the UV backgroundJH i.
The temperature typically is a function of the position and is
determined by the effective equation of state, while the inten-
sity of the UVB is, in our case, a free parameter. An illustra-
tive example of the result of our procedure is shown in Fig. 2.

Finally, the absorption spectrum should match two obser-
vational constraints: (i) the evolution of the effective optical
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Figure 3. Effective optical depth evolution in our simulated sight lines in
comparison with observations. The solid circles are the average values of
τeff in our synthetic spectra with the relative dispersions. Triangles and
squares represent the measurements performed by Schaye et al. (2003) and
Dall’Aglio et al. (2008a) respectively, employing different samples of high
resolution quasar spectra. The solid line represents the best-fit solution of
Eq. 7 recently estimated by Dall’Aglio et al. (2008a).

depth in the Lyα forest and (ii) the flux probability distribu-
tion function. To accurately calibrate our simulation, we em-
ployed the sample of 40 high resolution (R∼ 45 000), high
S/N (S/N ∼ 70) quasar spectra obtained with the UV-Visual
Echelle Spectrograph (UVES), probing a redshift interval be-
tweenz∼ 1.8 andz∼ 4.6 (Paper II). Our simulated spectra are
computed with the same spectral resolution as the observed
sample, and in a similar redshift range, thus the two data sets
can be directly compared.

The calibration of the simulated absorption spectra has been
carried out iteratively. As the main goal of this work is to test
and compare different methods of estimating the proximity
effect signature, we do attempt to match exactly the synthetic
and observed spectra. Rather, we adjust the intensity of the
UV background to obtain an acceptable (but not necessarily
the best) match between the simulated sight lines and the ob-
served flux probability distribution and the evolution of the
effective optical depth from the UVES observations. The fi-
nal values of the UV background are listed in Tab. 2.

A complete study of how well the synthetic spectra can
match the observed data would require a much more careful
comparison between the model and the data, including model-
ing the observational procedure of determining the continuum
level, thorough sampling of possible temperature-densityre-
lations in the modeled forest, etc. While such effort is well
worth performing, it is beyond the scope of this paper and we
postpone it to a future work.

3.2. The evolution of the effective optical depth

One fundamental observed property of the Lyα forest is a
steep decline in the hydrogen opacity towards low redshift.
This behavior is reflected in the so called effective optical
depth, which is defined asτeff = − ln〈F〉 = − ln〈e−τH i〉 where
F is the transmitted flux and the averaging〈〉 is performed
over a fixed redshift path length. The redshift evolution ofτeff
is well approximated by a power law in the form

τeff = τ0(1+ z)γ+1 (7)

(Kim et al. 2002; Faucher-Giguère et al. 2008), where the
slopeγ has no direct connection to the slope ˜γ of the equation
of state (see Eq. 1).

Table 2
The UV background intensity and the effective optical depthin the

simulations.

z JH i/10−21† τeff

4.00 0.25 0.75± 0.09
3.50 0.30 0.52± 0.08
3.25 0.30 0.39± 0.07
3.00 0.35 0.34± 0.06
2.76 0.40 0.29± 0.06
2.50 0.40 0.25± 0.05
2.25 0.40 0.21± 0.05

†: in units of ergcm−2 s−1 Hz−1 sr−1

The main difference between observed spectra of the Lyα
forest and our synthetic realizations is the lack of any evo-
lution of τeff with redshift along individual sight lines in the
latter. This is simply because our simulated spectra are drawn
through a single cosmological box at one particular redshift.
Thus, for each snapshot, we can estimate the meanτeff and its
dispersion starting from a measure of the average transmitted
flux along each of the 500 simulated lines of sight and nor-
malizing to the whole redshift interval probed by the observed
spectra.

Figure 3 shows our results from the simulated sight lines
into context while Tab. 2 lists the numerical values. For all
snapshots at our disposal, the inferred average effective opti-
cal depth closely follows the expected enhancement at high
redshift as probed by different investigations on high resolu-
tion quasar spectra (Schaye et al. 2003, Paper II). Note that
the uncertainties on the effective optical depths represent the
RMS of τeff determined on each single line of sight and not
the real uncertainties of the measurements.

3.3. The flux probability distribution

The steep evolution of the hydrogen opacity in the Lyα for-
est described in the previous section can be detected in quasar
spectra not only by measuring the average transmitted flux,
but also by analyzing how the shape of the flux probability
distribution (FPD) changes with redshift (Jenkins & Ostriker
1991). The FPD provides a strong observational constraint,
which it is important to be satisfyingly reproduced by a real-
istic model of the Lyα forest.

We employ similar approaches to compute the FPD in the
simulated and in the observed spectra. Both (the synthetic and
simulated) distributions are sampled in bins of∆F = 0.01 and
normalized by the bin size to maintain the condition that the
FPD integrates to 1.

The observed FPD is estimated from the Lyα forest of those
quasars intersecting a redshift slice of∆z = 0.2, centered at
the redshift of the simulated snapshot (z in Tab. 1). The FPD
for the synthetic spectra is measured by combining the signal
for all 500 lines of sight at one particularz. Additionally, we
add Gaussian noise to the simulated line of sight in order to
reproduce the average S/N level of the observed spectra.

Figure 4 presents the comparison between the two estimates
of the flux probability distribution. The agreement between
the two distributions is reasonably good even if there are some
indications of a departure at high redshift, in particular for the
flux around unity. This lack of agreement is explained by the
differences in the continuum placement of the observed and
synthetic spectra. Additionally, we note that the error bars
of the observed FPD are an estimate of both continuum un-
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Figure 4. The average flux probability distribution (FPD) estimated from 500 simulated sight lines at three different redshifts (z = 2.25, 3.0 and 4.0, gray
histogram), in comparison with the observed FPD inferred from a sample of 40 high resolution UVES/VLT quasar spectra (vertical bars). The uncertainties in the
simulated FPD are negligible, while the error bars in the observed FPD account for the variance of absorption between different lines of sight and uncertainties
in the continuum determination.

Figure 5. The differential distribution function of the HI column densities
estimated from a sample of 300 simulated sight lines at redshift z= 2.25, 3.0
and 4.0 (100 sight lines per redshift). The solid line represents the least square
power law fit to the data points. The measured slope of the column density
distribution (β = 1.64) is consistent with observations by Kim et al. (2002).

certainties and Poissonian variance between different lines of
sight. For the continuum uncertainties we adopted the esti-
mates presented in Paper II.

3.4. The column density distribution

The high resolution of our simulations allows us to further
characterize the statistical properties of synthetic spectra by
measuring the distribution of column densities. The differ-
ential distribution function of the hydrogen column densities
f (NH i) is typically defined as the numbern of absorption lines
per unit column density and per unit absorption path length
∆X5 (Tytler 1987). This distribution is typically very well
represented by a single power law of the formf (NH i) ∝ N−β

H i

with β ranging between 1.4− 1.7 (Hu et al. 1995; Kim et al.
2002).

Performing a fit of an absorption spectrum is computation-
ally expensive, therefore we proceeded as follow: (i) we ran-
domly select 100 simulated sight lines from our full sam-
ple of 500, (ii) for each selected line of sight we performed
a Doppler profile fit using the publicly available code AU-
TOVP6, and then (iii) we visually inspected all the lines of

5 ∆X = (1+ z) ∆z
ˆ

Ωm(1+ z) +ΩΛ(1+ z)−2
˜−1/2 (Misawa et al. 2002)

6 Developed by R. Davé: http://ursa.as.arizona.edu/∼rad

sight in order to reject the few cases where the automatic fit-
ting procedure fails. We repeat this procedure for sight lines
drawn from the snapshot atz = 4.0, 3.0 and 2.25 and then
combine the results.

The estimated column density distribution is plotted in
Fig. 5. Within the range 12. logNH i . 16 cm−2, the distribu-
tion accurately follows a power law with a slope ofβ = 1.64,
close to several observational results (Tytler 1987; Hu et al.
1995; Kim et al. 2002). Our data points seem to deviate from
a power law extrapolation at the low column density end. This
effect, discussed in detail by Hu et al. (1995), is the resultof
incompleteness in the sample of lines arising primarily from
line blending and further amplified by noise.

4. THE PROXIMITY EFFECT

The prime goal of this work is to test different techniques
for detecting the proximity effect in quasar spectra. We have
now a set of simulated sight lines at our disposal accurately
reproducing many statistical properties of the observed Lyα
forest. We now dicuss how we introduced the proximity effect
in the simulated spectra.

In the vicinity of a luminous quasar, the intensity of UV ra-
diation produced by the quasar itself is typically up to several
orders of magnitudes larger than the intensity of the UV back-
ground. This enhanced ionizing radiation acts on the neu-
tral hydrogen which, after a period of only about 104 yr after
the quasar turn-on event, reaches a new state of photoioniza-
tion equilibrium. In this regime, the neutral hydrogen density
of the IGM in the absence of the quasar ionizing radiation,
nH i,∞, relates to that with the quasar radiation,nH i, as

nH i =
nH i,∞

1+ ω
, (8)

where ω describes the excess of ionizing radiation in the
vicinity of the quasar in units of the average cosmic UV back-
ground (Bajtlik et al. 1988). Analytically,ω can be expressed
in units of the UVB photoionization rateΓb or in units of its
intensity at the Lyman limitJν0,

ω(z) =
Γq

Γb
≈ fν0

4πJν0 (1+ z)

(

dL(zq,0)
dL(zq,z)

)2

(9)

wherez is the redshift along the line of sight (z< zq), dL(zq,0)
is the luminosity distance of the quasar to the observer, and

http://ursa.as.arizona.edu/~rad
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Figure 6. Example of one simulated line of sight with the signature of the
proximity effect introduced on the density of neutral hydrogen (dashed line)
and on the optical depth (solid line). The difference between the two absorp-
tion patterns are due to the peculiar velocities along the sight line, which are
neglected whenever the proximity effect is introduced on the optical depth.
The middle panel shows the ratio between the two spectra. While the in-
fluence of peculiar velocities leads to a minor discrepancy between the two
spectra, this difference is drowned in the noise even in highS/N spectra, as is
shown in the bottom panel (S/N=100).

dL(zq,z) is the luminosity distance to redshiftz along the line
of sight. The parametersΓq and fν0 quantify the photoioniza-
tion rate and the Lyman limit flux of the quasar, respectively.
If we isolate the redshift dependence in Eq. 9 from the con-
stants, we can define a new, unit-less parameterω⋆, which is
independent of the quasar redshift and is given by

ω⋆ =
Lν0(zq)

(4πR0)2Jν0

, (10)

whereR0 = 10 Mpc is an arbitrary distance scale introduced
to makeω⋆ unit-less (it also appears in Eq. 11). For quasars
with typical Lyman limit luminosities in the range 30.5 <
log(Lν0) < 32.5 and a constant UVB intensityJν0 = 10−21.51

in units of ergcm−2s−1 Hz−1 sr−1 (Paper II), we obtain 0.07.
ω⋆ . 1.5. With our new definitions, Eq. 9 becomes

ω(z) = ω⋆
1+ zq

1+ z

(

R0

dL(zq,z)

)2

. (11)

From an observed quasar spectrum, any information about
the neutral hydrogen density or the velocity field of the gas
along the line of sight cannot be derived. Therefore, the main
strategy to recover the influence of the quasar ionization field
on the Lyα forest is to translate the implications of Eq. 8 into
observables such as the transmitted flux or the effective op-
tical depth along the line of sight. Assuming that the optical
depth follows the same type of relation as the neutral hydro-
gen density in Eq. 8, Liske & Williger (2001) included the
quasar proximity effect intoτeff,

τeff = τ0(1+ z)γ+1(1+ ω)1−β. (12)

In the case of our simulated lines of sight, the term expressing
the evolution of the effective optical depth in the Lyα forest,
τ0(1+z)γ+1, will be substituted by the average〈τeff(z)〉 at each
snapshot redshift as listed in Tab. 2. In the rest of this paper,

it will be convenient to use a variableξ defined as

ξ =
τeff

< τeff(z) >
= (1+ ω)1−β, (13)

whereβ is the slope of the column density distribution.
We note that assuming the validity of Eq. 8 also for the

optical depth along a line of sight implies that the peculiar
velocity of the hydrogen in the IGM has a negligible impact
on the absorption spectrum. This assumption is impossible
to test observationally, but it can be justified with the simu-
lated spectra. We have the unique possibility of estimating
this effect for the first time. We thus proceed as follows: (i)
we compute a set of 100 sight lines at three different redshifts
(zq = 2.25, 3 and 4) as described in Sect. 3.1 and include the
proximity effect as a modification of the optical depth along
the line of sight, or, alternatively, (ii) we included Eq. 8 into
Eq. 5, meaning that we include the proximity effect on the
hydrogen density, and then compute the same line of sight as
in (i). Figure 6 presents the result of such a computation of
the proximity effect on both the optical depth and the neutral
hydrogen density. Peculiar velocities lead to a discrepancy
between the two proximity effect profiles, however this differ-
ence cannot be detected, since it is dominated by noise even
in high S/N quasar spectra (S/N ∼ 100).

In the following, the proximity effect is included in the sim-
ulated spectra as a modification of the neutral hydrogen den-
sity according to Equations 8 and 11. We note that the ori-
gin of all the lines of sight is random, thus the location of
the quasar (but not its emission redshift) is also random. We
therefore neglect in the present analysis any effect of a biased
quasar environment, i.e. overdensities. While our resultsdo
change quantitatively if we varyω⋆, the qualitative outcome
of our analysis is independent of a particular choice of its nu-
merical value. Therefore, by default we adoptω⋆ ≡ ωIN

⋆ = 1,
unless stated otherwise.

5. METHODS OF ESTIMATING THE PROXIMITY
EFFECT STRENGTH

5.1. Reference approach: the combined proximity effect

Among all the investigations of quasar spectra aimed at de-
tecting of the proximity effect, two techniques have been em-
ployed so far: (i) the line counting statistic and (ii) the flux
transmission statistic. Both adopt the common principle ofes-
timating a certain quantity (number of lines or average trans-
mission) within a regularly spaced grid in a sample of quasars.
As we already showed in Paper II the advantages of the flux
transmission with respect to the line counting statistics,we
will use only the flux transmission statistic as our reference
technique.

For each of the simulated spectra, and given the “input”
valueωIN

⋆ , we construct theω scale according to Eq. 11 and
then define a uniform grid in logω space. In each of the grid
elements we determine the average flux and, thus, the effec-
tive optical depth values considering all spectra simultane-
ously. Finally, following Eq. 13, we derive the corresponding
values ofξ as a function ofω. The typical proximity effect
signature is such thatξ → 0 for ω →∞ and it can be analyti-
cally modeled according to the formula

F(ω) =
(

1+
ω

a

)1−β

, (14)

where the slope of the column density distribution was fixed
to β = 1.64 at all redshifts according to our measurements
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(Sect. 3.4), anda is a single fitting parameter. The best-fit
value ofa can then be used to compute the “measured” value
of the proximity effect strengthωOUT

⋆ ≡ a ωIN
⋆ . Ideally, this

value should be close to the input valueωIN
⋆ (i.e. a should be

close to 1).
This technique has been employed in the majority of the

proximity effect investigation aiming at a constraint of the
cosmic UV background intensity at the Lyman limit since
ωOUT

⋆ ∝ J−1
ν0

. In Paper II we first showed that this com-
bined method is characterized by an intrinsic bias. Employing
Monte Carlo simulations, we presented evidence for this bias
by comparing the input and output proximity effect signal in
a set of 500 synthetic spectra.

While a Monte Carlo approach may be sufficient when ef-
ficiently simulating the “randomness” in the properties of the
absorbers, the new sight lines presented here are a significant
step forward in terms of accurately reproducing the statistical
properties of the Lyα forest. We begin our investigation com-
paring the results on the combined analysis of the proximity
effect on both the Monte Carlo and the numerical simulated
lines of sight. The Monte Carlo simulated spectra have been
computed using the same procedure as in Paper II. In all cases
we employed the signal of 500 spectra including the proxim-
ity effect in the same way as described in Sect. 4.

We fitted Eq. 14 to the values ofξ determined from
a combination of all sight lines. Repeating this ex-
ercise at z= (2.25, 3.0, 4.0) we obtained for the Monte
Carlo simulations an overestimation inωOUT

⋆ equal to
∆ loga = (0.14, 0.1, 0.05) dex, respectively, while for the
HPM simulations we obtained∆ loga = (0.1, 0.01, 0.01) dex.
This, on the one hand confirms the existence of the bias, but
on the other hand shows that the Monte Carlo simulations tend
to overestimate it. In particular, atz = 3.0 the HPM simu-
lated sight lines predict an almost negligible overestimation.
We suspect that the origin of this marginal disagreement may
be primarily attribute to the procedure that generates Monte
Carlo absorption spectra. The algorithm does not place a fixed
number of absorption lines, instead continues to populate the
spectrum with as many line as necessary to yield an evolution
of τeff consistent with a pre-fixed power law. This may then
translate into a larger scatter of absorption very close to the
emission redshift, thus enhancing the systematic bias when
combining multiple sight lines. We also cannot rule out the
possibility that the calibration of our new synthetic spectra
against observations has an effect in reducing the bias of the
combined analysis of the proximity effect.

5.2. The proximity effect strength distribution

A correct understanding of the biases involved in the com-
bined analysis of the proximity effect is essential to accurately
determine the cosmic UV background intensity. We proposed
in Paper II a new technique of measuring the UVB intensity,
unaffected by the biases described in the previous section.
This approach is based on the determination of the proxim-
ity effect along individual lines of sight in a quasar sample.
Always adopting Monte Carlo simulated lines of sight at dif-
ferent redshifts, they fitted Eq. 14 to individual spectra and
showed that

1. the distribution of logωOUT
⋆ /ωIN

⋆ ≡ loga is skewed

2. the skewness increases with decreasing redshift

3. this asymmetry is the main contributor to the overesti-
mation of the UVB found in the literature

Figure 7. The proximity effect signatures in one simulated line of sight. The
data points show the normalized effective optical depthξ versusω, binned in
steps of∆ logω = 1. The dotted line represents the reference model used to
introduce the proximity effect in the synthetic spectrum. The solid line shows
the best fit model as described in Sect. 5.1

4. the peak of this distribution is an unbiased estimate of
the UV background intensity

The skewness of the proximity effect strength distribution
(PESD) originates from the definition of the uniform grid
in logω space. In other words, as a constant logω range
progressively probes smaller redshift intervals approaching
the quasar, the absorbers tend to no longer be Gaussian dis-
tributed. This effect is further enhanced at lower emissionred-
shifts since the line number density decreases. Therefore,the
distribution not only becomes broader, but also more skewed.

To check how accurately we can recover the input value
ωIN

⋆ , we fit Eq. 14 to all 500 lines of sight at three different
redshifts (zq = 2.25, 3 and 4). That gives us an estimate of the
proximity effect strengthωOUT

⋆ along each sight line. Figure 7
illustrates a typical example of the proximity effect signature
along one sight line in our HPM simulations. All lines of sight
can then be combined to form the proximity effect strength
distribution. Figure 8 presents our results.

We confirm, with advanced 3D numerical simulations, the
recent results reported in Paper II: the PESD sharply peaks
at the input model (logωOUT

⋆ /ωIN
⋆ = 0) and becomes broader

towards lower redshift. Furthermore, the skewness in the
PESD increases towards low redshift. However, our re-
sults on the PESD inferred from the HPM simulation quan-
titatively differ from the Monte Carlo simulations. While
the peaks of the distributions match, the rms are signifi-
cantly smaller for the HPM-based sight lines. We obtained
at redshiftsz= (2.25, 3.0, 4.0) a dispersion of strength pa-
rameter equal toσ loga = (0.3, 0.23, 0.1) dex for the HPM
simulations, while in the Monte Carlo one we estimated
σ loga = (0.65, 0.5, 0.2) dex. The larger dispersion in the lat-
ter results in the stronger bias in the combined proximity ef-
fect analysis reported in the previous section.

To precisely estimate the uncertainties related to the modal
value of the PESD we adopted a bootstrap technique. Starting
from a distribution ofNi values of loga, whereNi represents
the total number of loga estimates, we randomly duplicated
Ni/e strength parameters and estimated the modal value of
the new PESD. We repeated this process 500 times for each
redshift snapshot (as well as in the following), obtaining the
mean and the sigma values of PESD modes.
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Figure 8. The proximity effect strength distribution (PESD) in threedifferent sets of 500 sight lines drawn from our HPM simulation boxes at redshiftz= 2.25, 3.0
and 4.0 (thick histogram). The thin histogram represents the PESDobtained from a sample of 500 Monte Carlo simulated lines of sight. For both types of
simulations we determined the proximity effect strength adopting the best-fit loga value of Eq. 14. The vertical dashed line marks the referencemodel used for
creating synthetic Lyα forest spectra.

Figure 9. An example of the likelihood functionL estimated from two dif-
ferent sight lines in our simulations. While in one sight line (dotted dashed
profile) the likelihood is maximized at the input model, the second sight line
(dotted profile) has the most likely value ofωOUT

⋆ significantly belowωIN
⋆ .

Measuring the proximity effect signal along individual lines
of sight, and thus determining the PESD, allows unbiased es-
timates of the cosmic UV background. However, this method
is still based on a simple averaging process of the absorption
in the Lyα forest. In other words, the advantage of dealing
with very high quality data is not fully explored. Hereafter,
we will refer to the PESD estimated from the normalized op-
tical depth on individual lines of sight as thesimple averaging
technique.

5.3. The maximum-likelihood approach

The importance of a precise determination of the UVB in-
tensity at different epochs motivates us to further developand
testnewmethods of determining the proximity effect strength.

A widely used, extremely flexible approach for recovering
input parameters is the maximization of the likelihood func-
tion (LF). It expresses the probability of a set of parameters
in a statistical model describing certain data. In our case,we
can write this function as the probability that our spectrumhas
been modified by the quasar radiation of a given strengthω⋆.

Generally the likelihood function is defined as

L =
N

∏

i=1

P(Fi|C) (15)

where the product is calculated overN data points, and
P(Fi|C) is the probability of occurrence of the measurement
Fi given the set of parametersC. Here, all data pointsFi are
flux values in the observed or synthetic Lyα spectrum.

The prime limitation of Eq. 15 is that the product operator
must be applied to uncorrelated data points. However, neigh-
boring pixels in the Lyα absorption spectrum are strongly cor-
related due to both physical correlations of cosmic large-scale
structures and thermal and instrumental broadening of absorp-
tion lines. Eq. 15 can be generalized for the case of correlated
data, but that would require knowing anN − point correlation
function for the flux, which is impossible to estimate in any
reasonable way neither from the observational data nor from
the simulations.

Therefore, as a first attempt, we adopt a simplified approach
and re-bin the spectra over at least 40 km s−1 (the average
width of an absorber in the velocity space) in order to signif-
icantly reduce the correlation in the Lyα forest without los-
ing too much resolution. In the following sections we discuss
more sophisticated methods of accounting for the correlations
between the data points.

Let us now compare the same sight line with and without
the signature of the proximity effect. These two spectra have
the same original hydrogen distribution along the line of sight,
thus the two hydrogen densities, or, ignoring the peculiar ve-
locities, the two optical depths, are related by Eq. 8. Our
aim is to express the observed flux probability densityP(F)
in Eq. 15 as a function of the strength of the proximity effect
and the flux probability unaffected by the quasar radiation.

The FPD affected (Pm) and unaffected (P∞ as presented in
Fig. 4) by the quasar radiation are related by

Pm(Fm)dFm = P∞(F∞)dF∞. (16)

Knowing that

Fm = e−τm = exp
(

−
τ∞

1+ ω

)

= F1+ω
∞

, (17)

we can write

Pm(Fm) = P∞

(

F1+ω
m

)

(1+ ω)Fω
m . (18)

The Likelihood function in Eq. 15 can be generalized in the
presence of instrumental noise to

L =
∏

i

∫ 1

0

exp
[

−(Fi,m− F′)2/2σ2
i

]

σi

√
2π

Pm(F ′)dF ′ (19)

where the additional exponential term describes the Gaussian
noise with the proper normalization. Inserting Eq. 18 into
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Figure 10. The proximity effect strength distribution in three different sets of 500 sight lines at redshiftz= 2.25, 3.0, and 4.0. The PESD has been constructed
adopting the likelihood technique described in Sect. 5.3 toestimate the strength of the proximity effect. The extent ofthe biases, represented by the shift of the
mode in the PESD with respect to the dashed vertical line, remains constant with redshift.

Figure 11. The flux auto-correlation function in one Lyα forest spectrum
(solid line) in comparison with two different non-trivial weighting schemes
(long and short dashed lines). The introduction of a weighting scheme in
the computation of Corr(∆v) significantly reduces the auto-correlation of the
transmitted flux.

Eq. 19 we obtain

L =
∏

i

∫ 1

0

exp
[

−(Fi,m− F′)2/2σ2
i

]

σi

√
2π

×

×P∞

(

F ′1+ω
)

(1+ ω)F′ωdF ′. (20)

This function has only one free parameter, the strength of the
proximity effectωOUT

⋆ . For an infinitely high signal to noise
ratio, the Gaussian becomes a delta function and the expres-
sion under the integral reduces to the flux probability distri-
bution given by Eq. 18.

The methodological approach is then straightforward: (i)
we introduce the proximity effect on the hydrogen neutral
fraction along all the lines of sight at our disposal, (ii) we
compute the likelihood function for a set ofωOUT

⋆ values
within the range−1 < logωOUT

⋆ < 1 and finally (iii) we search
for the particular value ofωOUT

⋆ that maximizes Eq. 20. For
illustration purposes we present in Fig. 9 the likelihood func-
tion for two different lines of sight where the two maxima are
located in different positions with respect to the input model.
After repeating this procedure over all spectra we construct
the PESDs presented in Fig. 10.

At all redshifts the inferred PESD has a clear maximum,
however this maximum does not coincide with the input
model, moreover the modal values of all PESDs are biased
towards smallerωOUT

⋆ . Contrary to the outcome of thesimple
averaging technique, this approach fails to recover the input
model and also the inferred PESD is clearly broader. Several
factors may cause this bias.

(i) Our spectra might still be significantly affected by intrin-
sic (as opposed to thermal or instrumental broadening) corre-
lations in the Lyα forest. Even when we re-bin the spectrum
to significantly reduce the correlations between nearby pix-
els, the intrinsic correlations between close absorbers largely
remain. For this reason we recomputed the PESD after re-
binning the spectrum over several tens of km s−1, up to 100
km s−1. Unfortunately this had no effect neither on the modal
value of the PESD nor on its shape, demonstrating that it is in-
trinsic correlations between absorbers and not thermal broad-
ening that is responsible for the biased result of Fig. 10.

(ii) The flux probability distribution might change signifi-
cantly along different lines of sight, thus concealing someun-
controlled systematic effect when assuming as common FPD
the average over all sight lines. Therefore we have repeated
our computation adopting the FPD estimated from the same
line of sight without the influence of the quasar. Such a proce-
dure is, of course, not feasible for real observations, but,nev-
ertheless, it does not solve the problem of a biased PESD. We
have finally tried to analytically fit the average or single FPD
with different fits (Miralda-Escudé et al. 2000; Becker et al.
2007) also without success.

We conclude that the reason for the bias in the maximum
likelihood analysis is caused by an intrinsic correlation in the
Lyα forest not being accurately accounted for by our simple
re-binning procedure. In the following, we attempt to solve
this problem by estimating the correlation function in our sim-
ulated spectra.

5.4. The correlation function

We showed in the previous section that clustering of Lyα
absorbers gives rise to correlations in the observed transmit-
ted flux large enough to heavily bias the results of a maximum
likelihood analysis, even after re-binning the simulated spec-
trum. We now focus on measuring how large these correla-
tions are by means of thecorrelation function.

Given a point in redshift with transmitted fluxF , the cor-
relation function describes the probability of finding another
point, with the sameF , within a given redshift interval. More
precisely, if we express the interval with a velocity shift∆v
we can write that

Corr(∆v) = 〈δF(v)δF(v+ ∆v)〉/F
2
, (21)

whereF represents the mean flux andδF(v) ≡ F(v) − F. The
numerical value of Corr(∆v) is obtained by directly averag-
ing individual pixels over the spectrum, separated by a given
velocity∆v.
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Figure 12. The proximity effect strength distribution in three different sets of 500 sight lines at redshiftz= 2.25, 3.0, and 4.0. The PESD has been constructed
with a modified likelihood approach, which used a weighted FPD to account for the intrinsic correlations in the Lyα forest. The PESD remains biased with
respect to the reference model and the amount of bias is now strongly redshift dependent.

To illustrate the properties of the correlation function, we
computed Corr(∆v) for one sight line and show the result in
Fig. 11. The amplitude of the correlation increases signifi-
cantly for separations smaller than about∆v . 100 km s−1,
while it fluctuates around zero for separations larger than a
few hundreds of km s−1. This directly shows that individual
pixels in the Lyα forest are not independent from an other, but
strongly correlated. Such a correlation, which also changes
from one sight line to another, does not vanish after a simple
re-binning of the spectrum.

Motivated by the lack of success in our previous method,
we explore a different approach to remove the signature of
correlated pixels. We introduce a weighting scheme in the
definition of the correlation function designed to give negli-
gible weight to correlated pixels in the Lyα forest. Adopting
this weight to estimate a new flux probability distribution,we
would immediately remove the imprints of the correlation.

If we introduce such a weighting scheme, Eq. 21 becomes

Corr(∆v,w) =
〈δF(v)δF(v+ ∆v)〉w
〈F(v)〉w 〈F(v+ ∆v)〉w

. (22)

For this purpose, we explored two types of weighting func-
tions: w1(F) = F, which removes the correlations for strong
absorbers and,w2(F) = F2(1−F)2, which accounts for the cor-
relation of strong and weak absorbers. With our new defini-
tion of the correlation function, we recomputed Corr(∆v,w)
for the same sight line as before and place our results into
context in Fig. 11. While already the first weight significantly
reduces the correlations, the second one removes the intrinsic
correlations of the the Lyα flux almost completely.

We then adoptedw2(F) to recompute the FPD which will
now have a different shape with respect to that of Fig. 4, and
will show one pronounced peak for 0< F < 1. This new
weighted probability distribution is used to infer the likeli-
hood function following the same procedure as in Sect. 5.3.
From the most likely values of the proximity effect strength,
we reconstructed the PESDs which are now presented in
Fig. 12. With this new approach, all the inferred distribu-
tions not only present a significant bias with respect to the
input model, but this bias additionally changes from an un-
derestimation to an overestimation as the snapshot redshift
decreases. In spite of the complexity of this new method,
there are still uncontrolled systematics in the analysis ofthe
proximity effect which are not correctly accounted for, even
introducing a weighting scheme.

5.5. Sampling the Lyα forest for the likelihood

None of the techniques presented so far performs better
than the simple averaging technique in recovering the signa-
ture of the proximity effect. Our next attempt to overcome the
imprints of the mentioned correlations is based on the compu-
tation of a different likelihood function.

Until now we have proceeded with the computation ofL
following Eq. 20, where the product is performed consider-
ing all the flux pixels in the spectrum. Due to the absorption
correlations and our difficulties in removing their signature,
we now try to apply a selection of the pixels from which the
product will be estimated. If we consider a set ofi flux pix-
els separated by a few thousands of km s−1 (∆v), these points
will be uncorrelated according to Fig. 11. From this set of flux
values we can estimate one likelihood function before consid-
ering to the next set ofi flux pixels.

Depending on the resolution of our synthetic spectra (dv),
we will have a set ofj likelihood functions where the exact
number is defined asj = ∆v/dv. Each likelihood function
will then be maximized and yield one value ofωOUT

⋆, j .
The distribution ofωOUT

⋆, j depends on how many points con-
tribute to the particular set and behaves as follows: increas-
ing the pixel separation∆v, the number of pixels from which
the likelihood is estimated decreases, thus yielding a broader
distribution ofωOUT

⋆, j . Equivalently, if the pixel separation is
too small, the influence of the correlation between pixels in-
creases, resulting is a biased result. We fix our separation to
∆v= 2000 km s−1 and adopt the meanωOUT

⋆, j as a proxy for the
most likely indicator of the proximity effect strength.

Figure 13 presents the results showing the PESDs at differ-
ent redshifts. In our highest redshift snapshot the modal value
of the PESD is, given the uncertainties, extremely close to the
input model (offset by 1.4σ) with a dispersion in the strength
parameter significantly smaller than that of the simple averag-
ing technique. However, towards lower redshift, a significant
bias in the modal values appears again. We conclude that this
approach is not superior to the simple averaging technique.

Even if we could find two new pixel separations∆v at red-
shiftsz= 2.25 and 3.0 which yield no biases in the recovery
of the reference model, we are aware of the drawbacks that
such approach would have on real data. The biases that are
in this method due to awrongchoice of the sampling size are
extremely difficult to control because in real spectra we typi-
cally lack of the spectral informations without the quasar im-
pact. At best, we therefore could only guess theappropriate
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Figure 13. The proximity effect strength distribution in three different sets of 500 sight lines at redshiftz= 2.25, 3.0, and 4.0. The PESD has been constructed
employing a modified likelihood approach which adopted the unweighted FPD but samples the spectrum over 2000 km s−1 to account for the absorption
correlations in the Lyα forest. The PESD remains biased with respect to the reference model and the amount of bias is now strongly dependent on redshift.

Figure 14. Comparison of the best estimate of the proximity effect strength
obtained with the different methods presented in this work.The black circles
show the outcome of the simple averaging technique. The squares, the crosses
and the triangles depict the simple likelihood, the likelihood with a weighted
FPD, and the sampled likelihood, respectively. A small redshift shift has been
applied to the data points to make them more easily recognizable. The modal
values and associated errors have been estimated with a bootstrap technique
as described in Sect. 5.

sampling size via numerical simulations, without being able
to test the accuracy.

We summaries the results of all the techniques presented
in this work in Fig. 14. None of the more maximum like-
lihood methods are capable of yielding tighter and unbiased
constraints on the proximity effect than the simple averaging
technique.

6. CONCLUSIONS

We have analyzed a set of high-resolution, three-
dimensional numerical simulations with a Hydro-Particle-
Mesh code. We evolved the particle distribution in the sim-
ulated box until a redshift ofz = 2.25, and recorded seven
snapshots within the range 2.25< z< 4. For each snapshot
we have drawn 500 randomly distributed sight lines through
the simulated box, obtaining simulated spectra of the Lyα for-
est.

A sample of 40 high-resolution, high-S/N quasar spectra,
with emission redshifts within the range 2.1 < z < 4.7, has
been used to calibrate the simulated spectra. We have com-
puted from the simulated sight lines (i) the evolution of the
effective optical depth, (ii) the flux probability distribution
function, and (iii) the column density distribution at differ-
ent redshifts. While the computation of the synthetic line of
sight depends on several free parameters, we have tuned them
to be consistent (within the measured uncertainties) with the
observational data in all three measurements.

Our study is focused on developing and testing new tech-
niques of recovering the strength of the proximity effect along
individual sight lines. Our analysis has begun with a compar-
ison between the widely adoptedcombined analysisof the
proximity effect signal over multiple lines of sight, with the
recently developed technique of estimating its strength onin-
dividual quasar spectra. We refer to this method thesimple
averaging technique. As the strength distribution is supposed
to be asymmetric, biases are expected to arise when determin-
ing the combined proximity effect signal.

We have confirmed, with a realistic set of synthetic lines of
sight drawn from our numerical simulation, the existence of
this biases, albeit with a different intensity as predictedwith
Monte Carlo simulations. We have concluded that the smaller
bias is caused by the smaller scatter of the strength parame-
ter. We have confirmed that the modal value, or peak of the
proximity effect strength distribution (PESD), yields an un-
biased estimate of the input parameters used to compute the
proximity effect. Moreover, we have detected the expected
broadening in the shape of the PESD towards low redshift, as
predicted in Paper II using Monte Carlo simulations.

In principle, the simple averaging technique, by combin-
ing observed pixels together, loses information. In order to
avoid this loss, we have investigated several incarnationsof
a maximum likelihood approach. The first incarnation was a
standard implementation of the likelihood function. Due to
intrinsic (as opposed to thermal and instrumental broadening)
auto-correlation of the transmitted flux along a single lineof
sight, this technique was subject of systematic bias at all red-
shifts and for all models of the flux probability distribution.

In the second method we have used a weighting scheme,
designed to reduce the intrinsic auto-correlation in the absorp-
tion spectrum. While this weighting scheme was able to sub-
stantially reduce the two-point autocorrelation functions of
the flux, the resultant PESDs were significantly biased. This
failure of the weighting scheme indicates that it is not a two-
point, but some (currently unknown) higher order correlation
function(s) that are primarily responsible for the bias in the
maximum likelihood estimate of the proximity effect.

In an attempt to reduce the bias, we have adopted a sam-
pling approach of widely separated flux points in the spectrum
to design a more complex likelihood function. While this ap-
proach yielded a substantially more accurate estimate of the
best-fit value, the value itself remained biased. That bias is
comparable to the statistical uncertainty of the measurement
at redshiftz = 4.0, but becomes progressively larger towards
lower redshifts.
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Thus, the newly introducedsimple averaging technique, de-
spite of the perceived loss of information during the averaging
procedure, is the only method of estimating the proximity ef-
fect signal free of biases.

We would like to thank the San Diego Supercomputer Cen-
ter which allowed us to perform our simulations. A.D. ac-
knowledge support by the Deutsche Forschungsgemeinschaft
under Wi 1369/21-1.
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