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Abstract

The recently developed frequency extraction algorithm [G. R. Werner and J. R. Cary, J.

Comp. Phys. 227, 5200 (2008)] that enables a simple FDTD algorithm to be transformed into

an efficient eigenmode solver is applied to a realistic accelerator cavity modeled with embedded

boundaries and Richardson extrapolation. Previously, the frequency extraction method was shown

to be capable of distinguishing M degenerate modes by running M different simulations and to

permit mode extraction with minimal post-processing effort that only requires solving a small

eigenvalue problem. Realistic calculations for an accelerator cavity are presented in this work to

establish the validity of the method for realistic modeling scenarios and to illustrate the com-

plexities of the computational validation process. The method is found to be able to extract the

frequencies with error that is less than a part in 105. The corrected experimental and computed

values differ by about one parts in 104, which is accounted for (in largest part) by machining errors.

The extraction of frequencies and modes from accelerator cavities provides engineers and physi-

cists an understanding of potential cavity performance as it depends on shape without incurring

manufacture and measurement costs.
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INTRODUCTION

Once a computational application has been verified (shown to correctly solve the math-

ematical model of a physical system), for confidence in modeling, the application needs to

be validated, i.e., shown to accurately represent the physical systems of interest. Inevitably,

validation is a process of determining the causes of discrepancies between computational and

experimental results. This paper focuses on validation of frequency and mode extraction

computations of accelerator cavities using time-domain simulations. The calculations are

based on the novel method of Werner and Cary which employs time-domain simulations

of Maxwell’s equations using the finite-difference time-domain (FDTD) method [1]. The

Werner-Cary method has been shown to permit extraction of degenerate frequencies and to

provide the ability to reconstruct the modes using only a minimal amount of post-processing

linear algebra.

The common approach to frequency extraction for time-domain simulations of Maxwell’s

equations using the FDTD method is to compute narrowly-filtered states. A narrowly-

filtered state can be computed using a square window that excites only those modes around a

desired frequency, ω. In Maxwell’s equations, this equates to the sinusoidal excitation f(t) =

W (t) sin(ωt) where W (t) = Θ(t)Θ(t−T ) given that Θ(t) is the Heaviside function. One can

also excite a broad range in a similar way and then perform post-simulation FFTs on the

broadly-filtered states to determine the frequencies of the system. Such methods, however,

do not provide a means for constructing the eigenmodes or for handling degeneracies.

We apply the Werner-Cary method to a realistic accelerator cavity that was fabricated

at Fermi National Accelerator Laboratory (Fermilab) in 1999. The method is applied to

calculations performed with the VORPAL computational framework [2]. Previous analysis

of this cavity shape had been carried out using the MAFIA code (cf. [3]), with stair-step and

diagonal boundaries and cylindrical symmetry [4, 5]. Accelerator cavities are an essential

component of large collider experiments like the Large Hadron Collider. The shape, curva-

ture, and size of these cavities determine the performance of the cavities; simulations are

important in the designing of these cavities to maximize performance and minimize design

error. We show the ability to get frequencies accurate to less than a part in 105.

The complexities of the validation process will be focused on here as we illustrate the

process that was undertaken to determing the causes for discrepancies between computa-
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tional and experimental results. Our requirement for validation is that the discrepancies are

reduced to measurement and/or computational uncertainties. In the present case, we show

that the discrepancies are due to both computational error and error associated with the

cavity dimensions. The latter has two aspects. The first is that cavities cannot be fabricated

precisely to specifications, and so one must do a post-fabrication measurement of the cavity

dimensions. The second is that even those post-fabrication measurements have associated

uncertainties. For the particular case shown here, it is found that the greatest uncertainties

derive from the uncertainties in cavity dimensions. The computational error is smaller by

a few orders of magnitude. This is not too surprising, in that accelerator cavities are not

primarily designed to have low frequency sensitivity with respect to mechanical dimensions.

Nevertheless, this shows how realistic frequency sensitivities are taken into account in a

validation study.

We begin with a review of the broadly-filtered diagonalization method presented in

Ref. [1]. We then introduce the A15 accelerator cavity built at Fermilab. We describe the

details of the cavity and previous work on extracting frequencies and modes of this cavity.

The subsequentsection discusses our frequency computations from the specified dimensions

and their comparison with the measurements. We also consider resolution of the observed

differences, showing that dimensional uncertainties are dominant. We then present work on

how modes can be obtained using the Broadly-Filtered Filter Diagonalization Method. We

finally summarize and conclude.

BROADLY-FILTERED FDM

The Broadly-Filtered Filter Diagonalization Method (FDM) introduced in Ref. [1] is an

extension of the concepts presented in Refs. [6–10]. We review the method in terms of linear

operator L that represents a discrete ∇×∇× generated by the Yee method [11]. The field

of interest, s, is the elecric field, E, or the magnetic field, B. If we view Maxwell’s equation

in the second-order form

−
1

c2

∂2

∂t2
E(x, y, z, t) = ∇×∇× E(x, y, z, t) = LE(x, y, z, t), (1)

then the eigenvalue problem for ∇×∇× can be seen as a time evolution problem, relating

eigenvalues to frequencies.
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The broadly-filtered FDM is based on the idea that the linear operator, L, can be trans-

formed into block-diagonal form with one large block filtered out and the remaining small

block diagonalized by the singular value decomposition (SVD). The majority of the work

goes into the diagonalization, which requires finding a small, invariant subspace of the field

of interest. We generate this invariant subspace using a frequency filtering method based on

targeted excitations of Maxwell’s equations using a current density that is geared towards

the frequencies of interest. See Eq. (13).

The filtering is with respect to a FDTD discretization of Maxwell’s equations for which

the current source J(x, y, z, t) excites the electric and magnetic fields according to

∂B(x,y,z,t)
∂t

= −∇×E(x, y, z, t)

1
c2

∂E(x,y,z,t)
∂t

= ∇× B(x, y, z, t) − µ0J(x, y, z, t).
(2)

The current is defined as J(x, y, z, t) = f(t)Ĵ(x, y, z) where

f(t) =







2
[

sin(ω1(t−T/2))
t−T/2

− sin(ω2(t−T/2))
t−T/2

]

exp−σ2
ω(t−T/2)2/2 0 ≤ t ≤ T,

0. otherwise
(3)

Ĵ(x, y, z) has a pattern that encourages excitation of the desired modes in the frequency

range [ω1, ω2]. The parameter σω is determined by the separation of the frequencies in

[ω1, ω2] from the next nearest frequency value. If ω̂ < ω1 is the nearest frequency, then

σω <
|ω1 − ω̂|

5.68
(4)

and

T >
11.4

σω

(5)

ensures that ω̂ and all other outside modes are suppressed by at least O(1e-7). Here, we

have used the frequency amplitude of a Gaussian-modulated sinusoid.

If a K-degeneracy is known a priori to exist, then K different spatial currents, Ĵ, are

used yielding K simulations to extract the K-degeneracy. The Kspatial currents should be

chosen with an understanding of the symmetry of the cavity and the degenerate modes.

After the excitation is completed, the fields are temporally sampled at random grid points

and then can be represented as a linear combination of the desired modes. We then use this

knowledge to extract the desired frequencies and spatial mode patterns. To see this, consider
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the eigenvalue problem, Lvm = λmvm, and the discrete fields, sℓ, sampled in time. If we

define

rℓ = Lsℓ (6)

and use the fact that any eigenvector vm can be expressed as a sum over the temporal

samples according to

vm =
L

∑

ℓ=1

am,ℓsℓ, (7)

then applying L yields

λmvm =

L
∑

ℓ=1

am,ℓrℓ. (8)

Since we have sℓ and rℓ, Eqs. (7) and (8) can be solved for the λm (the eigenvalues) and the

coefficients am,l (allowing us to contruct the eigenvectors).

In practice, we only work with P randomly-sampled spatial components of the fields

yielding the generalized eigenvalue problem

Ram = λmSam, (9)

where the number of colums of R and S correspond to the number of temporal samples and

the number of rows correspond to the number of spatial samples. Eq. (9) can only be solved

when S is invertible, which requires L = P . In general, we prefer P > 2L implying we must

solve the generalized eigenvalue problem

S†Ram = λmS†Sam, (10)

using the SVD for S†S = V D2V †, where Dis diagonal and V is orthogonal. Since S†S may

be singular, D may have zeros on the diagonal, so we construct D̃ such that

D̃−1
ℓℓ =







D−1
ℓℓ

Dℓℓ

Dmax
> αcutoff

0 Dℓℓ

Dmax
≤ αcutoff

where αcutoff is a small value chosen to distinguish significant diagonal values from the

insignificant diagonal values. We then solve the eigenvalue problem

V (D̃)−2V †S† Ram = λmam, (11)

computing the eigenvalues λm. The coefficients, am, are then used to construct the field

pattern, i.e., the eigenmode, by using Eq. (7). We refer the reader to Ref. [1] for further

details.
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(a) Side View

Electric Probe

Bead−Pull

(b)End-on View

FIG. 1: A Side (a) and End-on (b) view of the A15 cavity. The center hole in the End-on view

labeled Bead-Pull was used for bead-pull experiments and the smaller off-center endplate hole

labeled Electric Probe held an electric probe that created a dipole perpendicular to the page.

A15 CAVITY

In Ref. [1] thirteen TM modes in a rectangular 2D cavity were found using the frequency

extraction algorithm. The standard Yee method was used to discretize Maxwell’s equations

and to evolve the electric and magnetic fields [11]. Here, validation is performed for an

extensively tested stack of four unpolarized dumbbells from Fermilab. We refer to this

stack, which is pictured in Fig. 1, as the A15 cavity.

The A15 cavity was designed in 1999 for the development of a separated K+ beam [12].

It is a deflecting mode cavity designed to operate at 3.9 GHz, i.e., the π mode. The cavity

shape is determined by parameters such as the equatorial radius (b), iris radius (a), iris

curvature (ri), equatorial curvature (re), and cell half length (g/2), displayed schematically

in Fig. 2. For the A15 cavity, these parameters are 47.19 mm, 15.00 mm, 3.31 mm, 13.6

mm, and 19.2 mm.

The endplate holes observed in the end-on view of Fig. 1 were used for experimental

purposes. The large center hole positioned on the centerline of the cavity (radius=3.175

mm) was used for bead-pull experiments. One of the off-center holes (radius=1.5875 mm)

provided space for an electric probe that created a dipole. Furthermore, an equivalent set

of holes exists on the other endplate. Cavities used within working accelerators would be

without these holes; however, these holes only have a small effect on frequencies (tens of

kHz) and validation.

In Ref. [5] the frequencies of the A15 cavity were reported from bead-pull experiments.
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f0 f1 f2 f3 f4

Exact 3902.810 3910.404 3939.336 4001.342 4106.164

Computed 3900.512 3908.552 3937.325 4000.107 4103.616

TABLE I: The first line is the set of frequencies (in MHz) of the five deflecting modes for the

A15 cavity. Measurements were performed at Fermi National Accelerator Laboratory in 2000

by Bellantoni et al. and presented in the unpublished note [5]. The second line is the initial

set of computations using the original specifications in [5] and discussed in the section Frequency

Calculations.

The frequencies were corrected for temperature, barometic pressure, and relative humidity

to the frequency that would be measured in a vacuum at 25◦ C yielding the values presented

in Table I. In addition to the TM110 modes, Ref. [5] also had frequencies for the TM010

modes as well as other higher-order modes.

Applying the broadly-filtered FDM to the A15 cavity requires boundary methods that

approximate Maxwell’s equations on the cells cut by the cavity boundary. We used the

Dey-Mittra method [13] for solving Maxwell’s equations on the cavity’s curved boundaries.

The Dey-Mittra method requires that one exclude small fractional areas, with the exclusion

a

r

g/2

b
ir

re

z

FIG. 2: Schematic of the A15 cavity describing the shape in relation to the equatorial radius (b),

the iris radius (a), the iris curvature (ri), the equatorial curvature (re), and the cell half length

(g/2)
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depending on the ratio fDM ≡ ∆t/∆tCFL of simulation time step to the CFL time step of a

system without embedded boundaries. A method for choosing which areas are excluded that

guarantees numerical stability is discussed in [14]. For our simulations, we used fDM = 0.1.

FREQUENCY CALCULATIONS

Previously, we described how the frequency filtering approach for Maxwell’s equation

involved selecting an appropriate time-varying current that selectively excites a given fre-

quency range. Defining fL = 3902 MHz and fU = 4110 MHz, the frequency filtering aproach

requires knowledge of the separation between [fL, fU ] and the nearby modes. From Ref. [5]

it was known that the mode nearest to the range was the mode at fb = 4320 MHz. When

previous calculations or experiments are not available, a few quick simulations followed by

FFTs can identify rough locations of modes.

To reduce this nearest unwanted mode by h = 1e-7, we must run the excitation for at

least 200 oscillations at 4000 MHz, since

fT =
32

π

f

|fb − fU |
. (12)

See Ref. [1] for details. This suppresses modes more than 200 MHz away from fU , i.e.,

frequencies above 4310 MHz. Adding the time for sampling of π/|fb − fU | the total number

of oscillations is approximately 260 oscillations.

We have also judiciously chosen the spatial pattern, Ĵ(x, y, z), using a priori knowledge

of the modes of interest. When there is no known spatial pattern, the user can create a

random pattern for Ĵ. For the A15 cavity, we used the spatial pattern given by

Ĵx(x, y, z) := jT (y, z) [a1 cos(2kx) + a2 cos(4kx) + b1 cos(kx) (13)

+ b2 sin(3kx) + b3 sin(kx)]

where k = π/0.1536, jT (y, z) = y or z, and Ĵ = (Ĵx, Ĵy, Ĵz)
T . The coefficients am and bn

are chosen at random for a given simulation, thus running multiple simulations to properly

account for the two polarizations split by only a few kHz at each frequency value just requires

that we have random coefficients for each simulation.

We computed the frequencies for different cell sizes. In all cases, we used ∆y = ∆z =

1.25∆x, where x denotes the longitudinal coordinate. The cell size ∆xvaried from 0.533 mm

8



to 0.267 mm implying that the cell sizes, ∆y, and ∆z, vary from 0.666 mm to 0.333 mm,

thus resolving the hole sizes of 3.175 mm and 1.5875 mm. At the given resolutions and the

given Dey-Mittra fractional face parameter, it was observed that the Yee method combined

with the Dey-Mittra boundary algorithm was second-order.

Since the method was second-order, Richardson extrapolation could be used to achieve a

third-order method, i.e., one makes the assumption,

ωi ∼ ω0 + α/N2
i , (14)

where ωi is the ith computed frequency, ω0 is the true frequency, Ni is the number of cells

across the simulations in any particular direction (given that all directions are refined to-

gether) for that computation, and α is the error coefficient. Using two computed frequencies

at two different resolutions, one gets two equations generated from Eq. (14) for both ω0 and

α. Given more than two points, one can also determine the frequency from a regression

analysis. Using these multiple means of extraction to compute the frequency and then find-

ing the standard deviation of the mean of those results, we were able to deduce that the

computational error was O(10 − 40) kHz for the range of frequencies. That is, the modes

can be found to an accuracy that is less than a part in 105.

In Fig. 3, we have plotted the convergence of computed frequencies and the value obtained

with Richardson extrapolation as an unfilled circle on the ordinate axis. Also shown on the

ordinate axis are the experimental values presented in Ref. [5]. Note that there are two

polarizations at each frequency value with a slight split in the values. These values differ by

anywhere from 3-6 kHz. An averaged value has been used in the plots and in the Richardson

extrapolated values.

In Fig. 4, we have plotted a slice of the Ex component in the yz-plane for one of the

two polarizations of the π mode. We have produced this plot for various rotations about

the longitudinal direction of the cavity in the computational domain the method’s ability to

capture the dependency of the splitting of the polarizations on the endplate holes and not

the grid. The polarization that is not shown was orthogonal to the one in the figure. When

no endplate holes are used, the two polarizations are still orthogonal but their configuration

is based on the transverse components of the currents used to excite the modes, i.e. Eq. (13).

From Fig. 3 the discrepancies between the computed and measured values are apparent.

The values obtained with Richardson extrapolation are also presented numerically in Table I.
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FIG. 3: Convergence plot (fCN ) of the frequencies of the five deflecting modes for the cavity with

the dimensions specified in Ref. [5]. The abscissa represents the grid resolution and the ordinate

corresponds to the frequency value in MHz. Each plot has on the ordinate the experimental values

(fEN ) from Table I for reference purposes and the Richardon’s extrapolated values as unfilled circles.

They are seen to differ from the experimental measurements in Table I by 1.5–2.5 MHz. This

difference significantly exceeds the computational uncertainty. Hence, we must understand

the origin of the difference.

VALIDATION: RESOLUTION OF DIFFERENCES

The differences (1.5–2.5 MHz) between the computed values and the experimentally mea-

sured values of Table I exceed the estimated computational uncertainty; in this section we

describe how we resolved these differences. We began by considering possible sources of the

discrepancy: computational error, missing physics in the simulation, and cavity (geometry)

measurement error.
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FIG. 4: Slice of the Ex component for one of the two polarizations of the π mode for the various

rotations in the computational domain of the cavity. The other polarization was orthogonal to the

one shown and the difference in frequency between the two polarizations was only a few kHz. Also

to be noted is the arrangement of the polarization due to the endplate hole alignment.

As noted earlier, we believed the computed frequencies had errors far below 1 MHz,

since the software had been previously verified by comparison against analytical results (e.g,

for spherical and pillbox cavities); that is, we believed the software was correctly solving

the idealized problem (Maxwell’s equations in a uniform, lossless medium surrounded by a

perfect conductor). However, our cavity differed qualitatively from cavities with analytical

solutions because our cavity had small holes in its endplates (observed in Fig. 2) that were

not well resolved by the computational mesh. Completely removing all holes from the

simulation shifted resonances by less than 125 kHz, and just removing the small off-center

holes only shifts the resonances by 10s of kHz. See Fig. 6. Therefore, any error due to poor

resolution of all of holes would very likely be less than 125 kHz, not enough to explain the

differences, which are greater than 1 MHz.

At the top of our list of missing physics were material properties that vary from the ideal

or cannot be precisely determined: for example, variation in the dielectric constant of air,

or skin-depth effects in the cavity walls. A simple estimate shows that the modification

due to the finite skin depth is too small to account for the discrepancy by a few orders of

magnitude. As for the atmosphere, Ref. [5] corrected for this; the remaining uncertainty in

the dielectric constant of air would cause only a ±95 kHz variation, which is too small to

explain the differences between computation and experiment.

Next, we considered possible differences between the cavity specifications (used in the
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FIG. 5: Convergence plot (fCN ) of the frequencies of the five deflecting modes. The abscissa

represents the grid resolution and the ordinate corresponds to the frequency value in MHz. Each

plot has on the ordinate the experimental values (fEN ) from Table I for reference purposes as well

as the Richardson extrapolated values as unfilled circles. The geometrical measurements used for

the A15 cavity were those found in Reference [5] but with a shifted equatorial radius to account

for machining error. The actual equatorial radius was 47.165 mm versus the original 47.19 mm.

simulation) and the actual cavity measurements, e.g., due to machining error. Burt et al. in

Ref. [15] had recently investigated the sensitivity of frequency to various cavity dimensions

like equatorial radius,iris radius, and cell half length for a similar superconducting dipole

cavity operating at 3.9 GHz. The sensitivity of the frequency with respect to the equatorial

radius was found to be −80.6 MHz/mm. The sensitivities for iris radius and cell half length

were measured to be −25.8 MHz/mm and 17.4 MHz/mm, respectively. A typical machining

error of 1 mil or 0.025 mm could therefore explain the observed discrepancy.

With this in mind, we computed sensitivities to equatorial radius (δr ≡ ∂ω
∂r

) and cell

length (δz ≡ ∂ω
∂z

) by simulating cavities with slightly different equatorial radius r and then
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FIG. 6: Convergence plot of the lowest frequency (the π mode) of the A15 cavity for the cases

of all endplate holes included, no holes included, and only the center hole included. The values

on the ordinate are the Richardson extrapolated values. The maximum difference of values is 125

kHz using the Richardson extrapolated values. Note that removing the small off-center holes only

shifts the frequencies by tens of kHz.

with slightly different cell length z (with all cells the same). The resulting sensitivities (for

f0) are δr = −76.0 MHz/mm, and δz = 13.4 MHz/mm, affirming the possibility that typical

machining tolerances explain frequency differences greater than 1 MHz.

Consequently, a careful re-measurement of the A15 cavity was made at Fermilab. The

Cordex, a coordinate measurement machine, showed that the average equatorial radius in the

fabricated cavity differed by about 0.025 mm from the specified value [5]. The average iris

radius was only off by about 0.003 mm, which could be ignored given the small sensitivity

of frequency to iris radius. The cell length was measured using calipers with multiple

methodologies. From these measurements, we determined that the equatorial radius was

47.165 ± 0.007 mm (specification: 47.19 mm), and the cell length of 38.412 ± 0.025 mm

(specification: 38.4 mm).

We then simulated the cavity, changing the radius to the average measured radius, re-

sulting in the frequencies shown in Fig. 5, which are much closer to the measured values.

For comparison with Table I, we include the Richardson extrapolated values for the smaller

equatorial radius with the original experimental values in Table II. Finally, for the mode

f0, we corrected the frequency to that of a different-length cavity using the calculated sen-

sitivity δz, yielding a computed frequency f0 = 3.9025 GHz, which is only 310 kHz lower
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f0 f1 f2 f3 f4

Exact 3902.810 3910.404 3939.336 4001.342 4106.164

Computed 3902.514 3910.509 3939.155 4001.757 4105.940

TABLE II: The first line is the set of frequencies (in MHz) of the five deflecting modes for the

A15 cavity. The second line is the set of computations using the altered specifications with an

equatorial radius reduced to 47.165 mm from 47.19 mm.

than the measured frequency, 3.90281 GHz (differing by less than a part in 104). The dif-

ferences between specified and fabricated cavities appear to explain the differences between

computational and measured frequencies.

Having understood the major source of the discrepancy, we now review the known ex-

perimental uncertainties and compare them to the estimated computational error for f0.

Uncertainty in the dielectric constant of air leads to an uncertainty (in the corrected fre-

quency for the cavity in vacuum) of ±95 kHz. Uncertainty in cavity radius leads to a

frequency uncertainty of ±530 kHz; uncertainty in the length leads to ±340 kHz. Adding

these in quadrature yields an experimental uncertainty of 640 kHz. We believe the com-

putational error is negligible in comparison, on the order of 10–40 kHz. The discrepancy

between computation and measurement was 310 kHz, which falls well within the measure-

ment uncertainty. Therefore, the simulation results agree with experiment to a part in 104;

experimental limitations prevent more precise validation.

Fig. 7 provides a visual analysis to understand whether this difference is significant.

Overall this is a plot of contours of frequency in the space of equatorial radius (abscissa) and

half length (ordinate). The band between the two black lines corresponds to the measured

frequency (3.90281 GHz) with width given by the computational and atmospheric correction

uncertainties (±124 kHz). The central dot is the best computational value for the best

measured values of equatorial radius and half length. Finally, the ellipse is one with elliptical

radii given by the uncertainties in equatorial radius and half length. The fact that the ellipse

overlaps the band indicates that the discrepancy between computed and measured frequency

is within the sum of the various uncertainties. This figure also shows that the dominant

contributor to uncertainty in the comparison is due to the lack of precise knowledge of the

dimensions of the cavity.
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MODE EXTRACTION

As has been noted previously, an important property of this method is the ease with

which modes can be extracted. To this end, we now consider the extraction of the five

deflecting modes (i.e., the eigenvectors of the operator). Furthermore, for the π deflection

mode, we present a complete plot consisting of electric field lines, magnetic field lines, and

the magnetic field magnitude on the cavity surface.

To begin, we revisit the algorithm for extracting modes and present the procedure with re-

spect to the VORPAL software [2], a finite-difference time-domain electromagnetic particle-

in-cell code turned into an eigensolver for this work. VORPAL is a massively parallel code

that stores data in the Hierarchical Data Format (HDF5) following the VizSchema [16] con-

ventions. This permits dumping of fields (magnetic or electric, for example) at arbitrary

times for viewing with tools like VisIt [17].

Once the generalized eigenvalue problem S†Ram = λmS†Sam is solved, the modes can be
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FIG. 7: Plot of the dependency of frequency on the equatorial radius and the cell length produced by

calculating frequency gradients dependent on varying both parameters and extracting frequencies.

Also shown is the range of experimental values around the equatorial radius and cell length value,

corresponding to 3902.810 MHz with an experimental error of ±95 kHz, and the range of computed

values given dimensional uncertainties.
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assembled according to

vm =

L
∑

ℓ=1

am,ℓsℓ. (15)

While am is the eigenvector of S†Ram = λmS†Sam, vm is the eigenvector for the discrete

operator ∇ × ∇×. In a VORPAL simulation, the vectors sℓ correspond to dumps of the

magnetic (or electric) field at given times. A requirement is that all temporal dumps corre-

spond entirely to the magnetic (or electric) field when constructing a magnetic (or electric)

field mode.

As each sℓ is represented by an HDF5 file, we must take linear combinations of multiple

HDF5 files to assemble the modes. Python and its PyTables package are used to perform the

assembly on a single processor. For approximately 1.05 million grid points it took less than

a minute to perform a single mode assembly. In Fig. 8 we see the magnetic field of the five

deflecting modes on a grid with a resolution of 1.07 × 1.3 × 1.3 mm3. The π mode exhibits

expected behavior. We also see the behavior exhibited by remaining deflecting modes.

In Fig. 9 we have assembled both the electric field and the magnetic field and also used a

Python script to obtain the magnetic field magnitude on the cavity surface for the π mode.

The magnetic field magnitude shows areas on the cavity that may result in quenching, which

is critical information that can be used by engineers and physicists considering cavity design.

CONCLUSION

The frequency and mode extraction algorithm proposed in Ref. [1] in combination with

the VORPAL computational framework [2] has been shown to efficiently produce frequencies

and modes for a realistic accelerator cavity, in this case a stack of four unpolarized dumbbells

assembled in the form of a cavity that was designed in the past for an experimental program

at Fermilab. We also showed that this method can extract the modes of the cavity. We

estimated that this method, along with Richardson extrapolation, was able to compute

frequencies to better than a part in 105.

We further outlined the validation steps needed for determining whether this method is

accurate. Given that the computational software had been verified, we proceeded through

the validation process of considering errors in the measurement, failure to include relevant

physics, and differences between the experiemental and computational geometrical models.
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Ultimately, we found that the computational frequency and the experimentally measured

frequency were consistent to within the uncertainties (roughly 1 × 10−4), with the largest

contributor to uncertainty resulting from imprecisely knowing the dimensions (particularly

the equatorial radius) of the cavity. This is important, as it provides some guidance for

future comparisons of calculations with measurements – namely, one must understand the

dimensional uncertainties as a first step.
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FIG. 8: Lineout of z-component of the magnetic field (Bz) at r=0 for the five deflecting (TM110)

modes of the A15 cavity. Simulations were ran at a resolution of 1.07× 1.3× 1.3 mm3 resulting in

approximatley 1.05 million grid points. Each mode reconstruction, which consisted of constructing

an hdf5 file as a linear combination of 20 hdf5 files, took less than a minute to perform.
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FIG. 9: (Color online) Full representation of π mode for the A15 cavity illustrating the electric

(blue/darker) and the magnetic (red/lighter) field lines and the magnitude of the magnetic field

painted on the inside of the cavity. All modes were constructed from simulations with post-

processing to permit representation within the cavity. Image used with permission of the DOE

SciDAC Office.
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