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We present a search for a standard model Higgs boson produced in association with a W boson
using 2.7 fb−1 of integrated luminosity of pp̄ collision data taken at

√
s = 1.96 TeV. Limits on the

Higgs boson production rate are obtained for masses between 100 GeV/c2 and 150 GeV/c2. Through
the use of multivariate techniques, the analysis achieves an observed (expected) 95% confidence level
upper limit of 5.6 (4.8) times the theoretically expected production cross section for a standard model
Higgs boson with a mass of 115 GeV/c2.

PACS numbers: 13.85.Rm, 14.80.Bn
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The standard model (SM) of particle physics has
proven to be an extremely successful theory through its
accurate predictions of many experimental results over
the last few decades. Although the Higgs mechanism [1]
was proposed in the 1960’s, the fundamental particle it
predicts, the Higgs boson, has yet to be discovered. The
mass of the Higgs boson is a free parameter of the SM.
However, direct limits from the LEP experiments exclude
Higgs boson masses below 114.4 GeV/c2 [2] at 95% con-
fidence level (C.L.). Taking into account additional elec-
troweak precision measurements places a 95% C.L. upper
limit on the mass of a SM Higgs boson of 185 GeV/c2 [3].
Recently, combined results from the CDF and D0 experi-
ments have excluded at the 95% C.L. Higgs boson masses
between 160 and 170 GeV/c2 [4].

For Higgs boson masses below 135 GeV/c2, bb̄ is the
main decay mode [5]. In this decay, each b quark frag-
ments into a jet of hadrons and the Higgs boson signal
may be reconstructed as a peak in the invariant mass dis-
tribution of these two jets. At the Tevatron associated
production with a W boson (WH), where the W boson
decays into a lepton (ℓ) and a neutrino (ν), provides the
most sensitive search channel in this mass range, since
the requirements of a charged lepton candidate and of
large missing transverse energy dramatically reduce the
backgrounds from multijet processes. Both Tevatron ex-
periments, CDF and D0, have published search results for
WH → ℓνbb̄ [6–8]. Here we describe a new search for the
Higgs boson in the WH → ℓνbb̄ channel with increased
signal acceptance that employs improved analysis tech-
nique and 2.7 fb−1 of pp̄ collision luminosity collected by
the CDF experiment.

The CDF II apparatus [9, 10] is a general-purpose de-
tector located at the Tevatron collider at Fermilab. The
detector consists of a solenoidal charged-particle spec-

Amherst, Massachusetts 01003, bUniversiteit Antwerpen, B-2610
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United Kingdom, dChinese Academy of Sciences, Beijing 100864,
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trometer which includes a silicon micro-strip detector
array surrounded by a cylindrical drift chamber in a
1.4 T axial magnetic field. Outside the tracking cham-
bers, the energies of electrons and jets are measured
with segmented sampling calorimeters. Surrounding the
calorimeters are layers of steel instrumented with planar
drift chambers and scintillators used for muon identifica-
tion.

Events are collected with energetic lepton triggers that
require one of the following signatures [11]: a high-pT

electron candidate, a high-pT muon candidate, or missing
transverse energy (6ET from the neutrino escaping detec-
tion) with an energetic forward (|η| > 1.2) electromag-
netic cluster (designed to accept forward electrons from
the W boson decay). An additional trigger is included
that does not explicitly require an identified lepton, but
instead requires large 6ET plus two well-separated jets in
η − φ space [12]. For these events, the charged lepton
from the W boson decay is reconstructed only as a high-
pT isolated track. The addition of this non-triggered lep-
ton category increases WH → ℓνbb̄ signal acceptance by
approximately 25% [13].

Candidate events are selected by requiring a lepton
candidate (triggered lepton or isolated track) with pℓ

T >
20 GeV/c, 6ET > 20 GeV, and two jets with |η| < 2.0
and ET > 20 GeV after correcting for instrumental ef-
fects [14]. At least one of the jets must have a dis-
placed vertex (b tag) defined by the SECVTX algorithm [15]
signaling that the jet likely originated from a b quark.
An additional b-tagging algorithm that relies on high-
impact-parameter tracks within jets, JETPROB [11], is
used to increase the acceptance for double-tagged events.
Vetoes are applied to remove events with more than one
lepton and events without leptonic W boson decays [8].

The Higgs boson events are modeled with the
pythia [16] MC generator combined with a parametrized
response of the CDF II detector [17, 18] and tuned to the
Tevatron underlying event data [19]. After basic event se-
lection, the total expected signal event yield in the cur-
rent dataset is 5.1 ± 0.5 (3.5 ± 0.4) single (double)-tag
events for a Higgs boson with a mass of 115 GeV/c2 (see
Table I for other masses).

Models for background processes are derived from a
mixture of MC simulation and data-driven techniques [8].
Important backgrounds to WH → ℓνbb̄ include events
with a W or Z boson produced in association with jets.
These processes may include true b jets as in W + bb̄,
or other jets that have been misidentified as b jets like
W + cc̄ and W + jj where j refers to jets not originating
from heavy-flavor quarks. Events with a top quark (tt̄
and single top quark production), diboson events, and
multijet events without W bosons also contribute to the
sample composition.

After applying the event selection defined above, the
background expectation (1896 ± 301 for single-tag and
316±60 for double-tag events) is significantly larger than
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the expected number of Higgs boson signal events. We
have indicated that the dijet invariant mass is a use-
ful variable for separating the Higgs boson signal from
the dominant backgrounds, but the background challenge
here requires that we extract as much discrimination as
possible from the full information available in each event.
Multivariate techniques allow us to collect the discrimi-
nating power of many variables into a single output vari-
able. We take advantage of the benefits from different
techniques [20] by combining the discriminating power of
two separate analyses that use the same event selection
but follow different multivariate strategies. We validate
the predictions of the background model for each input
variable in data control regions. We optimize the dis-
criminants separately for each Higgs boson mass hypoth-
esis, and construct the discriminants so that they are not
sensitive to statistical fluctuations in the background and
signal samples. We first summarize the two analyses, and
then discuss their combined result.

The first analysis uses an artificial neural network
(NN, [21]) trained to discriminate WH → ℓνbb̄ signal
from the background using the information contained
in the following kinematic variables: the invariant mass
of the two jets plus an additional ‘loose’ jet [22] if it
lies close to one of the primary jets (angular separation
∆R =

√

(∆η)2 + (∆φ)2 less than 0.9); the vector sum of

the transverse energies, (
∑

jets
~ET + ~pT

ℓ+ 6~ET ); the scalar
sum of the lepton and jet transverse momenta minus the
6ET , (

∑

jets ET + pT
ℓ − /ET ); the scalar sum of the loose

jet transverse energy, (
∑

jets Eloose
T ) [22]; the minimum

invariant mass of the lepton, 6~ET , and one of the two jets
(min(Mℓ, /ET ,j1 , Mℓ, /ET ,j2)); and ∆R between the lepton
and the momentum of the neutrino [23]. The strongest
discriminating variable of the NN is the dijet mass variable
shown in Fig. 1(a).

The second analysis uses a boosted decision tree tech-
nique (MEBDT, [24, 25]). The notation MEBDT underscores
the use of inputs derived from the matrix-element ap-
proach developed in references [26, 27]. In the ma-
trix element method, probability densities are calculated
for each event using the measured kinematic quantities.
Some of the best discriminating inputs to the decision
tree include ratios of the signal event probabilities to var-
ious combinations of the background probabilities, and
an event probability discriminant (EPD) defined as the
ratio of the signal event probability to the sum of the sig-
nal and all background event probabilities as in Ref. [26].
The EPD distributions for signal and backgrounds are
shown in Fig. 1(b).

The MEBDT analysis also uses the output of a neural
network that has been trained to separate jet flavors [28].
This network is based on secondary vertex tracking in-
formation and provides a continuous variable which helps
to identify the portion of the background that does not
contain real b-quark jets. The MEBDT analysis also in-

cludes the following inputs: the dijet mass, the ET of
both jets and 6ET of the event, the difference in azimuthal
angles (∆φ) between the leading jet and the 6~ET , the

∆φ between the lepton and the 6~ET , the pT and the η
of the lepton, the scalar sum of the transverse energies
HT =

∑

jets ET + pT
ℓ + /ET , the cosine of the angle be-

tween the lepton and leading jet, and the transverse mass

of the W boson MT (W ) =
√

2(pℓ
T /ET − ~p ℓ

T · /~ET ).

We performed the NN and the MEBDT analyses indepen-
dently (see Table I), the results of which are partially
correlated. The correlations between the discriminant
outputs range between 50% and 75% for the major back-
ground and signal samples. These correlations, while
high, do suggest that a sensitivity gain can be obtained
by combining the two approaches. We combine the NN

and MEBDT discriminants using a super-discriminant (SD)
technique first developed in the CDF single top quark
search [26]. Here, a neural network using the discrimi-
nant outputs of the NN and MEBDT as inputs is optimized
using genetic algorithms [29–31]. Three separate neu-
ral networks (one for each b-tag category: single SECVTX,
SECVTX+JETPROB, and double SECVTX) are trained to sep-
arate the WH → ℓνbb̄ signal from the backgrounds for
each Higgs boson mass using events from the signal and
background samples described above. The distributions
of the SD outputs of the neural network trained for a
Higgs boson mass of 115 GeV/c2 are shown in Fig. 1(c)
for the combined double-tag categories and the single-tag
category. The SD analysis improves the sensitivity com-
pared to the best individual analysis by 5-13% for the
Higgs boson masses studied.

Finding no evidence for a Higgs boson signal, we cal-
culate a Bayesian C.L. limit for each mass hypothesis
based on the combined binned likelihood of the SD out-
put distributions. The two lepton categories (triggered
leptons and isolated tracks) and three tag categories yield
six independent channels that are included in the likeli-
hood. Systematic uncertainties on the rate of signal and
background production from jet energy scale, b-tagging
efficiencies, lepton identification and trigger efficiencies,
the amount of initial and final state radiation, and the
parton distribution functions are included in the limit
calculation (for details on systematic studies see [8, 13]).
Uncertainties on the discriminant output shapes were
studied but found to have a negligible impact on sen-
sitivity. A posterior density is obtained by multiplying
this likelihood by Gaussian prior densities for the back-
ground normalizations and systematic uncertainties leav-
ing σ×B(H → bb̄) with a uniform prior density. A 95%
C.L. limit is then determined such that 95% of the pos-
terior density for σ×B(H → bb̄) falls below the limit [32].
Removing systematic uncertainties completely from the
limit calculation improves the expected limit by about
15%.

Table I shows the expected and observed limits calcu-
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FIG. 1: The distribution for the dijet mass variable used in the NN analysis (a), the event probability discriminant used in the
MEBDT analysis (b), and the SD output distribution (c), for double b-tag events (top) and single b-tag events (bottom). The
background is normalized to its prediction and the signal expectation of a Higgs boson mass of 115 GeV/c2 is scaled to 10
times the SM prediction. Statistical errors are shown for the data points.

lated for different Higgs boson masses. The limits are
displayed graphically in Fig. 2. We find an observed (ex-
pected) 95% C.L. limit of 5.6 (4.8) times the SM pre-
diction of the production cross section for a Higgs boson
mass of 115 GeV/c2 (NLO theory predicts σ×B(H →
bb̄)= 136 fb [33]). At this mass, the expected limit
has improved by a factor of 1.7 over the 1.9 fb−1 re-
sult from CDF [8], which corresponds to a 40% improve-
ment in sensitivity over what is expected from the in-
creased dataset [34]. The additional gain comes from
our increased lepton acceptance through the inclusion of
a non-triggered lepton category, a continuous jet flavor
separator variable which improves discrimination of light-
quark jets mistakenly tagged as b jets, and the use of
new multivariate techniques. The excess in the observed
limit at higher masses is due primarily to the slight ex-
cess observed at 150 GeV/c2 in the dijet mass variable
(see Fig. 1(a)) and is an indication of the large weight
this variable carries in the full multivariate analysis. The
successful previous application of many of the techniques
to the CDF single top analysis [26, 35], and the consis-
tency of results obtained with NN and MEBDT algorithms
provide further confidence in the robustness of the mul-
tivariate techniques. The increasing Tevatron dataset
together with future analysis improvements, a combina-
tion of results from all Higgs boson production and decay
modes, as well as the combination with the results from
the D0 experiment [4], will continue to provide improved
levels of sensitivity to the SM Higgs boson searches at
the Tevatron.
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TABLE I: The number of signal events expected to be accepted by our selection, the SM prediction for σ×B(H → bb̄), and
the expected and observed limits at 95% C.L. on the Higgs boson production cross section relative to the SM value as shown
in Fig. 2. The expected limits are also included for the NN and MEBDT analyses individually.

Mass (GeV/c2) 100 105 110 115 120 125 130 135 140 145 150

Exp. signal (events) 12.8 11.7 10.3 8.6 6.9 5.6 4.3 3.1 2.1 1.4 0.9

SM σ×B(H → bb̄) (fb) 232 201 169 136 104 83 63 45 30 20 12

Exp. NN (95% C.L./SM) 4.3 4.6 5.0 5.8 6.9 8.2 10.0 13.8 19.4 28.9 43.2

Exp. MEBDT (95% C.L./SM) 3.8 4.0 4.5 5.2 6.3 8.0 10.0 13.4 19.2 27.0 48.7

Exp. combination (95% C.L./SM) 3.5 3.8 4.1 4.8 5.9 7.2 8.7 12.2 17.5 25.6 40.5

Observed (95% C.L./SM) 3.3 3.6 4.9 5.6 5.9 8.0 8.9 13.2 26.5 42.1 75.5
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