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Abstract

Coherent transverse oscillations of a bunched beam are consid-
ered at space charge dominated impedance and synchrotron motion
taken into account. General equation for the bunch eigenmodes is
derived, its exact analytical solution is found for a boxcar bunch at
linear synchrotron oscillations, and numerical solutions are presented
for other distributions. Both low and high synchrotron frequency ap-
proaches are considered and compared, fields of their application are
established, and some estimations are proposed for the intermediate
region.

1 Introduction

Transverse instability of a bunched beam with synchrotron oscillations taken
into account was considerer first by C. Pellegrini [1] and M. Sands [2]. Coher-
ent oscillations of the bunches were presented as a sum of uncoupled modes
∝exp (imφ) where φ is synchrotron phase. After that, F. Sacherer [3] inves-
tigated this effect in more depth including so called radial modes describing
dependence of the particles displacement on synchrotron amplitude.

Space charge effects were not taken into account in these works. It has
been made first in paper [4] where space charge dominated impedance was
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considered. It was shown that most of the bunch modes become stable due
to Landau damping which is enhanced because of an additional tune spread
produced by the space charge. The only mode which never prone to this kind
of the damping is so called rigid mode.

However, this conclusion was made at the assumption that the space
charge tune shift is small in comparison with synchrotron frequency – the
condition which is violated very often. Some simple models (air-bag, square
potential well) were examined later in paper [5] without these restrictions.

Low synchrotron frequency limit was considered recently in Ref. [6] at ar-
bitrary distribution. However, most of presented there results are erroneous,
first of all because of using of mathematically incorrect expressions like

∫

0

−∞

exp(−iΨ)Ψ dΨ = 1, etc.

(some relevant details are commented in the text below).
In presented work, the problem is investigated at any distribution, both

at small and large relation of tune shift to synchrotron frequency. However,
expected instability growth rate is assumed to be enough small in all the
cases:

Im ω ≪ Ωs, Im ω ≪ Ω0∆Q

where Ωs and Ω0 are synchrotron and revolution frequencies, ∆Q is beta-
tron tune shift. The assumption allows to solve the problem in 2 stages:
(i) determination of the bunch eigenmodes with space charge only; (ii) and
investigation of their instability produced by additional wake field. The first
point is considered in detail in presented work including the items:

• integral-differential equation of the eigenmodes is derived;

• its exact analytical solution for a boxcar bunch is first obtained and
applied further to test different particular models;

• approximate differential equation is developed at low synchrotron fre-
quency, and its analytical or numerical solutions are presented at dif-
ferent distribution functions;

• the same distributions are investigated in opposite case of high syn-
chrotron frequency using uncoupled multipole model;

• applicability of different models is discussed by comparison of these
ultimate cases.
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It is presumed that bare (without space charge) betatron and synchrotron
oscillation are linear. There are strong grounds to believe that their nonlin-
earity would enhance the Landau damping.

2 Basic equation for eigenmodes

We will start from equation of betatron oscillations of single particle:

d2x

dt2
+ Ω2Q2x =

eE
(

θ, x − X(t, θ), y
)

mγ3
+

eG(t, θ)

mγ
(1)

where Ω and Q are momentum-dependent angular velocity and tune, E is
space charge electric field, and eG is Lorenz force per particle due to all other
sources (resistive wall, cavities, etc.). In the beginning, we will neglect this
part to find eigenfunctions (e.f.) and eigenvalues (e.v.) of the problem at
G ≪ E/γ2. It should be taken into account later as a small perturbation to
get additions to the e.v., including the instability growth rate.

The field E depends on the particle deviation from the bunch center:
longitudinal θ and transverse x−X(t, θ) where X(t, θ) is the beam offset at
azimuth θ (y-offset is presumed to be 0). Averaging Eq. (1) over all particles
near point (θ, u) of longitudinal phase space, obtain equation for the function
X(t, θ, u) which is a local displacement of the beam in this point:

d2X

dt2
+ Ω2Q2X =

e

mγ3

∞
∫

−∞

E(θ, x + X − X, y) ρ⊥(x, y) dxdy. (2)

where ρ⊥(x, y) is normalized steady-state beam density. Because both X and
X are small in comparison with the beam diameter, it is possible to expand
E in Taylor series resulting in

d2X

dt2
+ Ω2Q2X = 2Ω2Q∆Q(θ) (X − X) (3)

where ∆Q(θ) is the space charge driven tune shift at azimuth θ averaged
over transverse coordinates:

∆Q(θ) =
e

2mγ3Ω2Q

∞
∫

−∞

∂E

∂x
(θ, x, y)ρ⊥(x, y) dxdy. (4)
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(it is taken into account that ρ⊥ and E are even and odd functions of x). For
an elliptical beam of constant density, ∆Q coincides with usual incoherent
tune shift. For Gaussian beam, ∆Q is a half of tune shift of small oscillations.
Other details can be found in Ref. [8].

Because ∆Q ≪ Q, Eq. (3) can be replaced by first order equation:

dX

dt
+ i Ω QX ≃ i Ω∆Q (X − X). (5)

Also, it is necessary to take into account that d/dt is actually total derivative
over time including longitudinal motion:

d

dt
=

∂

∂t
+

dθ

dt

∂

∂θ
+

du

dt

∂

∂u
=

∂

∂t
+ Ωs

∂

∂φ
(6)

where u ∝ p is normalized momentum, φ and Ωs are phase and frequency
of synchrotron oscillations. We will look for solutions of obtained equation
in the form:

X(t, θ, u) = Y (θ, u) exp
(

− iωt − i(Q0 − ξ/η) θ
)

(7)

where ξ = dQ/d(ln p) and η = −d(ln Ω)/d(ln p) are chromaticity and slip-
page factor, and subindex ’0’ marks central momentum. It allows to exclude
dependence of Ω and Q on momentum in Eq. (5) resulting in:

(ω − Ω0Q0)Y + i Ωs
∂Y

∂φ
= −Ω0∆Q(θ) (Y − Y ). (8)

Further we will use the notations

ω − Ω0Q0

Ω0∆Q(0)
= ν,

Ωs

Ω0∆Q(0)
= µ (9)

to represent Eq. (8) in the form:

ν Y + i µ
∂Y

∂φ
= −ρ(θ)

ρ(0)
(Y − Y ). (10)

where ρ(θ) is linear bunch density at longitudinal distribution function F :

ρ(θ) =

∞
∫

−∞

F (θ, u) du. (11)
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Eq. (10) should be supplemented by relation of the variables Y − Y :

ρ(θ) Y (θ) =

∞
∫

−∞

F (θ, u) Y (θ, u) du (12)

which is valid for X − X pair as well. The equation was derived first in
Ref. [4] with help of Vlasov equation in terms of function D = FY which
is linear density of the beam dipole moment. The transformation is trivial,
but form (10) is used in this paper as more convenient.

Parameter ν can be treated as an eigenvalue of the equation. It is easy
to show that all the e.v. are real numbers, and corresponding e.f. satisfy the
orthogonality condition:

∫ ∫

YiY
∗

j Fdθdu = δij, Im ν = 0. (13)

Note one important exact solution which is valid at any distribution and will
be treated further as a rigid mode 1 :

Y = Y = const, ν = 0, i.e. ω = Ω0Q0 (14)

Because of the orthogonality, all other solutions should satisfy the condition
∫ ∫

YiFdθdu =
∫

Y i(θ)ρ(θ) dθ =
∫

Di(θ) dθ = 0. (15)

which means that total dipole moment of the bunch is zero (at zero chro-
maticity). It is easy to believe that wake field of such a bunch and attendant
instability (if appears) should be noticeably lower then for the rigid mode.

Further we will consider linear synchrotron oscillations taking the bunch
half-length as 1:

θ = A cos φ, u = A sin φ, A ≤ 1. (16)

where A =
√

θ2 + u2 is amplitude of synchrotron oscillations. Their non-
linearity is not considered in this paper because its contribution to Landau
damping is presumed to be small in comparison with space charge effects.

1This term was originally used for the model without synchrotron oscillations, see for
example Ref. [7]. We are applying it here because solution (14) just does not depend at
all on synchrotron motion.
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In conclusion of this section, it is important to note that the substitution
X ∝ exp(−iωt) in Eq. (7) means, strictly saying, Laplace transformation in
time which is determined at Im ω > 0. It means that originally Im ν > 0 in
Eq. (10), too. Therefore, any real e.v. of this equation has a direct sense
only if corresponding e.f. is a regular function defined as analytical extension
of the primary complex functions on real axis. Otherwise, it is necessary to
bypass the pole at inverse Laplace transformation, which operation provides
Landau damping [9].

Therefore, only regular solutions of Eq. (10) have a chance to become
unstable due to the addition ∝ G in Eq. (1) (for example, rigid mode).
Other (irregular) modes are prone to the Landau damping, and only strong
perturbation G could cause their instability by an essential transformation
of original spectrum; however, similar situation is not a subject of this work.
For shortness, we will below identify mentioned modes simply as “unstable”
or “stable” ones.

3 Boxcar bunch: exact solution

A bunch of constant linear density is considered in this section:

F =
1

π
√

1 − θ2 − u2
, ρ = 1 at |θ| < 1. (17)

Such a distribution was investigated numerically in Ref. [5]. In fact, Eq. (10)
has an exact and full analytical solution at any µ in this case, offering an
excellent prospect to check any approximate model in further. The solution
is set of Legendre polynomials:

Y (θ) ∝ Pn(θ), n = 0, 1, 2, ... (18)

In each the case, there are n + 1 different e.v. ν and corresponding e.f.
Y (θ, u) which are polynomials of the same power, too. Several examples
are given below:

n=0 Y = Y = 1, ν = 0, (rigid mode);

n=1 Y = θ, Y = θ +
i νu

µ
, ν = −1

2
±
√

µ2 +
1

4
;
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Figure 1: Exact eigenvalues of boxcar bunch.

n=2 Y = 3θ2 − 1, ν̂(ν̂2 − 4µ2) = ν̂2 − µ2, ν̂ = ν + 1;

n=3 Y = 5θ3 − 3θ, (ν̂2 − µ2)(ν̂2 − 9µ2) = ν̂(ν̂2 − 4µ2).

Continuation of the table is very apparent. The eigenvalues ν are plotted in
Fig. 1 vs µ at n = 0 − 5. It is seen that, at large µ, some eigenmodes form
groups with rather close frequencies and about circular polarization:

Ym,n ≃ Rm,n(A) exp(imφ), ν ≃ ±mµ, ω ≃ Ω0Q0 ± mΩs.

which coincide with well-known head-tail modes [1, 2, 3]. It is seen also that
radial modes Rm,n(A) arise here from different Legendre polynomials Pn(θ).

At lower µ, any e.v. tends to one of two points: ν ≃ 0 or ν ≃ −1. In
usual terms, frequencies of these oscillations are:

ω ≃ Ω0Q0 or Ω ≃ Ω0(Q0 − ∆Q) = Ω0Qincoherent.

These oscillations are almost linearly polarized: along θ in first case, and
along u in second one. Because of the frequencies coalescing, there is almost
total degeneration of corresponding e.f. at µ ≪ 1. In particular, the following
formal solutions can be obtained directly from Eq. (10) at µ = 0:
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any Y (θ) and Y = Y at ν = 0;

any Y (θ, u) but Y = 0 at ν = −1.

(second case at ρ = const only). Of course, these sets cannot provide a
basis for further investigations. However, at very realistic conditions Im ω ≪
Ωs, synchrotron motion could remove the degeneration and form the modes
available for subsequent generalization.

Our nearest goal is to use these ideas for analysis of more realistic distri-
butions at µ ≪ 1. The case ν ≃ 0 is rather clear offering an expansion of
the solutions in powers of u. Other case ν ≃ −1 is more complicated because
the condition ρ(θ) = const is crucial for them ensuring a constant incoher-
ent frequency. As this take place, different parts of the bunch can oscillate
with the same frequency, creating various spatial configurations. However,
only a short part of the bunch can have a definite incoherent frequency at
ρ(θ) 6= const. Then the term µ ∂Y/∂φ looks about as 0 ×∞, and cannot
be treated as a small perturbation of Eq. (10).

However, instability of similar oscillations looks unlikely because: (i) Lan-
dau damping works when coherent frequency is located inside incoherent
distribution, (ii) actually, relation Y ≃ 0 means low wake field. Therefore,
in next section we will consider only the first case, looking for approximate
solution of Eq. (10) by its expansion in powers of u at |µ∂Y/∂φ| ≪ 1 and
ν ∝ µ2 ≪ 1.

4 Low synchrotron frequency approach

We will look for solution of Eq. (10) at µ ≪ 1 in the form:

Y = y0(θ) + y1(θ)u + y2(θ)u
2, |y0| ≫ |y1| ≫ |y2|. (19)

Then according to Eq. (12)

Y (θ) =
ρ(θ)

ρ(0)

[

y0(θ) + y2(θ)U
2(θ)

]

(20)

where

U2(θ) =

∫

F (θ, u)u2du
∫

F (θ, u)du
. (21)

8



Substituting it into Eq. (10) and neglecting the terms µy2 obtain

ν(y0+y1u+y2u
2)+ iµ(−y′

0
u−y′

1
u2+y1θ) ≃ − ρ

ρ(0)

[

y1u+y2(u
2−U2)

]

(22)

where prime means derivative on θ. It gives the relations

y1 =
iµy′

0

ν + ρ/ρ(0)
, y2 = − µ2

ν + ρ/ρ(0)

(

y′

0

ν + ρ/ρ(0)

)′

, (23)

and differential equation for y0:

νy0 =
µ2

ν + ρ/ρ(0)

[

y′

0
θ − ρU2

ρ(0)

(

y′

0

ν + ρ/ρ(0)

)′ ]

. (24)

Using Eq. (20) and (22), one can represent y0 in terms of Y . At the same
accuracy as before, the relation is

y0 ≃ Y +
µ2U2

ν + ρ/ρ(0)

(

Y
′

ν + ρ/ρ(0)

)′

. (25)

Substitution of this to Eq. (24) results in the equation:

U2Y
′′ −

(

θ +
U2ρ′/ρ(0)

ν + ρ/ρ(0)

)

Y
′

+
ν(ν + ρ/ρ(0))

µ2
Y = 0. (26)

Because it has a solution at any ν, additional conditions are required to select
the satisfying basic Eq. (10). First of all, it is the rigid mode ν = 0, Y = 1.
All other modes should satisfy orthogonality condition (15) which is sufficient
for even functions Y (θ). For odd ones, multiply Eq. (10) on Fθ and integrate
it over dθdu. Then, applying Eq. (19), (23), and (25) with accepted accuracy,
one can get required condition 2

∫

Y (θ)ρ(θ)θ dθ ≃ µ2

ν

∫

U2(θ)Y
′
(θ)ρ(θ) dθ

ν + ρ(θ)/ρ(0)
. (27)

2Following equation is proposed in Ref. [6] instead of Eq. (26), (15), (27):

νY + ∆Q(0)µ2U(θ)
√

ρ(θ)
d

dθ

(

U(θ)
√

ρ(θ)

dY

dθ

)

= 0,
dY (±∞)

dθ
= 0.

Errors of the development were noted in Section 1. Some additional comments are:
(1) factor ∆Q(0) here is incompatible with Eq. (10); (2) at the boxcar bunch, Legendre
polynomials of Sec. 3 do not satisfy this equation, (3) boundary conditions imposed beyond
the bunch boundaries look at least affectedly; (4) they are certainly inapplicable to the
Legendre polynomials.

9



4.1 Boxcar bunch

Boxcar bunch (17) is considered in this subsection again:

ρ(θ) = 1, U2(θ) =
1 − θ2

2
at |θ| < 1 (28)

Then Eq. (26) transforms to Legendre equation:

(1 − θ2)Y
′′ − 2θ Y

′

+
2ν(ν + 1)

µ2
Y = 0. (29)

Legendre polynomials (18) are the solutions satisfying conditions (15) and
(27), and dispersion equation for corresponding e.v. is

2ν(ν + 1)

µ2
= n(n + 1), at Y (θ) = Pn(θ). (30)

Taking into account the basic assumptions of this section, we must use the
only eigenvalue:

ν =
1

2

(

√

1 + 2µ2n(n + 1) − 1
)

≃ µ2n(n + 1)

2
(31)

which is in total agreement with results of Sec. 3.

4.2 Parabolic bunch

More realistic parabolic bunch has the characteristics:

F =
2

π

√
1 − A2, ρ = 1 − θ2, U2 =

1 − θ2

4
. (32)

Some its e.f. and corresponding e.v. are plotted in Fig. 2. The e.v. do not
very differ from the boxcar ones, Eq. (31). However, it is important to note
that the eigenfunctions depend on parameter µ now, and there is a growth
of these functions at the bunch tails when the parameter is more. 3

3Of course, it is not quite legitimately to consider the case µ ∼ 1 in this section.
However, it will be shown soon that such an assumption does not lead to qualitative
errors.
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Figure 2: Eigenfunctions (left) and eigenvalues (right) of parabolic bunch.
In the left-hand plot: solid lines µ = 0.05, dashed ones µ = 1.
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Figure 3: Eigenfunctions (left) and eigenvalues (right) of “super-parabolic”
bunch. In the left-hand plot: solid lines µ = 0.05, dashed ones µ = 1.

4.3 “Super-parabolic” bunch

Distribution function (32) has infinite derivative on the boundary which cir-
cumstance could qualitatively effect on the results. Therefore, more smooth
distribution is considered in this subsection:

F =
8

3π
(1 − A2)3/2, ρ = (1 − θ2)2, U2 =

1 − θ2

6
. (33)
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The results are presented in Fig. 3. In this case, all the eigenfunctions
Y (θ) demonstrate very fast growth in the bunch tails, especially at large
µ (except the rigid mode). Therefore, the bunch dipole moment D = ρY is
plotted vs θ in the left-hand plot instead of Y (including the rigid mode). 4

4.4 Gaussian bunch

Because Gaussian bunch is always truncated in reality, we will consider the
distribution function:

F ∝ exp
(1 − A2

2σ2

)

− 1 at A < 1 (34)

which provides a bounded bunch with smooth tails at |θ| < 1:

ρ(θ) = σ

√

π

2
exp

(1 − θ2

2σ2

)

erf
(

√
1 − θ2

σ
√

2

)

−
√

1 − θ2, (35)

ρ′(θ) = − θ

σ2

[

ρ(θ) +
√

1 − θ2

]

, U2(θ) = σ2 − (1 − θ2)3/2

3ρ(θ)
. (36)

Results are presented in Fig. 4 at σ = 1/3 and 0 < µ < 0.2 , where e.v. are
scaled in accordance with Eq. (31). It is seen that the eigenfunctions tend
to constant on the bunch tails at small µ, but they rapidly grow at µ = 0.2.
Very large (infinite?) divergence appears at more µ; therefore, density of the
dipole moment D = ρY is presented in Fig. 5 at 0 ≤ µ ≤ 1.

4.5 Low µ summary

At µ = Ωs/Ω0∆Q <∼ 0.1, all observed e.f. are finite and regular functions,
and e.v. are not very different from the boxcar case. However, transverse de-
viation heavily increases at the bunch tails at more µ, maybe even infinitely
at µ ∼ 1. It could mean that Eq. (26) has no regular (“unstable”) solu-
tions in this limit, except the rigid mode. Because this equation was initially
developed at assumption µ ≪ 1, the last statement needs more support.

4Possibly, Y (θ) → ∞ at θ → 1 and µ ∼ 1. Numerical accuracy gives no way to
make a high-reliability conclusion, because growth of the functions is always restricted at
similar calculations.
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Figure 4: Eigenfunctions (left) and eigenvalues (right) of Gaussian bunch at
σ = 1/3 and low µ. In the left-hand plot: solid lines µ = 0.01, dashed
ones µ = 0.2.
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Figure 5: Eigenfunctions (left) and eigenvalues (right) of Gaussian bunch at
higher µ. In the left-hand plot: solid lines µ = 0.05, dashed ones µ = 1.

Therefore, opposite limit µ ≫ 1 is considered in following section using an
approximation of uncoupled multipoles. Though this case was investigated
earlier in my work [4], an additional information is presented here having a
final goal to develop an entire picture – at least qualitatively.
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5 High synchrotron frequency approach

Because Y is a periodical function of φ, it can be presented in the form:

Y =
∑

m

Ym(A) exp(imφ). (37)

Its substitution to integral-differential Eq. (10) results in series of integral
equations:

(ν−mµ)Ym(A) = −
∑

m′

Rm−m′(A)Ym′(A) +
∑

m′

∞
∫

0

Km,m′(A, A′)Ym′(A′) dA′

(38)with coefficients

Rm−m′(A) =
1

πρ0

∫

Tm−m′(θ/A)√
A2 − θ2

ρ(θ) dθ, (39)

Km,m′(A, A′) =
2F (A′)A′

πρ0

∫

Tm(θ/A)√
A2 − θ2

Tm′(θ/A′)√
A′2 − θ2

dθ (40)

where Tm(x) = cos(m arccos x) are Chebyshev polynomials, and the inte-
gration is extended over entire region where all under-integral functions are
real. If µ ≫ 1, coupling of the multipoles can be neglected, and the series is
reduced to a set of independent equations:

Λm,jYm,j(A) = −R0(A)Ym,j(A) +

∞
∫

0

Km,m(A, A′)Ym,j(A
′) dA′ (41)

where Λm,j = ν − mµ is treated as an eigenvalue, and j = 1, 2, ... are the
eigenmode numbers. Their solutions are known as radial modes [3]. One can
see again that the rigid mode Y0,1(A) = 1, Λ0,1 = 0 is an exact solution
of Eq. (41) independently on distribution function. Other modes will be
examined numerically.

5.1 Boxcar bunch

Several e.v. and e.f. of the boxcar bunch (17) are presented in Table 1 and
Fig. 6. They can be found also by using of exact solutions obtained in
Section 3. Corresponding values are given in Table 1 as a rational fraction in
round brackets, and order of used Legendre polynomial is placed in square
brackets. It is seen that, at any m, successive solutions are born by the

14



0.0 0.2 0.4 0.6 0.8 1.0
Amplitude 

−0.8

−0.4

0.0

0.4

0.8

1.2

E
ig

en
fu

nc
tio

n

m = 0
m = 1
m = 2

Figure 6: Eigenfunctions of the boxcar bunch (uncoupled multipoles ap-
proach). Three e.f. are presented for each multipole.

Table 1: Eigenvalues of the boxcar bunch

m ↓ j → 1 2 3
0 -0.013 (0) [0] -0.754 (-3/4) [2] -0.861 (-55/64) [4]
±1 -0.509 (-1/2) [1] -0.815 (-13/16) [3] -0.884 (-113/128) [5]
±2 -0.634 (-5/8) [2] -0.846 (-27/32) [4] -0.899 (-919/1024) [6]

polynomials of order n = |m|, |m| + 2, etc. At m = 0, eigenfunctions
obtained by Fourier expansion of the exact solutions are

Y0,1 = 1, Y0,2 = 1 − 3A2

2
, Y0,3 = 1 − 5A2 +

35A4

8
, ...

being in a good agreement with numerical results, too. Similar situation is
observed at dipole (|m| = 1) and higher oscillations.

5.2 Parabolic bunch

In contrast with the boxcar, parabolic model (32) bring the tune spread
which is a key point for the Landau damping. As it is noted above, it should
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Figure 7: Modified e.f. of parabolic bunch (3 e.f. for each multipole).

appear as a irregularity of corresponding eigenfunctions. As it is shown in
Fig. 7, this effect is observed at all radial modes other than lowest one,
at m = 0, 1, 2, (higher multipoles are not investigated). Corresponding
“unstable” e.v. are:

Λ0,1 = 0, Λ1,1 = −0.422, Λ2,1 = −0.482.

All other investigated modes form a continuous spectrum at −1<Λm,j<−0.5.
Because most of the e.f. have a peculiarity, continuous combinations are
presented in Fig. 7 (including the regular lowest modes):

Ỹm,j(A) = [ Λm,j + R0(A) ] Ym,j(A) =
[

Λm,j + 1 − A2

2

]

Ym,j(A), (42)

Note that originally irregular functions have a break of derivative in this
format.

5.3 “Super-parabolic” and Gaussian bunches

In contrast with previous, “super-parabolic” bunch (33) has no derivative
abruption on the boundary. Probably because of this the rigid mode (0,1)

16



is the only regular solution of Eq. (41), whereas all other modes have pecu-
liarities and form continuous spectrum at −1 ≤ Λ ≤ −3/8. Some of these
modes are presented in left-hand Fig. 8 in the format like (42).

Very similar picture appears at Gaussian distribution (34)-(36). Some e.f.
are plotted at right-hand Fig. 8 at σ = 1/3 when the continuous spectrum
is located at −1 ≤ Λ ≤ −0.274.
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Figure 8: Modified e.v. of “super-parabolic” (left) and Gaussian (right)
bunches.

6 Comparison and coupling of the models

The foregoing results were obtained at very extreme values of µ: either µ ≪
1 or µ ≫ 1 (below: low/high-µ approximations). Correlation of this data is
a subject in this section to fill the gap between the areas and to develop a
reasonable picture at µ ∼ 1 (say, at 0.5 < µ < 1.5).

For boxcar bunch, overall picture is shown in Fig. 9 where red lines present
two lower modes of Eq. (29)-(30) (formally referred to µ ≪ 1), and blue ones
– e.v. of dipole and quadrupole modes m = 1, 2 in Eq. (41) (formally µ ≫ 1).
Besides, exact solutions are presented by black lines being taken from Sec. 3
at n = 1, 2 (black and red lines coincide at m = n = 1). Trivial rigid mode is
not included in all the cases. One can conclude that both models are in good
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Figure 9: Eigenvalues of boxcar
bunch: exact and 2 different ap-
proaches.
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Figure 10: Approximate eigenval-
ues of parabolic bunch and inco-
herent boundary.

agreement with exact solution in region of interest to us, though low-µ and
high-µ approximations work better at µ < 0.8 and µ > 0.8, respectively.

Similarly, numerical results are presented in Fig. 10 for parabolic bunch
(32), using both approximations. Relative positions of red and blue lines
in this picture are about the same as in Fig. 9, however, exact solution
is unknown now. Instead of this, maximal incoherent betatron frequency is
plotted being averaged on synchrotron phase. Its modulation by synchrotron
frequency is taken into account, so equations of corresponding black lines are:

ν = −0.5 + mµ.

For each multipole, all incoherent frequencies are located below correspond-
ing line; therefore, any eigenmode is stable (prone to Landau damping) if
its e.v. is located below it as well. According to high-µ approximation,
both modes shown in Fig. 10 by blue lines are unstable, whereas low-µ ap-
proximation predicts stability of 2nd mode at µ > 0.5 (red line). However,
last statement should be rejected because this approach is certainly worse at
higher µ. It allows to establish the boundary between low/high-µ approxi-
mation as µ ≃ 0.5 – a result which is not very distinctive from the boxcar
case.
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Figure 11: Eigenfunctions of “super-parabolic” (left) and Gaussian (right)
bunches. The blue lines mark incoherent boundaries, too.

Eigenvalues of the super-parabolic and truncated Gaussian bunches (33)-
(34) are summarized in Fig. 11. High-µ approximation predicts that all
modes, except of rigid, are stable in these cases forming continuous spectra
in the ranges

ν <−0.375 + mµ or ν <−0.274 + mµ

Blue lines in Fig. 11 are highest e.v. of the spectra coinciding with incoherent
boundaries. Low-µ approximation presented here by red lines asserts that
these modes are stable at µ ≪ 1. However, they demonstrate relatively
strong growth on the bunch tails at µ >∼ 0.1, and very strong (possibly
infinite) growth at µ >∼ 0.5 (see Fig. 3-5). Taking into account that similar
behavior is a manifestation of Landau damping, one can propose the following
conditions of stability:

m 1 2
Super-parabolic µ >∼ 1.5 µ >∼ 0.4
Gaussian µ >∼ 0.6 µ >∼ 0.2

The higher modes are all the more stable.

19



7 Conclusion

Transverse eigenfunctions and eigenfrequencies of a bunched beam are inves-
tigated in this article at space charge dominated beam coupling impedance,
that is at relatively slight wake field. Synchrotron oscillations are taken into
account at any relation of synchrotron frequency to space charge tune shift.
It is shown that tune spread produced by the space charge, in combination
with synchrotron oscillations, brings a powerful Landau damping which sup-
presses almost all transverse modes. The only mode which is never prone
to this effect is so called rigid one which does not depend on synchrotron
oscillations at all. In simplest case (no chromaticity), the rigid mode appears
as transverse oscillations of the bunch as a whole (without bend or rotation),
but a traveling wave runs over the bunch additionally at non-zero chromatic-
ity. Other modes are suppressed at all if synchrotron frequency about exceeds
space charge tune shift, and the distribution function has no abrupt bound-
aries. At the lower synchrotron frequency, several modes other the the rigid
one can overcome Landau damping that is they are potentially unstable. In
particular, for truncated Gaussian bunch, dipole mode may be unstable at
Ωs <∼ 0.6 Ω0∆Q(0), quadrupole one – at Ωs <∼ 0.2 Ω0∆Q(0), etc. A
distinguish characteristic of similar modes is a small global dipole moment
(zero without chromaticity), and therefore relatively weak long-term wake
field expected.

Obtained eigenfunctions can be used for calculation of wake field which
produces a small additions to the eigenfrequencies, including instability growth
rate. Global beam structure is essential at these calculations, determining
characteristics of the collective modes. Detailed investigation of the collec-
tive motion based on the rigid modes of the bunches is presented in Ref. [10].
In particular, it is shown that resistive wall instability growth rate can reach
3000/sec in the Fermilab Recycler in frames of Project X, and 27 MHz
damper or chromaticity about -7 are required to suppress it. Doubtless,
other potentially unstable modes are not so dangerous because of relatively
low integral dipole moment of any bunch; however, these investigations are
beyond the scope of presented article.
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