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I. INTRODUCTION

Production of Z and W bosons in association with jets is an important process in hadron

collider physics [1]. Indeed, the inclusive production cross-section provides valuable infor-

mation about fundamental parameters of the Standard Model as well as parton distribution

functions. When the inclusive cross-section is split into components depending on the num-

ber of jets, different V + n jet samples (V = W, Z) become backgrounds to a variety of

processes that include top pair production, single top production, Higgs boson production

and many others processes that might appear in extensions of the Standard Model. To un-

derstand these backgrounds, careful studies of vector boson production in association with

jets were performed at the Tevatron by the CDF and D0 collaborations [2, 3, 4].

The cross-section for V + n jet production depends on how jets are defined. For typical

jet parameters employed by CDF and D0, the production cross-sections for, say, W+(→

e+ν) + n jets range between about thirty picobarns for n = 1 and about half of a picobarn

for n = 3. Given the few inverse femtobarns of luminosity collected at the Tevatron, detailed

studies of these cross-sections are possible. In fact, results on the W + jets cross-sections

published by CDF several years ago were based on 320 pb−1 of data. It is expected that

new analyses, based on about one inverse femtobarn of data, will appear soon.

Tevatron studies of vector boson production in association with jets [2, 3] established

proximity, to within a factor of two, between theoretical predictions based on leading order

(LO) matrix elements merged with parton showers, and experimental data. While a factor

of two sounds like a significant discrepancy, we note that leading order computations of

processes with a large number of partons always have uncertainties of this order because

different choices of input parameters, such as the renormalization scale of the strong coupling

constant or the factorization scale in parton distribution functions, lead to large changes.

It is well-known that this problem is significantly reduced if cross-sections are computed

through next-to-leading order (NLO) in the expansion in the strong coupling constant.

The CDF and D0 collaborations have compared their data with NLO QCD predictions [5]

for W+n jets and Z+n jets, for n ≤ 2. It turned out that NLO QCD describes data very well.

This is very impressive given that NLO QCD predictions are essentially parameter-free since

unphysical dependencies on renormalization and factorization scales are reduced to about

ten percent. This success of NLO QCD, combined with the importance of the V + jets
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production process, suggests that extending NLO QCD predictions to higher-multiplicity

processes may be the best way to describe vector boson production in association with jets

reliably, both at the Tevatron and the LHC.

Unfortunately, extending NLO QCD computations to V +3 and V +4 jets is a difficult task

for a number of reasons. For example, in the case of V + 3 jets, virtual one-loop amplitudes

involve rank five six-point functions. Real emission corrections require an integration of the

V (→ l1l2)+6 parton matrix elements squared over a six-particle phase-space; the complexity

of such a computation approaches the current frontier for the description of multi-particle

processes at tree level (see e.g. Ref. [6]). Clearly, the complexity of computations required

to describe V + 4 jet production through NLO QCD is even higher.

In this paper we compute NLO QCD corrections to W + 3 jet production at the Teva-

tron. We extend our previous computation of NLO QCD corrections to that process [7] by

including all partonic channels, while working in the leading color approximation defined as

Nc ∼ Nf ≫ 1, where Nc = 3 is the number of colors and Nf = 5 is the number of massless

fermion flavors. We employ recently evaluated virtual one-loop amplitudes for W +5 partons

[8, 9]. To compute real emission corrections we use the Catani-Seymour subtraction scheme

suitably adapted to deal with the minimal set of color-ordered amplitudes [7]. We perform

the computation within the framework of the MCFM parton level integrator [10].

Recently a computation of NLO QCD corrections to W +3 jet production at the Tevatron

was reported by Berger et al. [11]. That computation also uses leading color approximation

although their definition of leading color differs from ours. In particular, the leading color

approximation Nc ≫ Nf ≫ 1 is employed in Ref. [11] only in the finite parts of virtual

corrections, while real emission corrections are computed with full Nc and Nf dependence.

We also note that preliminary results for full color NLO QCD corrections to W + 3 jets

were presented recently [12]. Because the computation that we report here is strictly lead-

ing color, it is less accurate than results reported in [12]. Nevertheless, we believe that our

results are worthwhile for two reasons. First, as we will see, the leading color approximation

is sufficiently accurate for the phenomenology of W + 3 jets production given the size of ex-

perimental errors. Second, independent cross-checks of these very challenging computations

are important.

The remainder of this paper is organized as follows. In Section II we present a short

summary of theoretical methods employed in the computation and describe details of the
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experimental measurement relevant for a comparison with theory. In Section III we present

the results of our computation of W + 3 jet process at the Tevatron at leading and next-to-

leading order. We conclude in Section IV.

II. SETUP OF THE CALCULATION

A. Theoretical set up

Our goal is to compute the W + 3 jet production cross-section through next-to-leading

order in perturbative QCD in the leading color approximation. We define this approximation

as follows. We consider the limit Nc ∼ Nf ≫ 1, where Nc is the number of colors, Nf is

the number of massless flavors and we drop terms that are subleading in Nc. We keep all

terms O(Nf/Nc). This has the consequence that both fermion loops in virtual corrections

and processes with fermion pairs in the final state are retained. Fermion loops contribute

to the running of the coupling constant, which is responsible for large scale variations of

the leading order cross-section (see below). Since, for Nf = 5, fermion contributions reduce

the QCD beta-function by about 20 percent, fermion loops may be important numerically.

Once the Nc ∼ Nf ≫ 1 approximation is adopted, all partonic channels that contribute to

hadron-hadron collisions need to be considered.

Any NLO QCD computation requires three ingredients – one needs to compute one-

loop virtual corrections to the relevant leading order process, real emission corrections and

subtraction terms. Many issues related to dealing with these three ingredients are standard,

at least as a matter of principle. In practice, for W + 3 jet production, the required one-

loop and tree-level computations approach a degree of complexity where standard tools

may not work efficiently. For example, there are of the order of 1500 one-loop diagrams

that contribute to W + 5 parton scattering amplitudes. These diagrams involve rank five

six-point functions which are the current frontier in one-loop computations1.

1 We note that recently the complete calculation of NLO QCD corrections to PP → tt̄bb̄ was performed

with techniques that rely on Feynman diagrams and numerical reduction of one-loop tensor integrals

[13]. That calculation also involves a comparable number of diagrams, however the tensor structure is

simpler (it involves only up to rank four hexagons) and the number of subprocesses to be considered is

considerably reduced. Nevertheless, the performance of the code used in that calculation is impressive

both in terms of speed and stability.
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Real emission corrections require computations of complexity similar to W +4 jets at tree

level. Although no loops are involved in the latter case, this computation is very challenging

because of the effort required to compute the relevant matrix elements and to integrate them

over high-multiplicity phase-space of the final state particles. In the next few paragraphs

we describe some ideas that we used to overcome these difficulties.

Our computation of one-loop virtual amplitudes for W + 3 jets employs a particular

technique called generalized D-dimensional unitarity [14]. It is one of several approaches

pursued currently [15, 16, 17] which are based on a connection between one-loop scattering

amplitudes and tree-level amplitudes for complex on-shell momenta [18, 19, 20, 21]. All

amplitudes required for the W + 3 jets computation are described in Ref. [9].

Our treatment of the real emission corrections is based on the Catani-Seymour dipole

subtraction formalism [22]. However, some modifications of the formalism are required

in our case since we deal with leading color amplitudes and extensively use symmetry of

the final state phase-space to reduce the number of color-ordered amplitudes that need to

be calculated. Modifications of the subtraction formalism as well as issues related to our

treatment of multi-particle phase-space are discussed in Ref. [7].

Because we employ the leading color approximation, it is important to discuss its accu-

racy. We may get an idea about the quality of the leading color approximation by studying

W + 3 jets at leading order and W + n jets, n ≤ 2, at next-to-leading order.

We find that for W+3 jet at leading order, the leading color cross-section exceeds full color

cross-sections by about ten percent. This result seems to hold for various observables and is

independent of the choice of the renormalization and factorization scales. This independence

suggests that rescaling the leading color production cross-section by a constant factor will

lead to an improved estimate of the cross-section beyond leading order. Therefore, we define

our best approximation to a generic observable O computed through NLO QCD as

dσNLO
W+3jet

dO
= R

∫

dσNLO,LC
W+3jet δ(O(p) −O), R =

σLO,FC
W+3jet

σLO,LC
W+3jet

. (1)

We call this procedure “leading color adjustment”.

The major effect of this procedure on the leading color cross-section is to rescale the

leading order term in Eq. (1) making it the exact leading order full color result. A similar

rescaling of the next-to-leading order correction in Eq. (1) is more questionable. Neverthe-

less, as long as the next-to-leading order correction is not excessively large, this procedure
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should provide a sensible approximation to the full color next-to-leading order result.

We can check this assertion by applying the leading color adjustment procedure to W +1

and W + 2 jet NLO production cross-sections. In both cases we find that rescaled leading

color cross-sections agree with full color cross-sections to better than three percent.

B. Theoretical parameters and implementation of experimental cuts

The goal of this Section is to describe precisely what we compute theoretically and its

relationship to the measurement by the CDF collaboration. We consider the production of

on-shell W± bosons, that decay into a pair of massless leptons. We note that finite width

effects are about one percent and that considering on-shell production tends to overestimate

the cross-section. We set the CKM matrix to the identity matrix; this reduces the W + 3

jet production cross-section at the Tevatron by about one percent. All quarks, with the

exception of the top quark, are considered massless. The top quark is considered infinitely

heavy and its contribution is neglected. The mass of the W is taken to be mW = 80.419 GeV.

W couplings to fermions are obtained from αQED(mZ) = 1/128.802 and sin2 θW = 0.230.

We use CTEQ6L parton distribution functions for leading order and CTEQ6M for next-to-

leading order computations [23, 24] corresponding to αs(MZ) = 0.130 and αs(MZ) = 0.118

respectively. We quote results for three (dynamical) renormalization and factorization scales

µ = [µ0/2, µ0, 2µ0], where µ0 =
√

p2
⊥,W + m2

W and p⊥,W is the transverse momentum of the

W boson. We choose these input parameters to stay maximally close to the choices made in

Ref. [11] in order to facilitate a comparison between the two results, to the extent possible.

In the following we present results for the cuts employed in the analysis by the CDF

collaboration [2]. We require that the transverse energy and pseudorapidity of the jets

satisfy E⊥,j > 20 GeV and |ηj | < 2 and employ the following restrictions on lepton transverse

momentum, missing transverse energy, lepton rapidity and transverse invariant mass pe
⊥ >

20 GeV, /E⊥ > 30 GeV, |ηe| < 1.1, MW
⊥ > 20 GeV. We do not apply an isolation cut on the

leptons since it is removed by the acceptance correction applied to the experimental results.

To define jets, the CDF collaboration uses the JETCLU cone algorithm with R = 0.4 and

merging parameter f = 0.75. Since this algorithm is not infrared safe, it can not be used in

a next-to-leading order calculation of W + 3 jets. As discussed in the next Section, for the

computations reported in this paper we choose to use a somewhat related but infrared safe
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seedless cone (SIScone) algorithm [25] and the anti-k⊥ jet algorithm [26].

III. LEADING ORDER RESULTS

In this Section, we summarize leading order results for total cross-sections. We note

that there is a subtlety associated with the way CDF presents their results. While jets are

required to have transverse energy in excess of 20 GeV, the total cross-section for W + 3

jet production is quoted with an additional restriction – the transverse energy of the third

hardest jet should satisfy E3rd jet
⊥ > 25 GeV. The CDF measurement yields the inclusive

cross-section

σW+≥3j

E
3rd jet

⊥
>25 GeV

= (0.84 ± 0.10 (stat.) ± 0.21 (sys.) ± 0.05 (lum.)) pb. (2)

Note that this result includes both W+(e+ν) and W−(e−ν̄) production which, given the

charge symmetry of the initial state at the Tevatron, simply doubles the cross-section for

fixed W charge.

We now discuss the choice of the jet algorithm in more detail. As we already mentioned,

the CDF collaboration uses the infrared unsafe JETCLU jet algorithm. We remind the

reader that infrared unsafety arises because one searches for stable cones around few fixed

points (seeds) in the η−φ plane and one might miss a stable cone. It is often argued [27] that

this is mainly an issue of perturbative calculations, which involve only few particles, and

therefore few seeds. In a true experimental environment, with many soft emissions giving

rise to many seeds, stable cones are rarely missed and the difference between infrared safe

and unsafe jet algorithms is claimed to be small [27].

However, even if such claims are true, our inability to use infrared unsafe jet algorithms

in theoretical computations makes it necessary to choose a jet algorithm which on one

hand is infrared safe and, on the other hand, is close to JETCLU in phenomenological

applications. To facilitate such a choice, in Table I we compare leading order results for

W + 3 jet production cross-sections for two different jet algorithms, SISCone and anti-k⊥.

We observe that different jet algorithms for identical values of R lead to different results –

not an unexpected conclusion.

If we consider jet algorithms for fixed value of R = 0.4, we find that anti-k⊥ jet algorithm

provides results that are closest to JETCLU. The SIScone algorithm does not do particularly
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well – the difference between SIScone and JETCLU with the same R is about twenty percent.

Perturbative studies of jet substructure [28] suggest that the jet algorithm closest to CDF’s

JETCLU jet algorithm is anti-k⊥. Therefore, it appears that anti-k⊥ algorithm should be

chosen for our calculation of W + 3 jet production cross-section at the Tevatron.

Algorithm R Ejet
⊥ > 20 GeV E3rdjet

⊥ > 25 GeV

JETCLU 0.4 1.845(2)
+1.101(3)
−0.634(2) 1.008(1)

+0.614(2)
−0.352(1)

SIScone 0.4 1.470(1)
+0.765(1)
−0.560(1) 0.805(1)

+0.493(1)
−0.281(1)

anti-k⊥ 0.4 1.850(1)
+1.105(1)
−0.638(1) 1.010(1)

+0.619(1)
−0.351(1)

TABLE I: Leading order cross-sections in picobarns for W + 3 jets at the Tevatron for different

jet algorithms. We use merging parameter f = 0.75 for JETCLU and f = 0.5 for SISCone. The

renormalization and factorization scales are set to µ0. The upper (lower) value corresponds to

setting both scales to µ0/2 and 2µ0, respectively. Statistical errors are also indicated. Other cuts

on jets and leptons are described in the text.

The caveat in this discussion is that since JETCLU is not an infra-red safe algorithm, the

significance of leading order comparisons is unclear since radiative corrections can be arbi-

trarily large. Hence, it is not obvious that the most appropriate jet algorithm for theoretical

calculations is the one which matches the JETCLU leading order results. To study this

question, we perform the next-to-leading order calculation using both SIScone algorithm

with R = 0.4 and f = 0.5 and the anti-k⊥ algorithm with R = 0.4. The NLO computation

with the SIScone algorithm allows us to compare our results to that of Ref. [11]. A similar

computation with the anti-k⊥ algorithm, would, if we had perfect data, tell us whether the

agreement at leading order between JETCLU and anti-k⊥ is fortuitous.

We now summarize the leading order results for the two algorithms. Using the three

choices of the renormalization and factorization scales discussed previously, to set upper

and lower bounds on the cross-section variation, we obtain the following result for leading-

color and full-color leading order cross-sections

σW+≥3j,LC

LO,E
3rd jet

⊥
>25 GeV

= 0.89+0.55
−0.31 pb, σW+≥3j,FC

LO,E
3rd jet

⊥
>25 GeV

= 0.81+0.50
−0.28 pb, SIScone; (3)

σW+≥3j,LC

LO,E
3rd jet

⊥
>25 GeV

= 1.12+0.68
−0.39 pb, σW+≥3j,FC

LO,E
3rd jet

⊥
>25 GeV

= 1.01+0.62
−0.35 pb, anti − k⊥; (4)
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In Eqs. (3,4), central values are for the scale µ0 and upper (lower) values are for µ0/2 and

2µ0, respectively. We remind the reader that CTEQ6L parton distribution functions are

used in leading order calculations.

The following comments can be made about Eqs. (3,4). First, as pointed out in the

previous Section, full color results are lower than the leading color results by about 10

percent; because of that, we will use R = 0.91 for both algorithms to rescale NLO leading

color calculations. Second, it is apparent from Eqs.(3,4) that, in spite of using a dynamical

scale in the leading order computation, the scale variation of the leading order cross-section

is large. We can quantify it by introducing the following ratio ξi = σi(µmax)/σ
i(µmin), where

i = LO, NLO defines the order at which the cross-section is computed and µmax,min are the

scales which give the largest (smallest) cross-section for the three scales considered. We

obtain ξLO ≈ 2.5. for both SIScone and anti-k⊥ algorithms. Note that while precise value of

ξ is cut-dependent, the quoted result is typical – large variations of the cross-section come

from a strong dependence on the renormalization scale, due to the fact that the cross-section

depends on the third power of the strong coupling constant, σW+3j ∼ α3
s .

IV. NEXT-TO-LEADING ORDER RESULTS

In this Section, we summarize the next-to-leading order results. Working in the leading

color approximation, we obtain the inclusive jet cross-section 2

σW+≥3j,LC

NLO,E
3rd jet

⊥
>25 GeV

= 1.01+0.05
−0.17 pb, SIScone, (5)

σW+≥3j,LC

NLO,E
3rd jet

⊥
>25 GeV

= 1.10+0.01
−0.13 pb, anti − k⊥. (6)

Scaling these results by the tree-level ratio of full-color and leading color leading order

cross-sections, R, as explained in the previous Section, we obtain

σW+≥3j

NLO,E
3rd jet

⊥
>25 GeV

= 0.91+0.05
−0.15 pb, SIScone, (7)

σW+≥3j

NLO,E
3rd jet

⊥
>25 GeV

= 1.00+0.01
−0.12 pb, anti − k⊥. (8)

The next-to-leading computation shows a significant improvement in stability with re-

spect to changes in the renormalization and factorization scales. Calculating the parameter

2 In the case of anti-k⊥, the central value quoted corresponds to a scale µ = µ0/2, while the upper (lower)

bounds correspond to µ = µ0 and µ = 2µ0, respectively.
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FIG. 1: The transverse energy distribution of the third hardest jet for W + 3 jet inclusive produc-

tion cross-section at the Tevatron for SIScone (left) and anti-k⊥ (right) jet algorithms. All cuts and

parameters relevant for deriving these distributions are described in the text. Leading color adjust-

ment procedure is applied. For experimental points, statistical and systematic uncertainties are

combined in quadrature. Bands illustrate scale dependence at leading (green) and next-to-leading

order (red).

ξ, introduced at the previous Section, we find ξNLO
SIScone = 1.25 and ξNLO

anti−k⊥
= 1.15 which

implies that overall uncertainty in the NLO QCD prediction is twenty five percent or better.

Compared to leading order predictions, the uncertainty is reduced by at least a factor of

four.

We also find that the difference between NLO cross-sections computed with SIScone and

anti-k⊥ is smaller than the difference between corresponding leading order cross-sections.

Nevertheless, the difference at NLO is about ten percent and therefore not negligible. Ex-

perimental data seems to be closer to SIScone; however, given a twenty percent uncertainty

in data and up to twenty percent uncertainty in the NLO results, no inconsistency can be

claimed.

CDF published the transverse energy distribution of the third hardest jet in W + 3

jet inclusive production cross-section. In Fig 1, we compare the theoretical prediction for

this distribution at leading and next-to-leading order with experimental data for the two jet

algorithms. For experimental points, statistical and systematic uncertainties are combined in

quadrature. Theoretical results are rescaled by R = 0.91 bin-by-bin, following the discussion
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in Section II. There is reasonable agreement with data, although uncertainties in current

data do not permit high-precision comparison.

It is interesting to observe that shapes of transverse energy distributions differ at LO and

NLO. Comparing distributions evaluated at a common scale µ0, the NLO result exceeds the

leading order cross-section at low values of the third jet transverse energy E3rd
⊥ and is below

the leading order cross-section for higher values of E3rd
⊥ . Such behavior is consistent with

the expectation that emission of additional QCD partons is governed by the strong coupling

constant evaluated at the transverse momentum of a “daughter parton” defined relative to

the direction of a “parent parton” in a QCD branching. When the third hardest jet has small

momentum, the scale µ0 =
√

p2
⊥,W + m2

W is larger than the relative transverse momentum

in the branching that produced this jet; as the result, the leading order computation with

the scale µ0 underestimates the cross-section. On the other hand, when the momentum of

the third hardest jet increases, transverse momenta of the two leading jets start to exceed

µ0; as the result, the leading order computation with the scale µ0 overestimates the cross-

section. The change of shape, therefore, can be attributed to an “improper” choice of

the coupling constant renormalization scale in the leading order computation which gets

naturally corrected once one-loop effects are included. Similar effects in W +n jet production

were recently discussed in Ref. [29] using soft-collinear effective theory.

It is instructive to study the relative importance of the various subprocesses and how

the NLO corrections to them compare. The simplest way to split various contributions is

into two-quark, four-quark and six-quark subprocesses where the number of quarks is the

total number of quarks in W + 3 jet amplitude (including those in the loop). The two-

quark and four-quark processes give the largest contribution to the cross-section while the

six-quark processes not present at LO are relatively small (∼ −7%). We find that NLO

QCD corrections affect two-quark and four-quark processes differently – for example, at the

reference scale µ0 they increase the two-quark processes by about fifty percent while they

decrease the four-quark processes by about twenty percent.

There are two lessons that we draw from this observation. First, it does not seem possi-

ble to determine optimal renormalization and factorization scales for the whole process by

studying NLO QCD corrections to two- or four-quark processes only. Second, we observe

that for the central scale µ = µ0, NLO correction to the total cross-section is rather modest,

about ten percent. However, this modest correction is the result of a cancellation between
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FIG. 2: The transverse energy distributions of the hardest (left) and second-to-hardest (right)

jet in the W + 3 jet inclusive sample using SIScone jet algorithm. All cuts and parameters are

described in the text. Bands illustrate scale dependence at leading (green) and next-to-leading

order (red). Leading color adjustment is applied.

somewhat larger corrections to two-quark and four-quark channels. This suggests that the

leading color adjustment procedure that we apply may not be very accurate since small

corrections to the adjustment procedure for two- and four-quark channels separately may

get amplified because of the cancellation. Note however that the systematic and luminosity

errors on the W +3 jet data are currently 25% and 6% respectively, see Eq. (2). Given errors

of this size, the leading color approximation seems sufficient for the foreseeable future.

In Figs. 2,3 we present other kinematic distributions computed through next-to-leading

order. In Fig. 2, the transverse energy distributions of hardest and next-to-hardest jets are

shown. These distributions exhibit a shape change similar to the shape change that we

observed in the transverse momentum distribution of the third hardest jet.

In Fig. 3 the impact of NLO QCD corrections on leptonic observables in the case of

W++ ≥ 3 jet production is shown. In this case significant shape changes in both lepton

rapidity distribution and missing energy distribution do not occur, so simulations based on

leading order matrix elements should give reliable results for the shapes.

Finally, we point out that the discussion in this Section applies to the inclusive W + 3

jets cross-section. In particular, the observation that the choice of renormalization and fac-

torization scale µ = µ0 leads to small corrections applies to that observable. It is interesting
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FIG. 3: The e+ rapidity distribution and the missing energy distribution in the W++ ≥ 3 jet sample

using SIScone jet algorithm. All cuts and parameters are described in the text. Bands illustrate

scale dependence at leading (green) and next-to-leading order (red). Leading color adjustment is

applied.

to point out that the same scale choice µ = µ0 also works very well for exclusive W + 3 jet

production cross-section. In that case, for µ = µ0, the NLO QCD corrections increase the

leading order result by only about six percent, if jets are defined with SIScone algorithm.

To conclude this Section, we compare our findings with that of Berger et al. [11]. As we

explained in the Introduction, the computation reported in this paper and in Ref. [11] are

not identical so full agreement should not be expected. Nevertheless, the agreement is quite

good. For example the leading color SIScone cross-section σW+≥3j
NLO (E3rd jet

⊥ > 25 GeV) =

0.908+0.044
−0.142 pb was reported [11]. Based on the evidence from W + 1 and W + 2 jets, it was

argued in [11] that their leading color cross-section is within three percent of the full color

result3. This result compares very well with our estimate of the full color result shown in

Eq. (7).

3 This claim is further supported by the preliminary full color NLO QCD cross-section for W + 3 jets

reported in [12].
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V. CONCLUSIONS

We described the computation of NLO QCD radiative corrections to W + 3 jet cross-

section at the Tevatron, in the leading color approximation. We compared our results

with experimental data and found agreement both for the total cross-section and available

differential distributions. We point out that the scale choice µ =
√

p2
⊥,W + m2

W is fortunate

at the Tevatron since for this dynamical scale QCD corrections to total cross-sections are

relatively small. On the other hand, this scale choice is not a perfect solution as evident

from the fact that at NLO shapes of some distributions change.

Results presented here suggest that, after a leading color adjustment, leading color NLO

calculations are an excellent approximation to the full color result, to within a few per-

cent. This is more than enough to match the experimental accuracies of Tevatron and LHC

measurements of multi-particle final state events. From a theoretical point of view, missing

higher order (NNLO) corrections, estimated through the residual scale dependence of the

NLO result, limited knowledge of the underlying event, and poor description of hadronization

effects give rise to much larger theoretical uncertainties than the error due to the adjusted

leading color approximation.

Finally, we emphasize that for meaningful comparison of experimental and theoretical

results, it is important to use identical jet algorithms. If this is not done, systematic dif-

ferences between different jet algorithms at the level of ten percent or larger can not be

excluded and indeed do occur as follows from the comparison of NLO predictions for W + 3

jets obtained with SIScone and anti-k⊥ algorithms. We point out that any jet algorithm

can be used for a theoretical computation as long as it is infrared safe. Unfortunately, the

JETCLU algorithm used by CDF in the published W + 3 jet analysis is not infrared safe

and we had to switch to other jet algorithms. We found that NLO QCD prediction for

W + 3 jets computed both with SIScone and anti-k⊥ jet algorithms work reasonably well in

that they show agreement with data within the quoted experimental and theoretical errors.

It is important to stress, however, that it is much better to use identical infrared safe jet

algorithms to avoid this issue in future comparisons.
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