

A Code Inspection Process for Security Reviews

Gabriele Garzoglio
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL, 60510, USA

E-mail: garzoglio@fnal.gov

Abstract. In recent years, it has become more and more evident that software threat

communities are taking an increasing interest in Grid infrastructures. To mitigate the security

risk associated with the increased numbers of attacks, the Grid software development

community needs to scale up effort to reduce software vulnerabilities. This can be achieved by

introducing security review processes as a standard project management practice.

The Grid Facilities Department of the Fermilab Computing Division has developed a code

inspection process, tailored to reviewing security properties of software. The goal of the

process is to identify technical risks associated with an application and their impact.

This is achieved by focusing on the business needs of the application (what it does and

protects), on understanding threats and exploit communities (what an exploiter gains), and on

uncovering potential vulnerabilities (what defects can be exploited). The desired outcome of

the process is an improvement of the quality of the software artifact and an enhanced

understanding of possible mitigation strategies for residual risks.

This paper describes the inspection process and lessons learned on applying it to Grid

middleware.

1. Introduction
Until recently, the exploit community for Grid systems has been active targeting classical software

services, such as ssh, rather than vulnerability in the Grid middleware. As the exploit community

becomes more organized, developers of Grid middleware must become more mature in the avoidance

and detection of security weaknesses.

The Grid Facilities Department of the Fermilab Computing Division, has attempted to improve its

awareness of security in software development by defining, utilizing, and refining a code inspection

process that targets security reviews. The version 1.0 of this process has been released in March 2009.

The inspection process is loosely inspired by the Fagan inspection [1], which defines certain personnel

roles and a workflow of activities, including meetings.

This paper is organized as follows. The scope and goals of the inspection process is discussed in sec.

2. The definition of the roles, the deliverables, and the inspection workflow is described in sec. Error!

Reference source not found.. The core of the inspection is the security review itself: the security

review process consists of six steps and is detailed in sec. 4. Section 5 summarizes the conclusions of

the paper.

2. Scope and Goals
The goal of this inspection process is to assess potential vulnerabilities related to the security

properties of a software artifact. The core of the inspection process is a security review, which has the

FERMILAB-PUB-09-234-CD

goal of identifying technical risks associated with the application and of evaluating the impact of these

technical risks. Examples of technical risks are vulnerabilities, flaws in application code and

architecture, and other technical problems or complications. Examples of the impacts of these risks are

unexpected system crashes and avoidance of security control, including unauthorized data

modification or disclosure. Optionally, the process can generate application quality metrics, such as

the number or “density” of defects in the code, number of critical risks, etc. In addition, a side-goal for

the process is improving the process itself, by re-evaluating it with each inspection.

The process focuses on studying the security issues with the code itself, rather than with the operations

of the software. For example, the process would focus on uncovering avoidance of security controls,

rather than on how system passwords are protected and distributed or on how patches are maintained.

In any case, since the line between software and operational issues is often blurred, in the process,
reviewers are asked to familiarize themselves with high-level operational practices.

The inspection process does not discuss how to select the software artifact that should be reviewed.

This task is left as a responsibility of line management. The process; however, allows for a quick

rejection of an artifact, in case its security sensitivity is evaluated to be too low-risk to justify the cost

of a full review.

To achieve the goals of the process, the reviewers should study the software artifact with the following
in mind:

• What are the business context and risk? What does the software do and protect?

• What does an exploiter gain? What is the threat and exploit community?

• What defects can be exploited? What are the potential vulnerabilities?

3. The Inspection Process
The inspection process is inspired by the Fagan inspection [1] and uses a similar workflow and

organization of personnel roles. The following sections describe the roles, deliverables, and workflow

of the process.

3.1. Personnel Roles

The process defines the following roles for the personnel participating in the inspection

• Management: the line and project management of the personnel participating in the

inspection. Management must support the inspection review activity in order for it to be

successful, allowing for the appropriate time to be spent on the review and on addressing the

issues listed in the Inspection Report. The inspection is typically initiated by a manager with a
stake in a software artifact: the selection process for the artifact is outside of the scope of this

document.

• Moderator: the person responsible for the inspection. The Moderator collaborates with

Management to appoint the personnel participating in the review. He or she organizes the

inspection according to the inspection workflow (sec. 3.3). The Moderator is also responsible

to “moderate” the interactions between members of the inspection with different roles (e.g.

Reviewers and Authors).

• Author: the main developer(s) of the software artifact. Author(s) are responsible for working

with the Reviewers, providing material and expertise on the artifact. Author(s) are also

responsible for following up with the recommendations for improving the artifact, as

documented in the Inspection Report.

• Reviewer: a person reviewing the software artifact. Reviewers typically have particular

expertise or interest in the domain of the software artifact. Reviewers are highly encouraged to

follow the Security Review Process described in sec. 4 and provide feedback on it. Reviewers

are responsible for documenting the outcomes of their review in a Security Review Report.

• Scribe: a person participating in the meetings and taking notes on behalf of the group. The

scribe should always feel free to interrupt the conversation to make sure that the record is

accurate.

• Security Expert: this is typically a representative of the Security Team. His/her input is

useful to weigh the sensitivity of the issues exposed by the review.

3.2. Deliverables of the Inspection

The deliverable of the process is an Inspection Report. The report consists of the Security Review

Report from the Reviewers (sec. 4) and documentation of relevant discussions between Authors and

Reviewers, as compiled by the Moderator using the notes from the Scribe.

The outcome of the process should give Authors enough information to improve the quality of the

software artifact. It is the responsibility of the Authors, possibly in consultation with their

Management, to decide what recommendations of the Inspection Report to implement.

3.3. Inspection Workflow

This section describes the workflow of the inspection. Fig. 1 shows a diagram of such workflow.

1. Moderator’s appointment: Management appoints a Moderator to coordinate the inspection

process for a software artifact. The process to select what software artifacts should be reviewed is

considered responsibility of line management and is left outside of the scope of the inspection.

Author’s appointment: The Moderator contacts the leadership of the project responsible for the

development of the software artifact. The Moderator and the project manager choose one or more of

the Authors of the software to be the point of contact for the inspection. The Authors’ line

management must support the activity, allowing the Authors to spend the appropriate amount of time

to work with the reviewers and to follow up with the Reviewers’ recommendations. At this point,

Authors are asked to gather the documentation for the Reviewers. Such documentation should give

information on the issues listed in sec. 4.1.

2. Weighing the sensitivity of the review: Moderator, Authors, and Management agree on what

components of the software artifact should be reviewed. At this point, it is assessed whether the

artifact presents potential security risks sensitive enough to be worth the cost of a full review. If

not, the moderator should write the Inspection Report, detailing the reasons for the decision.

3. Reviewer’s appointment: The Moderator appoints two or three Reviewers. It is advantageous to

include at least one reviewer from outside of the software project group. Reviewers and their line

management should understand that working on a review is a commitment of several hours of

effort (4-16 hours), distributed throughout several calendar days (typically, 2 weeks). One

Reviewer should be appointed as Editor Reviewer. Her responsibility consists in gathering all

input from the Reviewers and in writing the Security Review Report.

4. Scribe’s appointment: The Moderator appoints a Scribe. The Scribe should have some general

understanding of the software domain, even if detailed knowledge should not be required.

5. Hold Initial Briefing: This meeting has three purposes: (1) the Moderator gives an overview of

the inspection and security review process; (2) Authors give Reviewers the documentation on the

issues listed in sec. 4.1; (3) Authors and Reviewers agree on their future interactions to complete

the security review process. The Moderator can appoint the Editor Reviewer at this meeting. The

meeting is attended by the Moderator, Authors, Reviewers, and the Scribe. At this time, the author

can optionally discuss the software artifact, if Reviewers are not familiar with it.

6. Perform the Security Review: Reviewers perform the Security Review, following the process in

sec. 4. The review should take about 2 calendar weeks (of non-continuous effort).

Figure 1. A diagram of the inspection process workflow.

7. Hold the inspection meeting: Reviewers discuss their report with the Authors. The meeting is

attended by the Moderator, Authors, Reviewers, the Scribe, and possibly a representative of the

Security Team. The Moderator should keep the meeting running smoothly and on track; it is

useful to remind Reviewers that they inspect a software artifact, not its Authors. It is important to

keep this meeting to about two hours in length. The meeting should consist of the following 2

phases:

7.1. Reviewers present their report to the Authors. Authors and Reviewers discuss the sensitivity

of each finding. The Scribe takes notes on the exchanges.

7.2. At the end of the inspection meeting, the Moderator solicits comments from those present on

improvements to the inspection process itself.

8. Generate Inspection Report: The Moderator writes the final report. This consists of the Security

Review from the Reviewers and relevant notes from the meetings (sec. 3.2). The Inspection

Report should include a list of issues for the Authors. In all cases, it is up to the Authors to decide

whether an issue will require some action. If the Authors decide that a particular issue can be

ignored, a very good reason must be stated as to why this is the best course of action. This reason

must be documented in the Report. The Security Team can be involved to provide input on the

relevance of each issue.

9. Follow up meeting: This meeting is optional. Its goal is to follow up with the Authors on the

issues listed in the Inspection Report. It should happen several weeks after the Inspection Report

has been finalized.

4. The Security Review
The security review process has the goal of identifying technical risks and their impact. The Security

Review is the core part of the Inspection process (point 6 of sec. 3.3). The deliverable of the review is

a Security Review Report.

The Security Review process consists of 6 steps, each described in a separate subsection below.

4.1. Application Review

This step is used to familiarize the Reviewers with the software artifact. The principal investigation

mechanism consists in reviewing documentation and interviewing the Authors. The documentation

can be gathered at the initial briefing (point 5 sec. 3.3). Some issues of interest for the review are listed

hereby:

1. General Functionalities

2. Application Environment

3. Use Cases

4. Specific Domain Features

5. Architecture

6. Relevant Code Portions

7. Project Management Practices

8. Risk Analysis / Security Requirements / Security-related Operations (if available)

4.2. Abuse Cases Analysis

“Abuse cases” [3] are malicious ways of misusing the software. Studying abuse cases helps prepare

for abnormal or exceptional application behavior. Abuse case analysis can help document how the

software reacts in the face of illegitimate usage.

An abuse cases analysis is built from studying possible ways to attack the application. To this regard,

the categorization of attacks in 48 “attack patterns” presented in [2] is most useful.

To determine and study abuse cases, a Reviewer can loosely follow the following process:

1. Identify the most likely applicable attack patterns, by studying use cases and requirements.

2. Using the applicable attack patterns, build an attack model.

3. Determine misuses of the software and abuse cases

It is recommended that Reviewers talk to the Authors, as they might be already aware of potential

abuses of the software.

4.3. Architectural Risk Analysis

An architectural risk analysis [3, 4] studies potential weaknesses and ambiguities in the software

architecture. This analysis also evaluates the overall resistance of the architecture in the face of an

attack. Reviewers can loosely follow the following process to compose the analysis.

1. Build a one page architectural overview of the software system, if not available. This can be

built with the help of the Authors.

2. Analyze the architecture, focusing on the following properties:

a. Attack resistance: how resilient is the application in the face of an attack? What attack

patterns (sec. 4.2) do not apply to the software system because of its architectural

properties?

b. Presence of ambiguity: are there ambiguities in the architecture, in terms of

functionalities, responsibilities, etc.? Modules that are involved in any architectural

ambiguity are more likely to present security issues.

c. Presence of weaknesses: are there weaknesses built into the architecture, such as

single points of failures, communication throttles, etc.? Modules that are involved in

architectural weaknesses are more likely to present security issues.

3. Identify and rank architectural risks. Focus on what the application protects. Understand what

would an exploiter gain with a successful attack (threat) and what defects can be exploited

(vulnerability). Risks are often loosely defined as the product of threats × vulnerabilities.

4. Help the Authors by defining possible mitigation strategies for each risk.

4.4. Code Review

A code review [3, 4] studies the software code to expose potential security vulnerabilities. In general,

it is best using automated tools to guide the reviewers toward portions of the code more likely to have

problems. Some of these tools, such as Fortify [8], have advanced analysis features but are expensive

to use. There are various resources on the web that discuss free tools [5].

If the code review is done by reading the code, the Reviewer should especially look for the following

properties:

1. Input validation and representation

2. API abuse

3. Security-related features

4. Time and state

5. Error handling

6. Code quality

7. Encapsulation

8. Environment

Potential concerns are often one of the following:

1. An area of the artifact that the Author is uncertain about

2. An area that in the past has shown to be problematic

3. A special quality that the deliverable must contain (i.e. be memory efficient, incorporate all

previous requirements etc.)

Reviewers can learn about these issues by interviewing the Authors.

4.5. Application tests

There are various types of security testing techniques [3]. For web-based application, OWASP [6]

offers step by step guides to uncover security vulnerabilities, using similar attack patterns as in [2].

Software response to input parameters is often a weak point of applications. Reviewers can check the

response of software to a large set of input parameters using a variety of tools, generically referred to

as “fuzzing” tools [7].

Tests for the security review should be selected according to the outcomes of previous analyses. We

expect that the “test” section of the security review process will be enhanced with recommendations

for effective tests as we build experience using this process.

4.6. Write Security Review Report

The Security Review report is the central piece of the Inspection Report. The report should include

1. The findings of the review for each of the steps detailed above. It should be clear from the

review what issues need to be discussed with and potentially fixed by Authors.

2. A discussion on what the application does and protects; what the threats and exploit

community are; what potential vulnerabilities have been uncovered; and what the risks are.

3. The impact of each risk, by linking risks with the business needs of the application

(Availability, confidentiality, integrity, authenticity/non-repudiation, etc.)

4. An analysis of what mitigations can be adopted for the highest impact risks.

The Moderator appoints an Editor Reviewer at the initial Inspection Briefing (point 5 sec 3.3). The

Editor Reviewer is responsible for the delivery of the report. Reviewers discuss the report at the

Inspection Meeting (point 7 sec. 3.3) and hand over the report to the Moderator.

5. Conclusions
We have described an inspection process for security reviews. The process defines personnel roles,

recommended meetings, and six steps to review the security properties of the investigated software.

This security review process was extended from software inspection guidelines [1] that have been

successfully used for years at Fermilab. The process has been successfully used to review the Site

AuthoriZation service (SAZ) software at Fermilab and is meant to be continuously refined.

Acknowledgments
The code inspection process for security reviews, presented in this paper, has greatly benefitted by

material presented at the Secure Coding class by Ken van Wyk.

Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359

with the United States Department of Energy. This work was partially funded by the Office of

Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy, under Contract
DE-AC02-06CH11357.

References
[1] The Fagan inspection process at Fermilab:

http://ods.fnal.gov/ods/www/process/faganInsp.html

[2] Hoglund G and McGraw G 2004 Exploiting Software: How to break the code ed Addison Wesley

(Boston: Pearson Education)

[3] McGraw G 2006 Software Security: Building Security in, ed Addison-Wesley

[4] Viega J and McGraw G 2001 Building Secure Software: How to Avoid Security Problems the Right

Way ed Addison-Wesley

[5] Code review tools: http://www.softpanorama.org/SE/code_reviews_and_inspections.shtml

[6] OWASP testing portal:

http://www.owasp.org/index.php/OWASP_Testing_Guide_v2_Table_of_Contents

[7] Resources on Fuzzing tools:
http://www.dragoslungu.com/2007/05/12/my-favorite-10-web-application-security-fuzzing-tools/

[8] Chess B and McGraw G 2004 Static analysis for security Security & Privacy, IEEE 2(2004)06 76

