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We performed a signature-based search for long-lived charged massive particles (CHAMPs) pro-
duced in 1.0 fb−1 of pp collisions at

√
s = 1.96 TeV, collected with the CDF II detector using a high

transverse-momentum (pT ) muon trigger. The search used time-of-flight to isolate slowly moving,
high-pT particles. One event passed our selection cuts with an expected background of 1.9 ± 0.2
events. We set an upper bound on the production cross section, and, interpreting this result within
the context of a stable scalar top-quark model, set a lower limit on the particle mass of 249 GeV/c2

at 95% C.L.

PACS numbers: 13.85.-t, 13.85.Rm, 14.80.Ly
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Most searches for massive particles arising from physics
beyond the standard model (SM) rely upon the assump-
tion that the particles decay immediately. Long-lived
or stable non-SM states could exist, however, due to a
new symmetry [1], a weak coupling [2], a kinematic con-
straint [3], or a potential barrier [4]. If the lifetime is
long compared to the transit time through the detec-
tor, then the particle may escape the detector, thereby
evading the limits imposed by direct searches for decay
products. However, a charged, massive long-lived parti-
cle (CHAMP) will be directly observable within the de-
tector through the distinctive signature of a slowly mov-
ing, high transverse-momentum (pT ) particle. The low
velocity results in a long time-of-flight (TOF) and an
anomalously large ionization-energy loss rate (dE/dx).
Since the particle loses energy primarily through low-
momentum-transfer interactions, even if strongly inter-
acting [5, 6], it will be highly penetrating and will likely
be reconstructed as a muon.

Previous CHAMP search results have been presented
within the context of a variety of models [7–10]. CDF
in Run I, for instance, used dE/dx and set 95% C.L.
lower mass limits on stable fourth-generation down-type
(190 GeV/c2) and up-type (220 GeV/c2) quarks [7]. The
ALEPH experiment also used dE/dx to exclude a stable
scalar top squark (t̃), the supersymmetric partner of the
top quark, with a mass below 95 GeV/c2 at 95% C.L. [8]
A combined result from the LEP2 experiments excluded
a stable supersymmetric partner for SM leptons with a
mass below 99.5 GeV/c2 at 95% C.L. [9]

In this Letter, we present a blind signature-based
search for isolated CHAMPs promptly produced in pp̄
collisions at

√
s = 1.96 TeV with the CDF II detector [11]

at the Fermilab Tevatron. Using an integrated luminosity
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of 1.0 fb−1 of p̄p collisions collected with a high pT muon
trigger, the analysis isolated CHAMP candidates by cal-
culating their mass from their measured velocity and mo-
mentum. We interpret the results within two scenarios.
The first case, production of a single CHAMP within a
reference volume of the CDF II detector, is largely model
independent. The second scenario assumes a benchmark
model for stable top-squark-pair production within the
reference volume. Since the leading-order contributions
to t̃ production depend only upon the t̃ mass [12], the re-
sult will generally apply to all stable t̃ production models.

Details of the CDF II detector can be found in Ref. [11].
CDF measures the trajectories and momenta of charged
particles using an inner silicon-strip detector [13] and an
open-cell drift chamber (COT) [14]. A TOF detector [15]
surrounding the outer tracker allows precise arrival time
measurements for tracks projected into the detector with
a pseudorapidity [16] in the range |η| <∼ 1. Calorime-
ters located outside the tracking volume measure energy
deposition of particles, and prevent all but the most pen-
etrating from reaching the muon detectors [17] positioned
beyond the calorimeters.

Our data sample was collected with a trigger that iden-
tifies muon candidates with |η| < 0.7 and pT > 18 GeV/c.
An event entered the analysis if the highest-pT muon
candidate reconstructed offline had pT > 20 GeV/c,
originated from the most energetic p̄p collision, passed
quality criteria that reduce backgrounds from punch-
through and particles that decay in-flight, and satisfied a
calorimeter energy isolation criterion in which the ratio
ΣET (0.4)/pT (muon) < 0.1, where ΣET (0.4) is the sum
of transverse energy within a cone of ∆R = 0.4 around
the candidate’s direction, excluding the energy deposited
by the candidate itself.

We assign the selected events to signal or control
sub-samples depending upon whether the track of the
highest-pT muon candidate is a signal-region (pT >
40 GeV/c) or control-region (20 < pT < 40 GeV/c) track.
The second-highest-pT muon candidate (or the highest-
pT non-muon track in events with only one muon can-
didate) is also a signal- or control-region track if it is in
the same pT region and originates from the same vertex
as the first muon candidate. Tracks with pT < 20 GeV/c
are used to measure the pp̄ interaction time (t0) and are
referred to as “t0 tracks”. The event t0, which is needed
to determine the velocity of signal- and control-region
tracks, is estimated using a maximum likelihood fit to
all t0 tracks from an interaction vertex, simultaneously
taking into account all possible mass hypotheses. The t0
resolution of single tracks is about 120 ps, so a single t0
track is adequate to obtain the interaction time.

To separate a CHAMP signal from background, we use
the velocity and momentum to calculate the mass of the
candidate particle. In events with two signal-region or
control-region tracks, both are considered. The track ve-
locity for all candidate and control-region tracks is mea-



5

sured by dividing the path length of the track by its TOF.
The measured average velocity, β = v/c, and single-
track resolution of control-region tracks is 1.000± 0.029,
but with significant non-Gaussian tails. For signal-region
tracks, we require β < 0.9 to suppress SM particles.

The non-Gaussian tails in the time resolution functions
introduce a large background to the CHAMP candidate
sample. The residuals to the track fit in the COT can be
used to estimate the t0 and track β with resolutions that
are about a factor of three worse than those made with
the TOF detector, but that are reliably parameterized by
single Gaussian distributions. Requiring that the event
t0 and candidate track β measurements from the TOF
detector and COT agree reduces this background.

Cosmic-ray muons are uncorrelated in time with pp̄ in-
teractions and present a potentially serious background.
In a sample of 1.5 × 105 cosmic rays, only four pass
the CHAMP selection. After applying a cosmic-ray fil-
ter [18], we expect negligible residual cosmic-ray back-
ground. The filter removes less than 1% of signal events.

We estimate the efficiency for identifying a CHAMP
candidate within our two scenarios. In general, CHAMPs
are expected to have very large pT and be highly isolated.
Final-state radiation is strongly suppressed, even if the
CHAMP is strongly interacting [5]. These characteristics
make W → lν and Z → l+l− events, where l is either an
electron or muon, reasonable models for both the isolated
CHAMP track and the underlying event.

We use the muons in Z → µ+µ− events selected from
the original trigger sample to measure the trigger and
track reconstruction efficiency for a single muon to be
(94.0 ± 0.3)%. To study the β dependence of the track-
ing efficiency, we isolate slow deuterons and pions using
dE/dx in the tracking detector and measure the ratio
of deuterons to pions, which we assume is constant as
a function of β. We find that the efficiency is constant
for β > 0.4 and drops for slower particles, a result con-
firmed in a CHAMP Monte Carlo simulation (MC) [19].
We therefore assume a flat efficiency of (94.0± 0.3)% for
β > 0.4 and zero for β < 0.4 for CHAMPs.

Using vertices and electron tracks in W → eν events,
we determine the efficiency for finding the primary event
vertex, calculating an event t0, and reconstructing an iso-
lated CHAMP track from the vertex to be (71.4±0.2)%.
The event t0 and track-vertex association dominate the
losses in this efficiency (87% and 86% respectively).

The efficiency for measuring the arrival time in the
TOF detector for CHAMP tracks that are within the
muon detector acceptance is determined directly from
the muon data; for tracks that are not within the muon
detector’s acceptance, we use electron tracks in W → eν
events. Including the efficiency for the TOF result to
be consistent with COT timing information, we obtain a
TOF measurement efficiency of (62.8 ± 2.6)% for tracks
within the muon detectors and (56.3 ± 2.7)% for other
tracks. The criteria used to identify well-measured arrival

times account for most of the efficiency loss.
The dominant systematic uncertainties in the efficien-

cies are a 5% value to cover the effect of errors in the
modeling of initial and final state radiation and track
multiplicities in CHAMP events on the vertex and t0 ef-
ficiencies, and a 3% uncertainty in the arrival time effi-
ciency to cover differences observed for electrons, muons,
and changes in the TOF detector gain during the run.

Strongly interacting CHAMPs are subject to QCD ef-
fects [5, 6] that can reduce the overall detection efficiency
relative to that of weakly interacting CHAMPs. Quark-
like CHAMPs, for instance, can hadronize into either
charged or neutral color-singlet states. Charge-exchange
interactions in the material of the detector can change an
initially charged particle into a neutral particle, and visa
versa, before it reaches the muon detectors. At least one
CHAMP must leave a track segment in both the COT
and the muon chambers to satisfy our trigger.

In order to estimate the efficiency loss due to these
hadronic effects, we consider the case of an up-quark-like
CHAMP, Q, that hadronizes into a Qq̄ or Q̄q R-hadron
state [20]. The fraction hadronizing into a charged R-
hadron is assumed to be (52.9±2.9)%, based upon the
rate for charged b-meson production measured at LEP
[21]. The center-of-mass energy for collisions between
a massive Q moving at low velocity and a light quark
is small. As a result, hadronic interactions of the R-
hadron with the detector material involve primarily the
light quark while the Q remains a spectator [5, 6]. Since
the R-hadron contains a single light valence quark, we as-
sume the interaction length for the R-hadron to be three
times that for a proton. Under these assumptions, we
estimate that the probability that an initially charged R-
hadron undergoes re-hadronization before reaching the
outer-most of the two layers of muon detectors is 93%.
At each interaction, the Q re-hadronizes according to the
same prescription as for the initial hadronization. To es-
timate the systematic uncertainty, we take the difference
between the result above and the efficiency assuming that
100% of R-hadrons re-hadronize.

Combining all efficiencies, the net efficiency for detect-
ing a single, weakly interacting CHAMP within the muon
trigger acceptance is (38±2)%; for a strongly interacting
up-quark-like CHAMP, the efficiency is (8.8± 1.6)%.

As a reference model we use Pythia [19] to calculate
the geometric and kinematic acceptance for top-squark
pair production. The trigger and detection efficiencies
are calculated by combining the single-track and vertex-
finding efficiencies as estimated for the case of a single up-
quark-like CHAMP with the relative rate at which one or
two top-squark R-hadrons are within the fiducial volume
of the detector as predicted by the MC. The acceptances
for various t̃ masses are listed in Table I.

Figure 1 shows the observed and predicted mass distri-
bution for tracks in the signal region. The uncertainty in
the β measurement is independent of the momentum for
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FIG. 1: Observed (histogram) and predicted (band) mass
distributions for candidate tracks in the muon sample. The
curves on the right show the MC distributions expected for a
140 and a 220 GeV/c2 long-lived stop.

tracks with β ≈ 1. We therefore obtain an absolute pre-
diction for the background mass distribution for a given
set of tracks by convolving the momentum distribution
for those tracks with the distribution of

√
1/β2 − 1, nor-

malized to unit area, for control-region tracks. We find
agreement between the observed and predicted mass dis-
tributions within the control and signal-region electron
tracks and within the control region of the muon sample.
The background prediction for the signal region is shown
by the band in Fig. 1.

We find one candidate track with a mass above
100 GeV/c2 and none above 120 GeV/c2, consistent
with the predicted background of 1.9 ± 0.2 events
above 100 GeV/c2. From this result, we set a model-
independent upper limit on the production cross section
for a single, isolated, weakly interacting CHAMP within
the muon trigger acceptance (approximately |η| < 0.7)
with pT > 40 GeV/c, 0.4 < β < 0.9, and a measured
mass m > 100 GeV/c2 to be σ < 10 fb at 95% C.L. Simi-
larly, the cross-section limit for a up-quark-like CHAMP
under the same assumptions is σ < 48 fb at 95% C.L.

To count the number of events consistent with a stable
t̃ of a given mass ms, we must take into account our mass
resolution. For tracks with β > 0.4 and momenta in the
signal region, the mass resolution is determined by the
momentum resolution [22], which is well modeled by the
MC. We can therefore accurately predict the t̃ mass line
shape. We search for a t̃ signal by integrating all events
within a one-sided window from 0.8ms upward. Table I
shows the resulting number of events as a function of the
t̃ mass. From the estimated efficiencies and the number
of observed events, we calculate the 95% C.L. upper limit
on the cross section shown in Fig. 2. The band represents
the theoretical NLO t̃ pair production cross section, as
calculated using the Prospino2 program [23]. From the
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10 Stop Production cross section (NLO)
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FIG. 2: The observed 95% C.L. limits on the cross section for
production of a stable top-squark pair (points), compared to
the theoretical NLO cross section [12] (curve). The band rep-
resents theoretical and parton distribution function uncertain-
ties. The intersection of the band with the limit curve yields
a lower mass limit for a stable top squark of 249 GeV/c2.

intersection of the edge of the band and the limit curve,
we infer a 249 GeV/c2 95% C.L. lower limit on the mass
of a stable t̃. This is the most stringent limit to date.

In conclusion, we have used the CDF II TOF and COT
systems to measure the masses of highly penetrating,
high-pT tracks. The observed mass distribution is consis-
tent with the expected background, which is dominated
by SM particles with mis-measured velocity or momen-
tum. From this result, we set upper limits for the pro-
duction cross section times acceptance of single weakly
(up-quark-like strongly) interacting CHAMPs to be less
than 10 (48) fb at 95% C.L. The 95% C.L. lower limit on
the mass of a stable top squark is 249 GeV/c2.
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TABLE I: Results of the search for stable top squarks in 1.0 fb−1 of pp̄ collisions, as a function of the t̃ mass.

t̃ mass (GeV/c2) 100 120 140 160 180 200 220 240 260
Expected background 4.7±0.3 1.9±0.2 0.8±0.1 0.37±0.05 0.18±0.03 0.09±0.02 0.05±0.01 0.03±0.01 0.016±0.005
Observed events 4 1 1 0 0 0 0 0 0
Total acceptance (%) 3.6±0.5 4.2±0.5 4.5±0.6 5.1±0.7 5.5±0.8 5.8±0.8 5.9±0.9 5.9±0.8 6.2±0.9
Expected limit (fb) 190 120 90 71 61 56 55 53 51
95% C.L. limit (fb) 160 90 100 60 56 53 52 52 50
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