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Calculating gluon one-loop amplitudes numerically
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This note reports on an independent implementation of calculating one-loop amplitudes
semi-numerically using generalized unitarity techniques. The algorithm implemented in
form of a C++ code closely follows the method by Ellis, Giele, Kunszt and Melnikov [1,
2]. For the case of gluons, the algorithm is briefly reviewed. Double-precision results
are presented documenting the accuracy and efficiency of this computation [3].

1 Introduction

An automated next-to-leading order generator for Standard Model processes is highly desir-
able [4]. With recent developments of generalized unitarity [5] and parametric integration
methods [6] such a generator seems to be within reach [1, 2, 7, 8]. A first crucial step is
the development of stable and fast algorithms for evaluating one-loop amplitudes through
generalized unitarity cuts. A C++ code is especially of interest because of the ease with
which it can be integrated in leading-order generators such as COMIX [9]. The leading-order
code will then be used to compute the cut graphs. Eventually, such a retrofitted generator
will be able to generate all necessary amplitudes for a next-to-leading order Monte Carlo
program for any Standard Model process of interest to the collider experiments.

2 Construct one-loop by tree-level amplitudes – algorithm in brief

The full N -gluon one-loop amplitude can be constructed from the leading colour-ordered

amplitudes [10], which can be calculated by A
[1]
N ({pi, κi}) = Acc

N +RN depending on external
momenta pi and polarizations κi. The cut-constructible part reads

Acc
N =

∑

[i1|i4]

d
(0)
i1i2i3i4

I
(4−2ǫ)
i1i2i3i4

+
∑

[i1|i3]

c
(0)
i1i2i3

I
(4−2ǫ)
i1i2i3

+
∑

[i1|i2]

b
(0)
i1i2

I
(4−2ǫ)
i1i2

(1)

employing the short-hand notation [i1, iM ] = 1 ≤ i1 < i2 < . . . < iM ≤ N , and M denotes

the number of cuts. The master integrals are defined as I
(D)
i1···iM

=
∫

dDℓ (iπD/2 di1 · · ·diM
)−1

and the inverse propagators di are functions of the loop momentum: di(ℓ) = (ℓ + qi − qiM
)2

with qk =
∑k

j=1 pj. The rational part RN is represented by

RN = −
∑

[i1|i4]

d
(4)
i1i2i3i4

6
+

∑

[i1|i3]

c
(7)
i1i2i3

2
−

∑

[i1|i2]

(

(qi1 − qi2)
2

6

)

b
(9)
i1i2

, (2)

cf. [2, 7]. For each possible cut configuration i1 · · · iM , the box (d
(n)
i1i2i3i4

), triangle (c
(n)
i1i2i3

)

and bubble (b
(n)
i1i2

) coefficients appearing above are found as solutions to the parametric form
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of the unintegrated ordered one-loop amplitude,

A
(Ds)
N (ℓ) =

∑

[i1|i5]

ē
(Ds)
i1i2i3i4i5

(ℓ)

di1di2di3di4di5

+
∑

[i1|i4]

d̄
(Ds)
i1i2i3i4

(ℓ)

di1di2di3di4

+
∑

[i1|i3]

c̄
(Ds)
i1i2i3

(ℓ)

di1di2di3

+
∑

[i1|i2]

b̄
(Ds)
i1i2

(ℓ)

di1di2

. (3)

This decomposition of the integrand A
(Ds)
N (ℓ) = N (Ds)(ℓ)/(d1d2 · · ·dN ) has been generalized

to higher (integer) dimensionality of the internal particles, i.e. spin-polarization states and
loop momenta respectively have dimension Ds and D ≤ Ds (as required by dimensional
regularization). The Ds dependence of the integrand can be eliminated by taking into
account that the numerator only linearly depends on the spin-space dimension: N (Ds)(ℓ) =
N0(ℓ)+(Ds−4)N1(ℓ). Moreover, only up to 5-point terms (i.e. M ≤ 5) need to be included
in the parametrization, since the loop momentum effectively has 4 + 1 components only:

A
(Ds)
N (ℓ) = A

(Ds)
N (ℓ1, . . . , ℓ4, [−

∑D
i=5 ℓ2]1/2). These two additions essentially are sufficient

to disentangle the rational part in the same way as the cut-constructible part [2].
The numerator functions of the M -point terms are polynomials encoding the loop-

momentum dependence residing in the space orthogonal to the physical space defined by
the external momenta. The orthogonal space is spanned by the basis vectors ni. The form
of the polynomials is richer compared to the four-dimensional case. They now include the
coefficients that determine the rational part, e.g. for the box numerator, one finds

d̄i1···i4(ℓ) = d
(0)
i1···i4

+ α4 d
(1)
i1···i4

+ s2
e [d

(2)
i1···i4

+ α4 d
(3)
i1···i4

] + s4
e d

(4)
i1···i4

, (4)

where αi = ℓ · ni and s2
e = −α2

5 − . . . − α2
D. To solve for the coefficients of the numerator

functions, loop momenta ℓ = ℓi1···iM
have to be constructed such that dj(ℓi1···iM

) = 0 for
j = i1, . . . , iM . Then

ē
(Ds)
i1···i5

(ℓ) = Resi1···i5

[

A
(Ds)
N (ℓ)

]

≡ di1(ℓ) · · · di5(ℓ) A
(Ds)
N (ℓ)

∣

∣

∣

di1
(ℓ)=···=di5

(ℓ)=0
, (5)

d̄
(Ds)
i1···i4

(ℓ) = Resi1···i4



A
(Ds)
N (ℓ) −

∑

[j1|j5]

ē
(Ds)
j1···j5

(ℓ)

dj1 · · ·dj5



 , . . . . (6)

Using the ni vectors, loop momenta fulfilling the constraints can be generated: ℓi1···iM
=

Vi1···iM
+

∑D
i=M αini where α2

M = −V 2
i1···iM

−
∑D

i=M+1 α2
i . In general, the solutions are found

as complex momenta. The vectors Vi1···iM
reside in the physical space; they are constructed

from sums of external momenta as specified by the cuts, cf. [1]. By successively applying
quintuple, quadruple, triple and double Ds-dimensional unitarity cuts, all coefficients can
be determined. The cuts yield M onshell propagators factorizing the unintegrated one-loop
amplitude into M tree-level amplitudes. Hence, the residues can be evaluated:

Resi1···iM

[

A
(Ds)
N (ℓ)

]

=

Ds−2
∑

{λ1,...,λM}=1

{

M
∏

k=1

M(0)
(

ℓ
(λk)
ik

; pik+1, . . . , pik+1
;−ℓ

(λk+1)
ik+1

)

}

(7)

where ℓik
= ℓ + qik

− qiM
and the sum is over internal polarization states.

3 C++ implementation and results

The algorithm described above has been implemented in a new C++ code. The only interface
is to link the QCDLoop package [11] for evaluating the master integrals. The program is ca-
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pable of calculating the A
[1]
N ({pi, κi}) amplitudes in double precision in the four-dimensional

helicity scheme. This allows for crosschecks with the results obtained in Refs. [7, 12].
The construction of the orthonormal sets of the D−M + 1 basis vectors and the Ds − 2

polarization vectors follows the method outlined in [7]. In addition, the ni vector generation
(i = M, . . . , D) has been set up such that basis vectors obtained for large-M cuts can be
re-used for suitable lower-M cuts. The basic strategy, which has been implemented to find
the coefficients, is as follows: by using the freedom in choosing loop momenta, m solutions
and, therefore, algebraic equations, such as eq. (4), can be generated to solve for n ≤ m
coefficients.a First the dependence on Ds is eliminated by computing: Resi1···iM

[AN (ℓ)] =

(Ds − 3)Resi1···iM
[A

(Ds)
N (ℓ)] − (Ds − 4)Resi1···iM

[A
(Ds+1)
N (ℓ)]. Then higher-point terms are

subtracted yielding numerator factors ēi1···i5(ℓ) etc. that are independent of Ds, i.e. eqs. (5)
and (6) work without the (Ds) label. For the coefficients of the cut-constructible part,
one can dispense with the determination of the Ds dependence of the residues and set
D = Ds = 4. This, in addition, leads to smaller subsystems of equations, which can be solved

separately, e.g. eq. (4) simplifies to d̄i1···i4(ℓ) = d
(0)
i1···i4

+α4 d
(1)
i1···i4

. The tree-level amplitudes
needed to obtain the residues in eq. (7) are calculated with Berends–Giele recursion relations
[13], adjusted to work for gluons in higher dimensions. For efficiency, currents, which involve
external gluons only, are stored for re-use in evaluating other residues.

A number of consistency checks was carried out to verify the correctness of the imple-
mentation. The gauge invariance of the results and their independence of different choices
for loop momenta and dimensionalities D and Ds were tested. Coefficients themselves, the
pole structure of the amplitudes and, finally, the amplitudes themselves have been compared
to analytic results for various N and different momentum and polarization configurations
of the gluons. Agreement within the limits of double-precision calculations has been found
with the numbers produced by Rocket for the fixed phase-space points given in [7].

In the following, studies are presented that have been conducted to examine the accuracy
and time dependence of the numerical calculation.

Accuracy of the results. The quality of the numerical solutions can be estimated by
analyzing the logarithmic relative deviations, which are defined as

εdp,sp = log10

|A
[1](dp,sp)
N,C++ − A

[1](dp,sp)
N, anly |

|A
[1](dp,sp)
N, anly |

, εfp = log10

2 |A
[1](fp)
N,C++[1] − A

[1](fp)
N,C++[2]|

|A
[1](fp)
N,C++[1]| + |A

[1](fp)
N,C++[2]|

, (8)

where the analytically known pole structures of the one-loop amplitudes are taken as ref-
erence for double (dp) and single (sp) poles, while for finite parts (fp), two independent
solutions are compared with each other. Figure 1 shows the ε distributions together with
the number of generated phase-space points for various N . The top row of numbers in the
plots displays the means of the distributions. All results have been obtained for the same
cuts on external gluons as reported in [7]; for the effect of tighter cuts, see Figure 3 (right).

For N = 15, the double-precision evaluation of the coefficients clearly is not sufficient to
yield reliable finite-part result. The loss of precision as N increases is correlated with the
more frequent appearance of small denominators and large numbers characteristic for the
calculation. The two rightmost bottom panels of Figure 1 present two examples by depicting
the range of magnitude taken by Gram determinants, used to evaluate the Vi1···iM

vectors

of external gluons, and e
(0)
i1···i5

coefficients, which can be of O(1024) for N = 15. Double

aIn principle, an infinite number of equations can be generated to fit a fixed number of unknowns.
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Figure 1: Double-, single-pole and finite-part accuracy (in double precision) of the ++−−. . .
one-loop amplitudes for N = 6, . . . , 11, 15 gluons; see also text and right panel of Figure 3.
Bottom row: center, double-logarithmic distributions of Gram determinants involving sets

of external gluons and, right, e
(0)
i1···i5

coefficients for the N = 6, 8, 15 gluon setups.

precision will then be insufficient to make cancellations as they may occur e.g. in eq. (6)
manifest. The scatter plots of Figure 2 visualize that (partial) correlations exist between
the relative accuracy of the finite part and the smallest Gram determinant of external-

gluon sets, the largest e
(0)
i1···i5

coefficient and the single-pole accuracy. In all cases, the areas
of scatters shift with increasing N towards worse accuracy and more extreme values of
Gram determinants and 5-point coefficients. The calculation may still involve other small
denominators, such as the leftover dj in the subtraction terms of e.g. eq. (6). This leads to
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Figure 2: Finite-part accuracy versus minimal Gram determinant of external-gluon sets

(left), maximal e
(0)
i1···i5

coefficient (center) and single-pole accuracy (all in double precision)
for the N = 6, 8, 11 gluon setups of above.

instabilities (even for small coefficients) and uncorrelated areas in the plots are populated.
Given these correlations, it can be seen that one way of achieving higher accuracy is to
compute the coefficients in quadrupole precision. This has been pointed out in Ref. [7].

Efficiency of the calculation. As estimated in Ref. [4] (p. 31), the algorithm is expected
to have polynomial complexity, see also [7]. The computing time τN to calculate an ordered
N -gluon one-loop amplitude should scale as Nx + . . ., with the leading term having x = 9
dominating the behaviour for large N . The results for τN with N = 4, . . . , 20 are shown in
Figure 3 together with the exponents xN = ln τN

τN−1
/ ln N

N−1 . The plots demonstrate that

the C++ algorithm as implemented displays the predicted scaling.
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Figure 3: N dependence of the computing time; xN -exponents (center), see text. Times
refer to using a 2.20 GHz Intel Core2 Duo processor. Tighter gluon cuts were used: |ηi| < 2,
p⊥,i s−0.5 > 0.1, Rij > 0.7, denoted as in [7]. The last plot shows the accuracy improvement.

4 Conclusions

It has been shown that the generalized unitarity method of Refs. [1, 2] can be implemented in
a stable and fast C++ program. The one-loop N -gluon amplitude has been used as a testing
ground. The next step is to integrate the C++ code in an existing leading-order generator.
The resulting upgraded generator will be able to generate both virtual and bremsstrahlung
contributions for arbitrarily complex Standard Model processes. The final step towards a
full next-to-leading order Monte Carlo is to add the necessary phase-space integrations. As
was shown in Ref. [14] the virtual matrix elements calculated with the generalized unitarity
method can be used in next-to-leading order Monte Carlo programs.
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