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An exact formula is derived for the infrared singularities of dimensionally regularized scattering am-
plitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based
on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective
theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous
dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two
anomalous dimensions, which are extracted to three-loop order from known perturbative results for
the quark and gluon form factors. This allows us to predict the three-loop coefficients of all 1/ǫk

poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.

Perturbative expressions for quark-gluon scattering
amplitudes in massless QCD contain infrared (IR) singu-
larities, which originate from configurations where loop
momenta become soft or collinear. In predictions for
physical observables these cancel against corresponding
singularities from real gluon emission. Nevertheless, the
IR singularities are interesting in their own right. Af-
ter the cancellation of IR singularities logarithmic terms
remain, which depend on the phase-space cuts imposed.
For high-energy scattering processes with low-mass jets
in the final states these Sudakov logarithms dominate the
cross section. An understanding of the structure of IR
singularities can be used to predict and resum these log-
arithmically enhanced contributions to all orders. It also
serves as a consistency check on loop calculations.

Despite the fact that their origin is well understood, an
all-order description of the singularity structure of QCD
amplitudes is currently still lacking. An important step
toward this goal was made by Catani [1], who correctly
predicted the singularities of two-loop amplitudes apart
from the 1/ǫ pole term. His formula states that the prod-
uct
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where αs ≡ αs(µ), and |Mn(ǫ, {p})〉 with {p} ≡
{p1, . . . , pn} denotes an ultraviolet (UV) renormalized,
on-shell n-parton scattering amplitude with IR singu-
larities regularized in d = 4 − 2ǫ dimensions, is free
of IR poles through O(α2
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where sij ≡ 2σij pi · pj + i0, and the sign factor σij = +1
if the momenta pi and pj are both incoming or outgo-
ing, and σij = −1 otherwise. The quantities K and

gi in (2) are related to anomalous-dimension coefficients
given below as K = Γcusp

1 /(2Γcusp
0 ) and gi = −γi

0/2,
while β0 = 11

3 CA − 4
3 TF nf is the first coefficient of the

QCD β-function. The sums in the expressions above are
over all external partons. We use the color-space for-
malism of [2], in which n-particle amplitudes are treated
as n-dimensional vectors in color space. Ti is the color
generator associated with the i-th parton and acts as
a matrix on its color index. Specifically, one assigns
(T a

i )αβ = taαβ for a final-state quark or initial-state anti-

quark, (T a
i )αβ = −taβα for a final-state anti-quark or

initial-state quark, and (T a
i )bc = −ifabc for a gluon. The

product Ti · Tj ≡ T a
i T a

j is summed over a. Genera-
tors associated with different particles trivially commute,
Ti ·Tj = Tj ·Ti for i 6= j, while T

2
i = Ci is given in terms

of the quadratic Casimir operator of the corresponding
color representation, i.e., Cq = Cq̄ = CF and Cg = CA.
Owing to color conservation, the scattering amplitudes
fulfill the relation

∑

i Ti |Mn(ǫ, {p})〉 = 0. Because the
operator Ti · Tj is color-conserving, this condition is also

fulfilled after acting with I
(1) or I

(2) on the amplitudes.

The scheme-dependent quantity H
(2)
R.S., which only

contains 1/ǫ divergences, was not specified in [1] except
for the simplest case of the on-shell quark form factor. In
subsequent two-loop calculations of the three-parton qq̄g
amplitude [3] and of 2 → 2 scattering amplitudes [4, 5] it
was observed that its color-diagonal part has a universal
structure. However, the calculations of four-parton am-
plitudes also revealed the presence of a non-trivial color
structure [5]. A conjecture for the form of this term for
a general n-parton amplitude was made in [6].

An interesting alternative approach to the problem of
IR singularities of on-shell amplitudes was developed in
[7], where the authors exploited the factorization proper-
ties of scattering amplitudes [8, 9] along with IR evolu-
tion equations familiar from the analysis of the Sudakov
form factor [10]. They recovered Catani’s result (2) at
two-loop order and related the coefficient of the unspeci-
fied 1/ǫ pole term to a soft anomalous-dimension matrix,
which was unknown at the time. They also explained how
their method could be extended beyond two-loop order.
The two-loop soft anomalous-dimension matrix was later
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calculated in [11], where its color structure was found to
be proportional to that obtained at one-loop order.

In this Letter we propose an all-order generalization of
Catani’s result (2) valid for an arbitrary on-shell n-parton
scattering amplitude. We find that in a minimal subtrac-
tion scheme the color structure of the IR pole terms is
simpler than anticipated based on Catani’s work [1]. In
fact, to all-loop order the 1/ǫ pole term contains only
the structures 1 and Ti · Tj . Our analysis is based on
effective field theory and shares many similarities with
that of [7]. However, in our case the hard, jet, and soft
functions are defined in terms of matrix elements of dif-
ferent types of fields in the effective theory and are in
one-to-one correspondence with different physical scales.
The corresponding definitions in [7] are less intuitive.

Our key observation is that the IR singularities of on-
shell amplitudes in massless QCD are in one-to-one corre-
spondence to the UV poles of operator matrix elements in
soft-collinear effective theory (SCET) [12, 13]. They can
be subtracted by means of a multiplicative renormaliza-
tion factor Z (a matrix in color space), whose structure
is constrained by the renormalization group (RG). SCET
is the appropriate effective theory to analyze scattering
processes at large momentum transfer, which involve jets
(or individual hadrons) with small invariant masses. It
separates hard contributions associated with the large
momentum transfer from low-energy contributions as-
sociated with the small invariant masses of the initial-
and final-state particles. For a general n-jet observable,
the effective theory involves a set of collinear fields for
each direction of large energy flow, which describe the
QCD dynamics inside the individual jets. It also con-
tains soft quark and gluon fields, which mediate low-
energy interactions among the jets. Hard interactions
are integrated out and absorbed into the Wilson coeffi-
cients of operators built from soft and collinear fields. A
generic n-jet process is mediated by an effective Hamilto-
nian Hn =

∑

i Cn,i(µ)Oren
n,i (µ), where the sum runs over

a basis of SCET operators built from n distinct types of
collinear fields. The bare matrix elements of these oper-
ators are UV divergent and are renormalized in the MS
scheme. Their divergences are absorbed into a renormal-
ization factor via Oren

n,i (µ) =
∑

j Zij(µ, ǫ)Obare
n,j (ǫ). For

physical quantities, the scale dependence of the Wilson
coefficients Cn,i(µ) cancels against that of the matrix el-
ements of the renormalized operators.

In a physical process with initial- and final-state
hadrons, the soft and collinear scales are set by nonper-
turbative dynamics or experimental cuts. Let us now
consider (slightly) off-shell n-parton amputated Green’s
functions Gn({p}). In this case the jet-scale Λ2

J is set
by the off-shellness p2

i of the fields, and the soft scale is
Λs ∼ Λ2

J/Q, where Q is a typical hard momentum trans-
fer. The Green’s functions are obtained by taking matrix
elements of the above effective Hamiltonian, which can
be written as

Gn({p}) = lim
ǫ→0

∑

i,j

Cn,i(µ)Zij(µ, ǫ) 〈Obare
n,j (ǫ)〉 , (3)

where we suppress the dependence of the quantities on
the right-hand side on the parton momenta. To ob-
tain on-shell n-parton scattering amplitudes from these
Green’s functions one takes the limit p2

i → 0. This intro-
duces IR divergences, which can be regulated by evalu-
ating the effective-theory matrix elements in d = 4 − 2ǫ
dimensions. Doing so renders the matrix elements of the
operators Obare

j trivial: in the limit p2
i → 0 both the soft

and the jet scales tend to zero, and all loop diagrams
in the effective theory become scaleless and vanish. The
bare matrix elements are thus reduced to trivial Dirac
and color structures. Since the IR divergences are inde-
pendent of the spin structure, we will not make the Dirac
structures explicit but simply absorb them into the Wil-
son coefficients. The on-shell Green’s functions are then
directly proportional to the Wilson coefficients of n-jet
SCET operators in the MS scheme. In the color-space
basis notation of (2), the effective Hamiltonian reads
Hn = 〈Oren

n |Cn〉, and we have

|Cn({p}, µ)〉 = lim
ǫ→0

Z
−1(ǫ, {p}, µ) |Gn(ǫ, {p})〉 . (4)

This notation is convenient but unconventional, in that
our Wilson coefficients and operators are not separately
color singlets and Lorentz scalars. The scattering ampli-
tudes |Mn(ǫ, {p})〉 are obtained by contracting the am-
putated on-shell Green’s functions with the spinors and
polarization vectors associated with the external parti-
cles. Their singularities are thus governed by the same
Z matrix.

The logarithm of the renormalization factor Z in (4)
is related via Γ = −d lnZ/d lnµ to the anomalous-
dimension matrix Γ governing the RG evolution of the
n-jet SCET operators Oren

n . The same quantity controls
the evolution of the Wilson coefficients, and hence of the
minimally subtracted on-shell scattering amplitudes, via
the evolution equation

d

d lnµ
|Cn({p}, µ)〉 = Γ |Cn({p}, µ)〉 . (5)

We will now present a conjecture for the exact form of
the anomalous-dimension matrix. In general, Γ = Γc+s

is determined by the anomalous-dimension contributions
of collinear and soft modes in the SCET matrix ele-
ments. An important feature of SCET is that the in-
teractions of collinear fields with soft gluons can be re-
moved by field redefinitions and absorbed into soft Wil-
son lines [12]. Interactions with soft quarks are power
suppressed and can be ignored. Moreover, the different
collinear sectors in SCET do not interact with each other.
This allow us to decompose Γ = Γs +

∑

i γi
c, where the

one-particle collinear contributions are diagonal in color
space. Hence, contributions to the anomalous dimension
involving correlations between several partons only reside
in the soft contribution Γs. After the decoupling trans-
formation the soft matrix element is a vacuum expecta-
tion value 〈0|S1 . . .Sn|0〉 of n light-like Wilson lines, one
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for each external parton (see also [9]). Here

Si = P exp

[

ig

∫ 0

−∞

dt ni · A
a(tni)T a

i

]

, (6)

where ni is a light-like reference vector aligned with the
i-th particle’s momentum. When the color indices are
contracted into color-singlet combinations, the soft ma-
trix element consists of one or more Wilson loops (closed
at infinity), whose lines cross and or have cusps at the
origin. The renormalization properties of Wilson loops
have been studied extensively in the literature (see e.g.
[14, 15, 16, 17]). Based on these results and on other
considerations to be explained in detail elsewhere, we
propose that the exact expression for the anomalous-
dimension matrix of an n-jet operator in SCET in the
color-space formalism is

Γ =
∑

(i,j)

Ti · Tj Γcusp(αs) ln
µ2

−sij

+
∑

i

γi(αs) . (7)

The sums run over the n external partons. Here and
below the notation (i1, ..., ik) refers to ordered tuples of
distinct parton indices. Our result contains three univer-
sal anomalous-dimension functions. The quantity Γcusp is
proportional to the cusp anomalous dimension of Wilson
loops with light-like segments [17], while γq ≡ γ q̄ and γg

are anomalous dimensions specific for (anti-)quark and
gluon fields. They are defined by relation (7).

Our conjecture for the anomalous-dimension matrix
is the simplest expression consistent with existing cal-
culations. It implies that the cusp anomalous dimen-
sion characterizes the renormalization of Wilson lines
even in the general case, where several lines meet at a
single space-time point. The structure of the logarith-
mic terms in (7) agrees with an explicit two-loop cal-
culation in [11]. For the quark and gluon form factors,
the divergent terms are known to three-loop accuracy
[18]. When applied to this case, our general relation
(7) implies that the cusp anomalous dimensions in the
fundamental and adjoint representations of SU(Nc) are
related by ΓF

cusp(αs)/CF = ΓA
cusp(αs)/CA ≡ Γcusp(αs).

This relation is indeed fulfilled to three-loop order [19].
The application to the form factors also determines the
anomalous dimensions γq ≡ γ q̄ and γg to three-loop accu-
racy. In the effective theory the form factors are mapped
onto two-jet operators containing two collinear quark
or gluon fields. The corresponding three-loop anoma-
lous dimensions were given in [20]. In the notation of
these papers, we have 2γq(αs) = γV (αs) and 2γg(αs) =
γt(αs) + γS(αs) + β(αs)/αs, where β(αs) = dαs/d lnµ.
These results are valid in the standard dimensional reg-
ularization scheme with d-dimensional helicities.

The relation Γ = −d lnZ/d lnµ may be integrated to
obtain a closed expression for the logarithm of Z. Using
the relation β(αs, ǫ) = β(αs) − 2ǫ αs for the β-function

in d = 4 − 2ǫ dimensions, we find

lnZ = −

αs
∫

0

dα

β(α, ǫ)

[

Γ(α) + Γ′(α)

α
∫

αs

dα′

β(α′, ǫ)

]

, (8)

where we have defined

Γ′ =
∂

∂ lnµ
Γ = −Γcusp(αs)

∑

i

Ci . (9)

When integrating over α in (8), the scale µ in the argu-
ment of the logarithm in Γ must be kept fixed. Note that
when acting on color-singlet states, the unweighted sum
over color generators satisfies the relation

2
∑

(i,j)

Ti · Tj = −
∑

i

T
2
i = −

∑

i

Ci , (10)

which follows from color conservation. Since both the
scattering amplitudes and the anomalous dimension Γ

are color-conserving, this relation can always be used
in our case. It is understood that the result (8) must
be expanded in powers of αs with ǫ treated as a fixed
O(α0

s) quantity. Writing the perturbative series of the
anomalous dimension and β-function in the form Γ(αs) =
∑

n Γn (αs

4π
)n+1 and β(αs) = −2αs

∑

n βn (αs

4π
)n+1, we

find up to three-loop order the result

lnZ =
αs

4π

(

Γ′
0

4ǫ2
+

Γ0

2ǫ

)

+
(αs

4π

)2
[

−
3β0Γ

′
0

16ǫ3
+

Γ′
1 − 4β0Γ0

16ǫ2
+

Γ1

4ǫ

]

+
(αs

4π

)3
[

11β2
0 Γ′

0

72ǫ4
−

5β0Γ
′
1 + 8β1Γ

′
0 − 12β2

0 Γ0

72ǫ3

+
Γ′

2 − 6β0Γ1 − 6β1Γ0

36ǫ2
+

Γ2

6ǫ

]

+ . . . , (11)

which only contains the two color structures present in
(7). Exponentiation yields an explicit expression for Z,
which simplifies since the different expansion coefficients
Γn commute. The relevant one-loop coefficients of the
three anomalous-dimension functions are Γcusp

0 = 4, γq
0 =

−3CF , and γg
0 = −β0. The highest pole in the O(αn

s )
term of lnZ is 1/ǫn+1, instead of 1/ǫ2n for the Z factor
itself. The exponentiation of the higher pole terms was
noted previously in [7].

The one- and two-loop coefficients of the matrix Z

are closely related to Catani’s subtraction operators I
(1)

and I
(2) given in (2). The conditions linking his objects

to ours are that the differences 2I
(1) − Z1 and 4I

(2) +
2I

(1)
Z1 − Z2 remain finite for ǫ → 0. Here Zn denotes

the coefficient of (αs/4π)n in the Z factor. The first
relation is indeed satisfied. The second one can be used
to derive an explicit expression for the quantity H

(2)
R.S.

in (2) entering the two-loop coefficient of the 1/ǫ pole,
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which was not obtained in [1]. We find

H
(2)
R.S. =

1

16ǫ

∑

i

(

γi
1 −

Γcusp
1

Γcusp
0

γi
0 +

π2

16
β0 Ci

)

(12)

+
ifabc

4ǫ

∑

(i,j,k)

T a
i T b

j T c
k ln

−sij

−sjk

ln
−sjk

−ski

ln
−ski

−sij

,

which apart from the last term is diagonal in color space
and universal in the sense that it is a sum over contri-
butions from individual partons. Note that only the first
term in this result is of a form suggested by (11). The
remaining terms in the first line arise because two-loop
corrections involving the cusp anomalous dimension or
the β-function are not implemented in an optimal way
in (2). More importantly, the last term in (12), which
is present for four or more partons, arises only because
the subtraction operators I

(k) in [1] are not defined in a
minimal scheme but also include O(ǫk) terms with k ≥ 0.

Our expressions (11) and (12) reproduce all known re-
sults for the two-loop 1/ǫk poles of on-shell scattering
amplitudes in massless QCD. In addition to the on-shell
quark and gluon form factors, these include e+e− → q̄qg
[3] as well as all four-point functions of quarks and gluons
[4, 5]. It further confirms the ansatz made for higher-
point functions in [6]. At the three-loop level, only the
IR divergences of the quark and gluon form factors are
known for the QCD case [18]. For N = 4 supersymmet-
ric Yang-Mills theory in the planar limit, on the other

hand, the four-point functions are known up to four-loop
order [21]. The divergent part of these amplitudes factors
into a product of square roots of form factors of neigh-
bouring legs, which is consistent with the structure of
our anomalous dimension, given that at leading order in
1/Nc one has Ti ·Tj → −Nc

2 δij for neighbouring legs and
zero otherwise.

Let us briefly mention some applications and possi-
ble generalizations of our results. The most important
one is the resummation of Sudakov logarithms in n-jet
processes. The evolution equation (5) is simple enough
to admit exact solutions in closed form, and the known
three-loop anomalous dimensions allow for resummations
at next-to-next-to-next-to-leading logarithmic accuracy.
Our formalism can be generalized to processes involving
massive partons by combining it with methods developed
in [22, 23]. Since the IR poles must cancel between vir-
tual and real corrections in a given physical process, our
results for the virtual corrections could help to improve
the analysis of real-emission corrections as well. More-
over, the great simplicity of our result (7) appears to
hint at a universal origin of IR singularities that is dis-
connected from the genuine dynamics of the scattering
amplitude itself.
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