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Abstract. Measurements are reported for a one-third version of a high-power L-band
ferroelectric phase shifter. This phase shifter is designed to allow rapid adjustments of cavity
coupling in an accelerator where RF source fluctuations, microphonics, or other uncontrolled
fluctuations could cause undesired emittance growth. Experimental measurements of phase shift
vs externally-applied voltage, insertion loss, and switching speed are presented. An average
switching rate of less than 0.5 ns for each degree of RF phase has been measured.
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INTRODUCTION

During the operation of accelerators it is often important to rapidly change the
phase and amplitude of the input RF wave that is fed to the acceleration structure. For
this purpose a fast phase shifter has been designed for operation in L-band. The phase
shifter is based on a new ferroelectric ceramic, whose permittivity changes with
external application of an electric field [1]. The switching time depends on only the
external HV circuit and can thus be less than one microsecond. In an earlier
publication, results of measurements of properties of large ferroelectric rings were
presented, and designs of coaxial and coaxial-planar phase shifters were suggested [2].
However, it emerged that these designs have a number of technical problems. The
coaxial version is very complicated to manufacture, because it requires brazing of a
large ceramic cylinder to the coaxial walls. The coaxial-planar version is simpler to
manufacture, but the large volume of ferroelectric ceramic evidently leads to a high
spectral density of parasitic modes that, in turn, leads to electric field enhancement and
additional losses in the phase shifter. A new design of the phase shifter is now
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suggested that has the advantages of the coaxial-planar design, but with a smaller
volume of ceramics.

NEW PLANAR GEOMETRY

The new approach is to employ a single-mode ceramic waveguide. But, to reduce
the RF fields in the device one uses a number of identical single-mode dielectric
waveguides connected in parallel. In this situation the device has a sparse spectrum
that can be controlled by changing its geometrical parameters. The dielectric constant
of the ferroelectric ceramics to be employed is about ~500. For this dielectric constant
the maximum transverse cross section of a single-mode waveguide is about 5 x 6 mm.
A geometry was found that allows one to match an empty waveguide to a multi-rod
dielectric waveguide, one layer of which is shown in Fig. 1. The matching linear
ceramics having a dielectric constant of ~21 are placed before and after the
ferroelectric waveguides.

(a) (b)

FIGURE 1. (a) New planar geometry. (b) Geometry for simulation
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FIGURE 2. (a) Frequency response for new planar geometry. (b) Electric field. (c) Magnetic field.
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In Fig. 2a the calculated scattering matrix parameters vs frequency are plotted. Fig.
2b and 2c show the field distributions for this kind of structure. One can see that the
fields are concentrated in the ferroelectric slabs. In Fig. 3a the full geometry of the
phase shifter is presented. The waveguide is divided into three stacked sections, and
each section contains the assembly shown in Fig. 3b. There is a HV electrode between
the assemblies, where the bias voltage is applied that changes the ferroelectric
dielectric constant. In order to match all three parts to the WR650 waveguides, two
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cylindrical ceramic rods with a dielectric constant of 9.8 are used. This matching
scheme provides for equal power flow in all the three layers.
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FIGURE 3. (a) Full geometry of phase shifter. (b) 1/3 part of phase shifter. (c) HV input

The HV input for the bias voltage is placed in the region where the RF fields are
small, as seen in Fig. 3c. Calculated reflections are shown in Fig. 4a, while calculated
losses vs ferroelectric loss tangent are shown in Fig. 4b. Table 1 shows the phase
shifter parameters.
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FIGURE 4.(a) Calculated S11 parameter of full geometry of phase shifter vs. frequency. (b) Calculated
loss of full geometry vs. ferroelectric loss tangent.

TABLE 1. Phase Shifter Design Parameters

ferroelectric permittivity (at Vyiss = 0), & ~ 460
d(phase)/ds, degree 4
max. RF electric field (P = 500 kW), kV/cm 5.9
max. DC electric field, [A(phase)=120 deg], kV/cm 15

total loss for ferroelectric loss tangent tan(s) , % 2.8 + 6:10° tan(s)

LOW POWER MEASUREMENTS OF 1/3 MODEL

Measurements of Phase shift

In order to check the design, a model was fabricated for one-third of the full design,
namely a single layer. The model layout is shown in Fig. 5a, and a photo is shown in
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Fig. 5b. The model may be disassembled in order to test a variety of ferroelectric bars.
Tests were made with gold-plated ferroelectric bars and matching slabs, and contact to
the copper walls was provided by liquid InGa alloy or by indium solder. Results of
measurements of phase shift are presented in Fig. 6; these are seen to be in very good
agreement with simulations.

FIGURE 5. (a) Scheme of 1/3 model. (b) 1/3 model under test.
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FIGURE 6. Measured phase shift of RF signal transmitted through 1/3 model vs applied bias voltage.

Measurements of Switching Speed

A vital property of any tuner is its response time, which for many accelerator
applications should be less than 100 ns. This is clearly shorter than what can be
achieved with a ferrite tuner, for example. Measurements of response time were
made using the arrangement shown in Fig. 7. The high voltage rise/fall times from the
available pulse generator were in the range of ~100 ns (measured as the time
difference from 5% to 95% of the voltage maximum).
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FIGURE 7. The signal from the RF generator
at 1,290 MHz is split in two. One portion was
directed through a phase shifter and attenuator
directly to a mixer, while the second portion
was fed through the tuner input port, passed
through the tuner, picked up at the tuner output
port, and then fed to the mixer. The resulting
signal from the mixer was detected by a diode
and monitored at an oscilloscope, and also
captured by a computer for further signal
processing (mainly FFT).
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FIGURE 8. Time-response of phase shifter.
Red curve (convex) is the difference between
data with RF off and RF on. Blue curve (also
convex) is the processed red curve after direct
and inverse FFT with filtering out of high
spectral components; the black curve (concave)
is the high-voltage pulse. The vertical scale for
the latter is reduced by a factor of 2 x 10°; its
peak value was 9.7 kV. It is seen that the time
delay between the peak voltage and the peak
variation in phase is 28 ns. (This value
excludes delays in cables.) Note the time scale

is 50 ns per division.

Switching speed measurements (each averaged over 16 shots) were processed
by subtracting data with RF off from data taken with RF on, and are shown in Fig. 8.
The difference signal of 67 mV from the mixer corresponds to a phase change of 77°.
From these data, where the response time of the phase shifter is dominated by the 90
ns rise time of the voltage pulse, one can infer that the response time to a step function
voltage would be equal to or less than the delay time, namely approximately 30 ns.
This could be interpreted to correspond to an average switching rate of less than 0.5 ns
for each degree of RF phase

Measurements of Loss

The loss tangent of ferroelectric bars was measured for the uncoated bars
(manufactured from the same batch used to make the bars coated with gold). The
value of loss tangent was determined to be ~2x10®, suggesting that the 1/3 scaled
tuner model may suffer a transmission loss no better than ~0.7dB.

In actuality, the measured transmission lower, with lowest transmission loss
only when we used either freshly applied liquid InGa or soldered the bars to the
waveguide walls (using In). However, we were never been able to apply more than 4
kV to the soldered configurations; hence we discuss below only the structures
assembled with liquid InGa. It was found that in the configurations with fixed
structure height, when the top and bottom walls are tethered by bolting to the side
walls, the transmission dropped when the voltage grew [see e.g. Fig. 9]. However, in
a configuration where the top wall was resting without tethering on the ceramic bars
under 200-400 Ibs load, the transmission did not drop so much. However, in general,

481



the transmission level was lower because of leakage radiation through the gaps formed
between unbolted walls, or in some cases became even higher [see e.g. Fig. 10]. This
suggests the presence of piezoelectric effects that lead to the contraction of the bars
and degradation in quality of the bar-wall surfaces contacts.

It is anticipated that successful brazing of the ferroelectric and matching
dielectric bars will eliminate losses beyond those in the bulk ceramics and metallic
walls, as well as to lead to transmission being independent of applied voltage.
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FIGURE 9. The transmission drops when the FIGURE 10. In the configurations where the
voltage grows in the configurations with fixed top wall was resting (under 200 - 400 Ibs load)
structure height (the top and bottom walls are on the ceramic bars, and was not bolted to the
tethered by the side walls), suggesting a side walls the transmission did not drop so
piezoelectric contraction of the bars. much, or in some cases even get higher
CONCLUSION

Measurements for a 1/3 version of an L-band tuner give phase shifts in good
agreement with theory, rapid (~30 ns) switching speed, but excessive insertion loss. It
is our understanding that the losses are partially caused by the bad contact between
ceramic and the waveguide walls, and is not an intrinsic property of the phase shifter.
Lastly, the tuner was connected to a 1.3 GHz cavity and confirmed the capability of
fast tuning of its resonance frequency.
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