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Abstract

As a charged particle passes through a non-gaseous
medium, it polarizes the medium and induces wake fields
behind it. Same thing happens in ionization cooling. The
interaction with wake fields perturbs the stopping power of
beam particles. The perturbation strongly depends on the
densities of both the incident beam and the medium. To
understand this collective effect, detailed studies have been
carried out. Both analytic and simulation results are ob-
tained and compared.

INTRODUCTION

The study of the physics of a charged particle passing
through a non-gaseous medium is of long history [1, 2, 3].
For a single particle, if its momentum is high enough, it
will lose energy through both ionization process and den-
sity effect. The latter has been systematically studied. For
a beam consisting of a large number of particles, the inter-
action among the beam particles should also be taken into
account in order to describe the process correctly.

Essentially, density effect is introduced by the polariza-
tion of the medium. The electric fields from the polarized
medium molecules generate wake fields behind the inci-
dent particle, which perturbs the motion of the beam parti-
cles following. If the particle density of the beam is high
enough, the wake will enhance the stopping power of the
beam particles significantly.

In this article, we derive the expressions for the wake
electric field introduced by a single incident charged par-
ticle and its perturbation on the stopping power. This is
extended to a two-particle system and a multi-particle sys-
tem with various distributions. The comparison with simu-
lations is next demonstrated. Finally, the damping mecha-
nism on the wake is discussed, and its effect on the stopping
power enhancement is found to be important

WAKE ELECTRIC FIELD

First, let us focus on a single particle of charge ze mov-
ing with velocity v in the z direction. The particle is at lon-
gitudinal position z = z1 at time t = 0. Cylindrical coor-
dinates are used with �ρ denoting the transverse directions.
The scalar potential generated by both the incident particle
and polarized medium in the Coulomb gauge is given by

φ(�r, t) =
ze

πv

∫
dω

∫
κdκJ0(κρ)
κ2 + ω2/v2

ei ω
v (z−z1−vt)

ε(k2, ω)
, (1)

where the wave number vector is denoted by �k = (�κ, kz)
and the frequency by ω. In above, the integration over k z

and �κ · �ρ have already been carried out. The polarization of

the medium is described by the dielectric constant, which
in a dispersive medium takes the form

ε(k2, ω) = 1 − ω2
p

∑
j

fj

ω2 − ω2
j + iωΓj

, (2)

where fj is the fraction of bound electrons that oscillates
with the bound frequency ωj and damping rate Γj with∑

j fj = 1. In above, ωp =
√

4πnee2/me is the plasma
frequency, where me is the electron mass and ne the elec-
tron density. We make the assertion that ωp is much larger
than the bound frequencies and damping rates. 1 Then Γj

can be replaced by 2ε with ε being infinitesimal, leading to

1
ε

=
ω2

(ω + iε)2 − ω2
p

=
ω2

(ω − ωp + iε)(ω + ωp + iε)
.

(3)
Contour integration over ω can now be performed giving

φ(�r, t) = e

∫
dκ

κ2J0(κρ)
κ2+ω2

p/v2
e−κ|z−z1−vt|

+
2eωp

v

∫
dκ

κJ0(κρ)
κ2+ω2

p/v2
sin

ωp

v
(z−z1−vt)θ(z1+vt−z).

(4)
The limits of integration are from κ = 0 to2

κ =
ωp

v

√
x2

m − 1 with xm =
2γmev

2

�ωp
, (5)

which corresponds to the maximal momentum transfer in
a collision. In above, γ =

√
1 − v2/c2, c is the velocity

of light, and � is the Planck constant. The second term
in Eq. (4) is the potential coming from the polarization of
the medium, and the first term is the medium-modified self-
field of the incident charged particle. The longitudinal and
transverse electric fields derived from the second term van-
ish in front of the particle and are therefore the wake fields.
Behind the particle, they take the form:

Ew
z (�r, t) = −2zeω2

p

v2

∫
dκ

κJ0(κρ)
κ2+ω2

p/v
2

cos
ωp(z−z1−vt)

v
,

Ew
ρ (�r, t) = +

2zeω2
p

v2

∫
dκ

κ2J1(κρ)
κ2+ω2

p/v
2

sin
ωp(z−z1−vt)

v
.

(6)
Evaluating at the particle location (z = z1 + vt, ρ = 0), we
obtain the longitudinal field on axis,

Ew
z = −2zeω2

p

v2
ln xm. (7)

1We believe the bound frequencies are one order of magnitude smaller
than ωp in liquid hydrogen.

2The integration of k = |�k| has the lower limit k = ωp/v and the
upper limit k = 2γmev/�.
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The corresponding energy loss per unit time or stopping
power is

dW

dt
= zevEw

z = −2(ze)2ω2
p

v
ln xm. (8)

Behind the particle, the electric wake can be very well ap-
proximated by extending the upper limit of the κ integra-
tions to infinity, resulting in

Ew
z =

2zeω2
p

v2
K0

(ωpρ

v

)
cos

[(
z − z1

v
− t

)
ωp

]
,

Ew
ρ =

2zeω2
p

v2
K1

(ωpρ

v

)
sin

[(
z − z1

v
− t

)
ωp

]
, (9)

with K0,1 the modified Bessel functions of the second kind.
The vector potential contributes only to the medium-

modified self-field when bound frequencies are neglected.
The electric field derived from it consists of two parts, one
part cancels the medium-modified stationary self-field from
the scalar potential in Eq. (4), while the other represents the
medium-modified self-field of a moving charge. The total
self-field can be written as

Es
z = e

∫
dκ

κ3J0(κρ)
κ2 + ω2

v2

e
−γ

√
κ2+

ω2
p

c2
|z−z1−vt|

,

Es
ρ = e

∫
dκ

γκ2J1(κρ)

κ2 +
ω2

p

v2

√
κ2 +

ω2
p

c2
e
−γ

√
κ2+

ω2
p

c2
|z−z1−vt|

.

In the absence of the medium (ωp = 0), it reduces to the
familiar pan-cake self-field,

Es
z =

eγZ

(ρ2 + γ2Z2)3/2
, Es

ρ =
eγρ

(ρ2 + γ2Z2)3/2
, (12)

where Z = z− z1− vt. In the presence of the medium, the
self-field decays very much faster with respect to Z . For a
bunch with longitudinal and transverse radii � v/ωp, the
self-field has almost no influence compared with the wake
fields. Therefore we ignore it in the rest of our discussions.

TWO-PARTICLE SYSTEM
Now let us discuss the stopping power of a two-particle

system. The particles are denoted by 1 and 2, respectively,
with the charge density

ρ(�r, t) = ze [δ(�r − �r1 − �v1t) + δ(�r − �r2 − �v2t)] . (13)

The electric field at (�r, t) is

�E(�r, t) = − i2ze

4π2

∫
d3k

∫
dω

�ke−iωt

εk2
×

×
[
ei�k·(�r−�r1)δ(�k ·�v1−ω) + ei�k·(�r−�r2)δ(�k ·�v2−ω)

]
. (14)

The energy gained per unit time by the two particles are

dW1,2

dt
= − i2(ze)2

4π2

∫
d3k

�k ·�vj

k2ε(k2, �k·�v1,2)
×

×
[
1 + e±i�k·(�r1−�r2)±i(�k·(�v1−�v2)t)

]
. (15)
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Figure 1: Stopping power enhancement due to collective wake
effect on a two-particle system as a function of R=rωp/v, where
r is the separation between the two particles.

For the special case where �v1 = �v2 = �v, we have the aver-
age energy loss per particle per unit time or stopping power

dW

dt
=− i(ze)2

2π2

∫
d3k

�k·�v
k2ε(k2, �k·�v)

[
1 + cos(�k · �r)

]
,

where �r = �r1 − �r2. Here, only the imaginary part of 1/ε
contributes. After averaging over all orientations of this
two-particle system, we arrive at

〈
dW

dt

〉
angles

= − (ze)2ω2
p

v
ln xm

[
1 + G(R)

]
, (17)

where the correlation function or stopping power enhance-
ment is defined as

G(R) =
− sinRxm

Rxm
+

sinR

R
− Ci(Rxm) + Ci(R)

ln xm
,

(18)
and Ci(x) = − ∫ ∞

x
dy cos y/y is the cosine integral. Here,

the distance of separation of the two particles, R = r/a
I
,

has been normalized to a
I
=v/ωp or the interaction length.

The correlation function [4] as depicted in Fig. 1 shows
that G(R) = 1 at R = 1 and decreases rapidly when R �
1 with oscillation period equal to the plasma wavelength
λp = 2πa

I
. It is interesting to point out that the averaging

over all orientations cancels out all self-field contribution.

VARIOUS BEAM DISTRIBUTIONS
In this section we will discuss the stopping power en-

hancement for a particle in the center of a bunch as a result
of the polarization wake. Various bunch distributions are
used and their importance analyzed.

Uniformly distributed sphere

Let us start with a uniformly distributed spherical Nb-
particle bunch of radius r0. The extra collective stopping
power Gt received by the particle at bunch center is ob-
tained by integrating the two-particle correlation function
G(R) of Eq. (18) over all the particles in the bunch. We get
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Gt =
3Nb

R3
0

∫ R0

0

R2G(R)dR =Nb
f(R0)−f(R0xm)

ln xm
, (19)

with R0 = r0ωp/v, the reduced bunch radius and

f(u) =
(

1
u3

+
1
u

)
sinu − cosu

u2
− Ci(u). (20)

Since xm is usually a very big number, the above can be
readily approximated as

Gt ≈ 3Nb sinR0

R3
0 ln xm

. (21)

As an example, consider a γ = 2.2 bunch containing
Nb = 1× 1012 muons going through liquid hydrogen of
density ρ

H2
= 0.07099 g/cm−3. The electron density

is ne = ρ
H2

NA = 4.275× 1028 m−3, where NA is the
Avogadro’s number. The plasma frequency is therefore
ωp =1.166×1016 s−1 leading to xm =2.323×105. If bunch
is a uniformly distributed sphere of radius r0 = 1 mm,
R0 =4.369×104 and the envelope of Gt is 0.0029. How-
ever, since the bunch edge can never be made sharper than
the interaction length a

I
=2.289×10−8 m, the rapid oscilla-

tion of Gt with R0 with period λp implies the enhancement
of stopping power from correlation is essentially zero.

Cylindrical bunch
Let us consider next distributions having the separable

form f(z, ρ) = fz(z)fρ(ρ). One example is a bunch with
uniform distribution in the transverse direction, but is ta-
pered at both end longitudinally, or

fz(z) =
An

ẑ

(
1 − z2

ẑ2

)n

, fρ(ρ) =
2πρ

πρ̂2 , (22)

where An = Γ(n + 3
2 )/[

√
πΓ(n + 1)] for any n > −1, ρ̂

is the transverse radius of the bunch, and ±ẑ is the longi-
tudinal edges of the bunch. Notice that we can no longer
apply the expression of the all-orientation-averaged corre-
lation function G(R) of Eq. (18), because the distribution is
now different in the longitudinal and transverse directions.
Instead, we start from Eq. (9) to compute G t, the collective
stopping power enhancement for a particle at the center of
the bunch, by the integration,

Gt ln xm =Nb

∫ ẑ

0

dz f(z, ρ) cos
(

z

a
I

)∫ ρ̂

0

dρfρ(ρ)K0

(
ρ

a
I

)
,

(23)
and obtain easily

Gt ln xm =
√

πAn

(ωpρ̂/v)2

(
2v

ωpẑ

)n+
1
2
J

n+
1
2

(
ωpẑ

v

)
. (24)

We see clearly that there is an oscillation in the Bessel func-
tion J

n+
1
2

which gives positive or negative enhancement

depending very sensitively on the half bunch length ẑ. In
fact, when n is an integer, the Bessel function reduces to
sine and cosine with period λp, and the result will be simi-
lar to that of the uniform distribution in a sphere discussed
earlier. We learn from Eq. (24) that the longitudinal and

transverse beam sizes behave very differently, and it is the
longitudinal that introduces the oscillations. To avoid os-
cillations, we need to go to a distribution without hard lon-
gitudinal boundaries.

Lorentzian distribution
Let us keep the transverse distribution to be finite and

uniform, but let the longitudinal distribution be

fz(z) =
z1

π

1
z2 + z2

1

, (25)

where z1 is the half longitudinal length at half maximum.
The correlation stopping power enhancement G t for a par-
ticle at the bunch center is found to be

Gt ln xm =
Nbe

−z1/a
I

(ρ̂/a
I
)2

. (26)

If ρ̂ = z1 = 1 mm, ρ̂/aI = z1/aI = 4.37 × 104. Then the
stopping-power enhancement is Gt = 45.3 × 10−19000,
which is essentially zero. In order to have a more reason-
able effect at the bunch intensity of 1×1012, we require
ρ̂/a

I
= z1/a

I
= 20. Then Gt = 0.417. If ρ̂/a

I
= z1/a

I
=

25, Gt = 0.0018 instead. However, one must remember
that at a

I
= v/ωp = 2.289×10−8 m, these examples cor-

respond to z1 = 4.6×10−7 and 5.7 × 10−7 m, or bunch
lengths of sub-micron sizes. At this moment, the most ag-
gressive cooling scheme proposed by Neuffer [5] is to have
an eventual bunch length of 30 cm and transverse radius
r0 =50 μm, or a maximum muon density of 1020 m−3.

Tri-Gaussian distribution
Let

fz(z) =
e−z2/(2σ2

z)

√
2πσz

and fρ(ρ) = ρ
e−ρ2/(2σ2

ρ)

σ2
ρ

. (27)

The stopping power enhancement can be integrated readily
first to the Whittaker’s function and then to the exponential
function. However, when σρ/a

I
� 1, it can be neatly

reduced to

Gt ln xm =
Nbe

−(σz/a
I
)2/2

(σρ/a
I
)2

, (28)

which is much smaller than the situation of the Lorentzian
distribution. Here, we again see that the transverse and
longitudinal behave every differently. Although both are
Gaussian distributed, the longitudinal decay of the collec-
tive stopping power enhancement is Gaussian, while the
transverse decay is (a

I
/σρ)2, which is very much milder.

Exponential distribution
In order to achieve a larger stopping power enhancement,

the distribution must roll off very rapidly from the center of
the bunch. A possible distribution is the exponential

fz(z) =
e−|z|/z1

2z1
and fρ(ρ) =

e−ρ/ρ1

ρ1
. (29)
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When z1/a
I
� 1 and ρ1/a

I
� 1, Gt is given by

Gt ln xm ≈ πNb

8(ρ1/aI )(z1/aI )2
. (30)

Or Gt = 3.81 × 10−4 at ρ1 = z1 = 1 mm. If either the
bunch sizes are each reduced 5 times or the bunch inten-
sity is increased by a factor of 125, the collective effect en-
hancement will become 4.8%, and the effect will become
significant.

If we apply Neuffer’s scheme [5] again and substitute
transverse bunch radius ρ1 = 50 μm and bunch length
z1 = 30 cm, we get a stopping power enhancement of
Gt = 8.47 × 10−8. Here, again we notice that the longitu-
dinal bunch length is the most important factor that deter-
mines the enhancement. If the bunch length can be further
reduced to 1 mm and the bunch intensity further increased,
the effect can become meaningful.

COMPARISON WITH SIMULATION
OOPICPro [6] developed by Tech-X Corporation is able

to simulate a charged particle beam passing through matter.
We simulate a γ = 2.2 tri-Gaussian muon bunch with rms
radii 1 mm traveling through a plasma medium of electron
density ne = 4.28 × 1018 m−3 (which is very much less
than that in liquid hydrogen). The peak particle beam den-
sity is 5×1019 m−3, corresponding to total bunch intensity
Nb = 0.787 × 1012. The longitudinal wake is shown in
Fig. 2. The same wake can be computed by integrating our
derived wake in Eq. (9) over all the particles in the bunch
in a fake liquid hydrogen medium of the same low density.
The field patterns in both the longitudinal and transverse
directions agree with the simulation results. For example,
the oscillation wavelength is λp = 1.43 cm corresponding
to the plasma frequency of ωp = 1.17×1011 s−1. How-
ever, OOPICPro gives the peak longitudinal wake electric
field 1.02× 108 V/m, while the computed one in Fig. 3
gives 4×108 V/m. The discrepancy may come from the

Figure 2: (Color) The longitudinal wake electric field behind an
incident muon bunch simulated by OOPICPro with electron den-
sity 4.28 × 1018 m−3 and peak particle density 5 × 1019 m−3.
The bunch is tri-Gaussian distributed of rms radii 1 mm in all di-
rections with γ =2.2 muons. Both the longitudinal and transverse
axes (z and r) are in m while Ez is in V/m.
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Figure 3: Computed longitudinal wake behind a tri-Gaussian
bunch. Bunch sizes and medium density are the same as in the
OOPICPro simulation in Fig. 3. The bunch center is at the origin
and 2 × 105 macro-particles have been used.

fact that OOPICPro treats the medium as a fully ionized
plasma while we treat the medium as a liquid with polar-
ized molecules. This difference will be examined next.

RELAXATION AND DAMPING
We need to address the question of relaxation or damping

of the plasma oscillation to determine whether the oscilla-
tory wake can be established and sustained.

Cold Plasma
In a fully ionized plasma, electrons are free to move

around as a thermal gas. In the presence of the incident
muon beam, the electrons are driven into oscillations about
the background ions with plasma frequency. At the same
time these electrons collide with the ions. If collision takes
place within one period of plasma oscillation, the plasma
oscillation will be perturbed. Thus collision with ions
serves as a damping mechanism. The collision frequency
of an electron with the ionic background is given by [7]
νe =2.9×10−6niT

−3/2
e ln Λ s−1, where ni is the ionic den-

sity in cm−3, ln Λ≈10 is the cutoff logarithm, and Te is the
thermal temperature of the electrons in eV. For the above
OOPICPro simulation, we substitute ni =4.28×1018 m−3

and Te =1.72×10−3 eV (corresponding to 20◦K) to obtain
νe = 1.74×1012 s−1, which is comparable to the plasma
frequency of ωp = 1.17×1011 s−1. So the wake will be
heavily perturbed. We do see some damping of the simu-
lated wake in Fig. 2, but not as heavy as estimated. The dis-
crepancy may come from the relatively higher temperature
of the ionized electrons, which may not even be in thermal
equilibrium. Since the collision frequency increases as n i

while the plasma frequency increases with
√

ni, the damp-
ing of plasma oscillation will become more severe as the
plasma density increases. Such a simulation has been car-
ried out using OOPICPro with the plasma density increased
by 104-fold to ni = 4.28×1022 m−3 while all other param-
eters remain unchanged. The result in Fig. 4 shows that the
on-axis longitudinal wake is damped almost immediately
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Figure 4: (Color) OOPICPro simulation for a muon beam in a
plasma. All parameters are the same as in Fig. 2, except that the
plasma density has been increased to 4.28 × 1022 m−3. The z-
and r-axes are in m, while Ez is in V/m.

as soon as it is generated. The maximum |Ez | is less than
8.5×105 V/m as compared with 1×108 V/m in Fig. 2.

Liquid Hydrogen
In producing Fig. 3, we just employed the wake ex-

pression without consideration of damping with the elec-
tron density lowered to ne = 4.28× 1018 m−3 so as to
compare with simulation. Now let us come back to the
real liquid hydrogen where the bound-electron density is
ne = 4.270×1028 m−3 and study possible damping of the
wake. At γ = 2.2, the energy loss in liquid hydrogen is
dW/dx = −4.5 MeV-cm2-g−1. For a bunch with cross-
sectional radii r=1 mm, consisting of 1×1012 muons, the
density of ionized electrons is

nei = −ρ
H2

NbdW/dx

πr2I
, (31)

where the medium density is ρH2
= 0.07099 g/cm3 and

the ionization energy is I = 35 eV. We obtain nei =
2.9 × 1023 m−3, which is five orders of magnitude less
than the density of the bound electrons and can therefore
be neglected. The damping of the wake can come from col-
lisions between the neutral polarized hydrogen molecules,
since directional changes of the polarized molecules will
perturb the plasma oscillations. The mean thermal veloc-
ity of the H2 molecules at 20◦K is vH2

= 235 m/s (3
degrees of freedom considered). The typical cross sec-
tion for the hydrogen molecule in the hard-ball model is
σH2

≈ 3 × 10−20 m2. Thus the collision frequency is
νH2

≈ 4nH2
σH2

vH2
≈ 45×1011 s−1, with nH2

the den-
sity of the H2 molecules. This is still many order smaller
than the plasma frequency of ωp =1.17×1016 s−1.

Another possibility of damping comes from the damping
rates of the bound frequencies of the H2 molecules. We
asserted earlier that the bound frequencies ωj are an order
of magnitude smaller than ωp. It is reasonable to assume
that the damping rates Γj of the bound frequencies are of
the order of magnitude as ωj . Let us simplify the problem
by including only one damping rate Γ. Then ε in Eq. (3)
will be replaced by 1

2Γ, and there will be the extra factor of

e−ΓZ/2v in the wake expressions of Eqs. (6) and (9), where
Z =z − z1− vt. Since 2v/Γ�σz , the bunch length, in the
computation of stopping power enhancement in Eq. (23),
the longitudinal beam distribution can be replaced by the
peak beam density. Take the tri-Gaussian distribution as an
example, instead of Eq. (28), we obtain

Gt ln xm≈ Nb√
2π(σρ/a

I
)2(σz/a

I
)

Γ
2ωp

. (32)

For a beam with σρ = σz = 1 mm and Nb = 1× 1012,
Γ/2ωp ∼ 0.1 implies Gt ∼ 3.9 × 10−5. In addition, if
the transverse distribution is exponential, (σρ/aI )2 in the
denominator is replaced by 4(σρ/a

I
)/
√

2π and we have
Gt ∼ 190% instead. In short, the enhancement becomes
much larger in the presence of some amount of damping.

CONCLUSIONS
The perturbation of stopping power due to collective ef-

fect as a charged particle beam traversing a medium is stud-
ied in detail. This effect is introduced by the polarization
of the medium and depends on a variety of factors such as
beam distribution, beam density, and medium density.

The magnitude of the collective perturbation is fun-
damentally determined by the ratio of the separation of
beam particles and the interaction length in the polarized
medium, which is also a function of the velocity of inci-
dent particles. As this ratio decreases, the collective effect
becomes more significant.

The damping of the wake also plays an important role
in the wake field. Without any damping consideration, the
wake oscillates sinusoidally with period λp = 2πa

I
. Since

the average separation of the incident beam particles is usu-
ally much larger than the interaction length, the wake field
perturbation on stopping power is negligibly small. Damp-
ing comes from two sources: one is the collision rate be-
tween absorber molecules, which is slow and insignificant,
the other is the damping rates of the bound frequencies of
absorber electrons. Under certain circumstances, a shorter
damped wake enhances collective perturbation.

The model used in the analysis employs the dielectric
constant ε in the form of Eq. (3) where bound frequen-
cies are considered small and neglected. Further analysis
should take into account of the contribution of bound fre-
quencies to the wake and their effects on the cooling en-
hancement should be fully investigated.
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