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Abstract

Grid  computing  has become  very  popular  in  big 
and  widespread  scientific  communities  with  high  
computing  demands,  like  high  energy  physics.  
Computing resources are being distributed over many  
independent  sites  with  only  a  thin  layer  of  Grid  
middleware  shared  between  them.  This  deployment  
model has proven to be very convenient for computing  
resource  providers,  but  has  introduced  several  
problems for the users of the system, the three major  
being  the  complexity  of  job  scheduling,  the  non-
uniformity of compute resources, and the lack of good  
job monitoring.

Pilot  jobs  address  all  the  above  problems  by 
creating  a virtual  private  computing pool  on top of  
Grid resources. This paper presents both the general  
pilot concept,  as well  as a concrete implementation,  
called  glideinWMS,  deployed  in  the  Open  Science  
Grid.

1. Introduction

Grid  computing is  being widely  deployed  by big 
and  widespread  scientific  communities  with  high 
computing  demands,  like  high  energy  physics. 
Examples  of  such  grids  are  the  Open Science  Grid 
(OSG)[1]  and  the  European  Grid  for  E-SciEnce 
(EGEE)[2].  While  Grids  ease  the  deployment  and 
operation  of  computing  resources,  they  also  bring 
new  challenges  for  the  users  of  those  resources. 
Section  2 provides  an architectural  overview  of the 
Grid  paradigm,  together  with  a schematic  overview 
of its strengths and weaknesses.

User  groups  have  approached  the  Grids  using 
different  paradigms.  Section  3  presents  the  pilot 
paradigm,  arguably  one  of  the  most  user  friendly 
ones,  presenting  its  strengths  and  weaknesses,  and 
comparing it to other established paradigms.

Section  4  presents  the  glideinWMS,  a  concrete 
implementation of the pilot paradigm. Finally, section 
5  describes  how  far  the  glideinWMS  is  known  to 
scale.

2. Grid overview

The  Grid  paradigm  is  based  on  the  distributed 
computing  paradigm,  but  spanning  many 
administrative domains. A Grid deployment,  like the 
OSG, is composed of several independent Grid sites, 
each  maintaining  a  locally  managed  distributed 
computing system, with just a thin middleware layer 
shared  between  the  sites  that  handles  inter-domain 
authentication.

The Grid  middleware  is  typically  composed  of a 
portal  to  the  site  resources,  also  known  as  “the  
gatekeeper” or the “Compute Element”, and a set  of 
command  line  tools  on  the  compute  resources 
themselves,  also  known  as  “worker  nodes”,  to  be 
used by the user  jobs to talk to other  Grid services.  
Everything  else,  including  the  local  workload 
management  system  (WMS)  and  the  operating 
system, are left to the site administrator's  discretion. 
For a graphical overview, see Figure 1.

Figure 1. Grid overview

Legenda:
Grid site
Gatekeeper
Local WMS

Compute resource
Users
Computing jobs

FERMILAB-CONF-09-373-CD



The  Grid  paradigm  is  very  convenient  for  the 
resource providers.  They can continue to operate the 
local  distributed  resources  according  to  local 
preference and expertise, integrating them easily with 
other,  non-Grid  resources.  Moreover,  the  decentral-
ized nature of the Grid allows for easy scalability as 
one  just  needs  to  split  a  site  into  multiple  logical 
pieces if scalability becomes an issue.

For  users,  however,  this  represents  a  step 
backwards:
● Instead of having a single system to deal with, 

they  have many; workload  management  issues 
become a serious problem. 

● Monitoring  of  the  submitted  jobs  is  also  a 
problem;  the  Grid  middleware  abstracts  the 
monitoring of the actual local WMSes  running 
on the Grid  sites,  thus  providing only a subset 
of the monitoring data.

● The final problem the users  face is the variety 
of  configuration  setups  between  compute 
resources; users need to provide complex setup 
wrappers to successfully run their jobs.

3. The pilot paradigm

The  pilot  paradigm,  also  known  as  the  “just-in-
time” model, tries to simplify users' life by creating a 
virtual  private  pool of compute  resources  on top  of 
the Grid. 

In this scenario a pilot  WMS, composed  of a job 
queue  and  a pilot  factory,  is  set  up  for  a group  of 
users.  When  a  user  submits  one  or  more  compute 
jobs to the pilot queue, the pilot factory sends pilots 
to  all the suitable Grid  sites.  Once a pilot  job starts 
running, it fetches a compute job from the pilot queue 
and  the  compute  job  starts  to  run.  For  a  graphical 
overview, see Figure 2.

With the introduction of a pilot WMS, users have 
a single reference  point,  making the  job submission 
much simpler;  users  don't  need  to  keep  an updated 

list of Grid sites anymore, the pilot WMS keeps it for 
them.  Monitoring  is  also  much  improved;  the  pilot 
jobs  running  on  the  worker  nodes  can  gather  and 
report  any  information  the  pilot  WMS  deems 
important for the users.

The  pilot  WMS  can  also  partially  hide  the 
heterogeneity  of  the  compute  resources.  Since  the 
pilot jobs start before user jobs, they can prepare the 
environment  for  the  fetched  user  job.  Changes  like 
installing  a  set  of  software  libraries  or  defining 
certain environment variables are easy to do. 

Obviously,  a  pilot  job  cannot  do  miracles,  like 
changing  an   instruction  set  of  the  CPU.  In  those 
cases,  the  pilot  job will  simply  refuse  to  fetch  any 
user  job  and  will  just  terminate.  Such  instances 
should be rare,  and mostly  due to  misconfiguration. 
And  while  the  resource  providers  may  complain 
about the wasted  resources,  the users'  jobs,  at least, 
will be protected from incompatible environments.

3.1. Identity management with pilots

The  pilot  paradigm  does  not  fit  well  within  the 
original Grid authentication and authorization model. 
As can be seen in Figure  2, the real user  identity  is 
never  communicated  to  the  Grid  site,  because  the 
user job never traverses the gatekeeper. 

On Grids that rely on OS user identity protections, 
like  is  the  case  for  OSG  and  EGEE,  the  pilot 
operation model also has security  implications, since 
the  pilot  job  is  not  a  privileged  process  and  thus 
cannot  change the  OS user  identity  after  fetching  a 
user  job. This is  problematic  for  two  reasons.  First, 
the pilot job and the user job run under the same OS 
identity  envelope,  allowing  a malicious  user  job  to 
compromise the pilot job infrastructure. Additionally, 
when  several  jobs  are  running  on the  same  worker 
node,  jobs  from  different  users  will  run  under  the 
same OS identity envelope, allowing a malicious user 
to compromise the jobs of other users.

Figure 2. Pilot paradigm overview
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To  address  these  problems,  several  Grids  have 
started  to  deploy  mini-gatekeepers  on  the  worker 
nodes  themselves.  These  mini-gatekeepers  will 
identify the user fetched by the pilot and execute the 
user job under appropriate OS user identity. OSG and 
EGEE  use  gLExec[3]  for  this  purpose.  For  a 
graphical overview, see Figure 3.

3.2. Comparison with other paradigms

Another  approach is the so-called push, or oracle 
model.  This model  deploys  a WMS that  gathers  the 
user jobs and forwards them to the Grid site that has 
the highest probability of running them sooner.

From the  user  point  of view,  the  submission and 
monitoring  experience  is  very  similar  to  the  pilot 
paradigm; they see a single job queue. Moreover, the 
push WMS can also wrap the user jobs in appropriate 
wrappers,  hiding  most  of  the  compute  resource 
heterogeneity.

However,  at  the  technical  level,  the  push  model 
has several  problems.  First,  deciding where  to  send 
the  user  jobs  is  far  from  being  a  trivial  task.  The 
WMS  has  to  make  an  educated  guess,  since  the 
available  monitoring  data  do  not  provide  enough 
information  for  a precise  measurement;  this  is  what 
earns  it  the  “oracle”  name.  Next,  the  priorities 
between  users  are  handled  independently  by  each 
Grid  site;  while  the  push  WMS  can  leverage  that 
information (if known) to send user jobs to the sites 
with  better  priorities,  it  has  no  way  to  influence 
them.  A  pilot  WMS  suffers  neither  of  these 
problems,  as  it  uses  only  the  pilot  identity  in 
communication with Grid sites, and handles priorities 
between user jobs internally.

The  push  WMSes  also  fare  worse  than  pilot 
WMSes  in  monitoring,  as  they  can  only  rely  on 
information provided by the Grid middleware.

The main disadvantage of pilot-WMSes over push-
WMSes  is  the  increased  resource  utilization  of  a 
WMS.  A  push  WMS  only  needs  to  make  a  site-
selection decision and hand the user job to the remote 
Grid  site.  A  pilot-WMS,  instead,  must  handle  pilot 
jobs, user jobs and the handling and monitoring of the 
resources provided by the pilot jobs.

4. glideinWMS overview

Several pilot WMSes have been implemented, but 
this  paper  describes  the  pilot  based  WMS  called 
glideinWMS.  It  implements  the  pilot  factory  code 
and uses Condor as a user job workload management 
system.

4.1. Condor overview

Condor[4]  is a mature yet  still  actively improved 
workload  management  system.  It  started  as a batch 
system  for  harnessing  idle  cycles  on  personal 
workstations[5], but has since become a major player 
in the dedicated compute resource area.

A  Condor  pool  is  composed  of  several  logical 
entities:
● The  central  manager  gathers  and  keeps 

information  about  the  other  nodes.  A  process 
called “collector” acts as a dashboard.

● Execute  nodes  provide  compute  resources.  On 
each  execute  node  a  process  called  “startd” 
manages  the  compute  resource.  The  startd  is 
also  responsible  for  publishing  the 
characteristics  of  the  managed  resource, 
including  the  current  status  as  well  as  CPU 
type, amount of memory, system load, etc.

● Submit  nodes  handle  the  user  jobs.  On  each 
submit  node  a  process  called  “schedd” 
maintains the job queue.

● The matchmaker matches compute resources to 
user  jobs.  A  process  called  “negotiator”  is 
responsible for this task. 

The  communication  flow  in  Condor  is  fully 
asynchronous. Each startd  and each schedd advertise 
to the collector  using their  own schedule.  Similarly, 
the  negotiator  starts  a matchmaking  cycle  using  its 
own timing.

The  resource  allocation  is  completely  driven  by 
the  negotiator[6];  in  each  cycle,  it  retrieves  the 
characteristics  of  user  jobs  from  the  schedds  and 
matches  them  against  the  idle  resources.  All  the 
matches are then ordered  based on user  priority  and 
communicated  back  to  the  schedds,  who  in  turn 
transfer the matched user jobs to the affected startds  
for  execution.  To  fairly  distribute  the  resources 
among  users,  the  negotiator  tracks  resource 
consumption  by  the  users  and  calculates  user 
priorities based on that.

The  above  description  is  necessarily  just  an 
approximation; the interested  reader  should read the 
Condor  documentation  for  further  details.  For  a 
graphical overview, see Figure 4.

As  reader  might  notice,  Condor  assumes  bi-
directional  networking  between  all  the  nodes. 
However, most networks today employ some kind of 
firewall,  making  this  deployment  unfeasible 

Figure 4. Condor overview
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anywhere  but  in  tightly  controlled  LAN 
environments.

To  obviate  this  limitation,  Condor  provides  a 
proxying service, called “GCB”[4,7]. With the use of 
GCBs,  only  the  GCBs  themselves  need  to  accept 
incoming connection, all other communication can be 
routed through them.

Detailed  description of GCB operation is  beyond 
the scope of this document  and the interested  reader 
should refer to the GCB documentation.

4.2. Condor glideins

Having  started  as  a  scavenger  batch  system, 
Condor is an excellent  choice for a pilot WMS; all a 
pilot job needs to do is configure and start a startd.

Condor  itself  provides  a  basic  pilot  job 
infrastructure,  in  the  form  of  a command  line  tool, 
called  “condor_glidein”[8].  This  tool  creates  a pilot 
job,  a “glidein”,   and submits  it  to  the  Grid.  Thus, 
with  some  effort,  a  power  user  can  create  a  pilot 
WMS.

4.3. glideinWMS overview

A  real  pilot  WMS  needs  an  autonomous  pilot 
factory, so that users are fully insulated from the Grid 
complexities. glideinWMS[9] provides a pilot factory 
for a Condor based WMS.

The  glideinWMS  pilot  factory  is  composed  of 
three logical entities:
● A  dashboard  used  for  message  exchange.  A 

standard Condor collector is used for this task.
● Glidein factories create and submit pilot jobs to 

the  Grid.  On  each  glidein  factory  a  process 
called  “gfactory”  is  responsible  for  this,  and 
uses Condor-G[8] as a Grid submission tool.

● VO frontends monitor  the status of the Condor 
WMS and regulate the number of pilot jobs sent 
by  the  glidein  factories.  A  process  called 
“frontend” does the matchmaking.

The  above  description  is  necessarily  just  an 
approximation; the interested  reader  should read the 
glideinWMS documentation for further details. For a 
graphical overview, see Figure 5.

The separation of tasks allow a glideinWMS pilot 
factory to be shared by several Condor WMSes. Each 
frontend  can be  configured  to  monitor  one  Condor 
WMS,  while  the  gfactories  can  stay  the  same;  a 
gfactory  is  responsible  for  managing  the  Grid 
resources independently of who asks for them.

The  separation  of  tasks  also  allows  for  better 
scalability; the only element that cannot be replicated 
is the dashboard. If either the frontend or the gfactory 
become  overloaded,  they  can  easily  be  split  and 
distributed over two or more nodes.

5. glideinWMS scalability

The  main  selling  point  of  the  Grids  is  their 
distributed  nature,  which  naturally  avoids  global 
scalability issues. Pilot solutions, and glideinWMS in 
particular,  use a more centralized  approach and thus 
are intrinsically less scalable.

As  explained  in  the  previous  section,  the 
glideinWMS is composed of several loosely coupled 
processes, so a scalability limit in a component can be 
solved  by  deploying  many  instances.  The  only 
element that cannot be replicated is the collector.

However,  from  a practical  point  of  view,  one  is 
interested to see how far the system can scale with a 
single schedd,  as well  as how far can it scale with a 
single glideinWMS pilot  factory  instance,  since this 
is the simplest possible installation.

The short-term design goal of glideinWMS was to 
handle  O(10k)  batch  slots  from  O(100)  Grid  sites 
distributed all over the planet, and with O(100k) jobs 
in the queue with an average startup rate of O(1 Hz), 
so a set  of tests  aimed  at  reaching these  goals  was 
performed.

5.1. Collector scalability

To  test  the  collector  scalability,  the  central 
manager  node  was  installed  in  Europe,  with  pilots 
being  run  at  a few  test  Grid  sites  in  the  US.  This 
setup  was chosen to mimic the worst  case scenario, 
network wise. Condor version 7.1.3 was used.

The major  scalability  limit  we found was related 
to  initial  security  handshake  paired  with  high 
network  latencies.  Under  these  conditions,  a single 
collector  cannot cope with more than approximately 
6 pilots starting per minute.

To obviate this,  a tree of collectors  was installed, 
with a master collector and 20 slave collectors.  With 

Figure 5: glideinWMS overview
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all  the  collectors  on  the  same  physical  node,  no 
authentication is needed between them.

With  this  setup,  the  main  collector  was  able  to 
handle 12k startds,  with  a peak pilot  joining rate  of 
2Hz. The system was kept  above 10k for more than 
48  hours  and there  were  no signs  that  it  could  not 
handle more startds.

5.2. Schedd scalability

The same setup used for collector testing was used 
for schedd scalability,  with the addition of GCBs to 
bridge  NATed  worker  nodes.  The  schedd  was 
installed  on  the  same  node  as  the  20+1  collectors, 
while the GCBs had dedicated nodes.

The  schedd  scaled  to  approx.  11k  running  jobs, 
with  approx.  100k jobs in the queue  before  running 
out  of  system  resources.  The  main  resource  bottle-
neck was memory; by the time Condor was handling 
11k  running  jobs,  all  16GB of memory  were  being 
used and the system started to swap heavily.

We left  the  system  running  at  approx.  10k  level 
for 43 hours.  In that  period  of time,  the system ran 
220k jobs, giving us 1.4Hz startup rate. All jobs fin-
ished successfully, although approx. 2% were started 
more than once to recover from job-handling failures.

Since  we  reached  the  target  design  goal,  we  did 
not  try  to  scale it  further.  However,  it  is  our  belief 
that  by doubling  the  memory  we  should  be able to 
double the number of handled jobs.

5.2. glideinWMS pilot factory scalability

 The  glideinWMS  pilot  factory  scalability  test 
used  a  different  setup.  All  of  the  glideinWMS 
components were installed in the US, and the glideins 
were  being sent  to  O(100)  production  Grid  sites  in 
the US and in Europe. The load on the schedd and the 
collector  was  much smaller  than  in  the  other  tests, 
with  an average of 1k running and 10k queued jobs, 
with  peaks  of  3k  running  and  50k  queued.  The 
system was being used for more than a month.

The  gfactory,  Condor-G  and  the  glideinWMS 
dashboard  were  hosted  on  one  node,  the  frontend 
shared a node with a GCB, the schedd was installed 
on  a  dedicated  node,  and  a  tree  of  collectors  was 
using another dedicated node.

The dashboard  and the  frontend  never  reached  a 
scalability limit. Instead, the gfactory did.

The gfactory  ran into IO transaction  limits  when 
serving  more  than  approx.  50  Grid  sites.  The  load 
comes  mostly  from  the  administrative  monitoring 
subsystem  of the  gfactory.  By disabling part  of the 
monitoring,  an  option  available  since  glideinWMS 
v1_4,  the  gfactory  was  able to  handle  the  available 

120 Grid  sites,  but  the load on the system was still 
uncomfortably  high.  Further  improvements  to  the 
glideinWMS code are envisioned to improve this.

6. Summary

Grid  computing  can  help  in  the  deployment  of 
large  amounts  of  compute  resources,  but  presents 
severe  drawbacks  for  the  final  users.  The  pilot 
reduces  the  users'  problems  by  creating  a  virtual 
private pool on top of Grid resources, thus preserving 
the  relative  ease  of  management  and  monitoring 
typical of local compute resource pools.

glideinWMS  is  one  implementation  of  the  pilot 
paradigm. The base WMS is handled by the Condor 
WMS,  while  the  pilot  factory  is  provided  by  the 
glideinWMS software. The system has been tested to 
the design goal of handling O(10k) batch slots  from 
O(100) Grid sites distributed all over the planet, with 
O(100k)  jobs  in  the  queue  with  an average  startup 
rate of O(1 Hz).
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