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Abstract 

   Existing codes for accelerator design (e.g. MAD) are 

not well suited for ionization cooling channels where 

particles exhibit strongly dissipative and nonlinear 

motion. A system of Mathematica programs was 

developed which allows to: 1) find periodic orbit and 

eigenvectors of the transfer matrix around it with account 

of (regular part of) ionization losses and feeddown effect 

from nonlinear fields; 2) compute emittance growth due 

to scattering and straggling, find equilibrium values (if 

exist); 3) analyze nonlinear effects such as dependence of 

tunes and damping rates on the amplitudes, resonance 

excitation; 4) perform tracking as the ultimate test of 

design. Underlying theory and application to helical 

FOFO snake are presented. 

INTRODUCTION 

Development of a 6D ionization cooling channel (ICC) 

which would allow to achieve high phase space density of 

muons is fundamental for realization of a high luminosity 

Muon Collider [1]. For successful design of such a 

channel a trade-off must be found between contradictory 

requirements of particle stability at large amplitudes and 

strong focusing needed for low equilibrium emittance.  

The widely used tools – ICOOL [2] and G4BL [3] – 

rely mostly on massive particle tracking and do not 

provide that level of insight which is characteristic to 

standard codes like Methodical Accelerator Design 

(MAD) [4]. Unfortunately such standard codes are not 

particularly useful for cooling channel design since they 

are based on Hamiltonian dynamics in the field of hard-

edge magnetic elements (and RF cavities). 

On the contrary, magnetic elements to be used in ICC 

(mainly solenoids) have quite large aperture to length 

ratio so that there is significant overlap of the fields 

generated by different elements. And, of course, the 

primary goal of ICC is to render the muon dynamics non-

Hamiltonian. 

Therefore there is a need for a MAD-like code which 

would include: 

• long-range fields of tilted and displaced off-axis 
magnetic elements, 

• fully coupled 6D optics functions calculation in 
presence of strong damping, 

•   analysis of higher order effects on beam dynamics (e.g. 
damping decrement dependence on the amplitudes of 

oscillations) 

Here we describe an attempt to build such a code which 

we call – in the spirit of MAD – the Methodical Ionization 

Cooling Channel Design (MICCD). For now it is 

implemented as a collection of Mathematica [5] 

notebooks and is limited to the case of a straight reference 

orbit (channel axis). As a consequence, the real orbit 

should not deviate from the axis by more than ~50% of 

the channel inner radius. 

BASIC EQUATIONS  

    Let us choose the path length along the reference orbit 

(z-coordinate here) as the independent variable and 

dynamical variables in the form 
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with px,y being canonical momenta normalized by the 

reference value p0=mcβ0γ0, and 
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Equations of motion can be written in the form 
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where S is 6×6 symplectic unit matrix 
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H is normalized by p0 Hamiltonian 
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with κ=1/Bρ and A being the electromagnetic field vector-
potential, F

(ion) 
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 is the ionization recoil 

force. The regular part can be approximated as 
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with just two parameters. For liquid H2 Les=4.57m, 

αp=0.0914, for Li Les=1.51m, αp=0.0985. 

    The stochastic part is due to multiple scattering 
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and straggling 
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In eqs.(7, 8) ξ1,2 are uncorrelated stochastic variables: 
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χ is random angle. Corrections due to slope of the 
trajectory were omitted in eqs.(7, 8) for clarity but taken 

into account in the program. 
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    In order to reduce computation time the field vector-

potential is expanded in power series up to the 5
th
 order in 

transverse coordinates 
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For a thin coil this provides sufficient precision at 

distances from its axis up to 50% of the radius.  

    Solenoids are treated as arrays of thin coils using 

simple formulas with full elliptic integrals for high order 

derivatives.  

    The most difficult is treatment of wedge absorbers 

since z-coordinate of the entrance and exit points depends 

on the transverse position of the particle. We circumvent 

this difficulty by considering the wedge a thin element 

with local surface density proportional to its actual width. 

ORBIT & LINEAR OPTICS 

    The cooling channels are necessarily periodic or quasi-

periodic due to relatively small cooling rates. Therefore it 

is instructive to find periodic orbit and optics functions in 

absence of stochastic forces (7, 8).  

    Presenting the particle motion as superposition of 

motion along the periodic orbit and oscillations around it 

η+= pouu     (11) 

and expanding the r.h.s of eq.(3) in η we obtain linear 
matrix equation whose solution can be presented with 

transfer matrix 
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    The transfer matrix has a system of eigenvectors and 

eigenvalues which in the case of linearly stable motion 

form complex conjugate pairs 
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Decrements γk describe oscillation damping due to regular 

part of ionization losses. The action variable decrease 

over one period as 
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    Eigenvectors can be normalized as in the Hamiltonian 

case (but there is no simple orthogonality condition) 
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    Using eigenvectors as columns we can built matrix V, 

Vik=(vk)i, rendering the normal mode expansion in the 

form 

aV=η      (16) 

    Generally the periodic orbit is not known in advance 

and must be found by an iterative process. With transfer 

matrix and its eigenvectors calculated at step n we can 

found next approximation for the periodic orbit 
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Linear optics functions 

    With normalization (15) the Mais-Ripken β-functions 
[7] for mode µ can be computed as  
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Since emittances of the transverse modes should not differ 

much, the beam sizes are determined by the sums  
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    There is no generally accepted definition of dispersion 

function for the case of fast longitudinal oscillations. We 

use the following recipe: let the phase of the 3
rd
 mode 

oscillations be such that its projection on longitudinal 

coordinate u5=2Re(V55a5)=0.  Then for dispersion we take 

the ratio of the 3
rd
 mode projections on the transverse 

coordinate and momentum: 
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Damping partition & equilibrium emittances 

    Knowledge of the transfer matrix eigensystem allows to 

analyze the effect of linear perturbations, e.g. the change 

in cooling decrements produced by a wedge absorber 

depending on its position. 

    Let the transfer matrix through the wedge be I+W and 

M1 be the transfer matrix from the origin to its position. 

With the help of the m-th mode projector Pm vk =δmk vm, 

and condition (15) we find for perturbation of the m-th 

eigenvalue 
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    Considering the stochastic component of the force 

F
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 = f⋅ξ(z) as perturbation we can find the statistical 
average of the action variable increment over one period 
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and, taking into account damping (14), the r.m.s. 

emittance of the normal mode 
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Figure 1. β-wave excited in “helical snake” due 
to difference in currents in solenoids of opposite 

polarity 
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    Let us refer to [6] for an example of cooling channel – 

“helical FOFO snake” – studied using the described here 

approach. One period of the snake consists of 6 tilted 

alternating solenoids and two-cell RF cavities between 

them. One of the difficulties encountered with that design 

was unequal damping rates of the transverse modes. It 

was possible to equalize the rates with small spread in 

currents in “+” and “–“ solenoids (Table 1). However, this 

excited large β-wave (Fig. 1) so that there was no 
reduction in equilibrium emittance. 

Table 1. Complex tunes vs. solenoid currents ratio. 

    We considered another possibility to equalize the 

damping rates by putting Be wedges of two orientations at 

different points over the snake period. As Fig. 2 shows in 

all cases the damping rate of the second mode was further 

reduced. 

NONLINEAR DYNAMICS 

    The linear normal mode analysis lays foundation for 

nonlinear perturbation theory. We use the extension of 

Deprit’s algorithm for nonlinear non-Hamiltonian systems 

as outlined in [8] for the case of radiative particle 

dynamics. Application of this algorithm gives 

transformation from nonlinear “true” invariants cm to 

linear normal forms am connected to dynamic variables by 

eq.(16) as a power series expansion  
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    As a by-product it gives nonlinear corrections to 

eigenvalues (i.e. tunes and damping rates) and resonance 

driving terms. 

 

Table 2. Complex detuning coefficients 

    Tune derivatives w.r.t. action variables of the normal 

modes calculated for the reference “snake” design are 

given in Table 2. The most troublesome is fast decrease in 

the 2
nd
 mode damping rate with amplitudes of the 1

st
 and 

3
rd
 modes. However, this may not lead to particle loss if 

these mode themselves are damped.  

    The nonlinear normal mode analysis provides insight 

into the role of different sources of perturbation and helps 

in the search for optimum parameters of the channel. 

However, the ultimate test of the design is tracking which 

reveals the concerted effect of all sources of perturbation. 

At the current stage of MICCD development only 

tracking without stochastic effects is implemented. 

  

    Fig. 3 shows the effect of damping rates equalization as 

shown in Table 1 on transmission over 25 periods of the 

FOFO snake (153m). One can see that the rate 

equalization not only fails to reduce equilibrium emittance 

but also compromises transmission. 

    The linear and nonlinear normal mode analysis 

undoubtedly will become a powerful tool in the design of 

cooling channels. The Mathematica prototype of MICCD 

has already proved its usefulness in the study of helical 

FOFO snake [6].  
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I+/I– QI +iγI QII +iγII QIII +iγIII 

1 1.239+0.012i 1.279+0.007i 0.181+0.002i 

1.016 1.212+0.010i 1.301+0.011i 0.196+.0003i 

 ∂(QI+iγI) ∂(QII+iγII) ∂(QIII+iγIII) 

/∂JI -.0169+.0004i -.0159-.0031i -.0129+.0020i 

/∂JII -.0168-.0026i -.0119+.0009i -.0191+.0008i 

/∂JIII -.0132-.0010i -.0189-.0024i -.0071+.0017i 

  
 

Figure 2. Change in cooling decrements vs. position 

of horizontal (top) and vertical (bottom) Be wedge 

of full angle 0.1rad. 

Figure 3. Transmission with (red) and 
without (blue) damping rates equalization. 
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