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In this note, we would like to investigate how networks of detector elements which are 
connected together for power distribution may fail over time. In order to keep the 
analysis simple, we make some assumptions about the ways in which the elements fail 
and the consequences of the failures of elements. To motivate the discussion, consider 
Figure 1 at the back of this report. In this figure, there are a total of 8 detector elements 
receiving current from terminals called the tracker bulkhead. The figure shows a directed 
graph where the vertices represent detector elements and the edges represent current 
carrying wires or cables that deliver electrical power to the detector elements. The 
directions of the arrows (edges) illustrate the directions of current flow. As noted in 
Figure 1, if all of the detector elements are powered and operating, there is no loss in the 
detector. We account for loss in the detector with a variable Z. If Z = 0 as in Figure 1, 
then the entire detector is assumed to be functioning. If Z = N, no elements in the detector 
are functioning. 
 
The case of Figure 2 is an example of a detector which has experienced failure in one 
detector element. In this particular case, the failure of the indicated detector element does 
not cause other elements to fail since they are powered independently of the failed 
element. In this case, the value of Z = 1 since 1 element is not working.  
 
The example of Figure 3 illustrates another assumption that will be used in this analysis. 
In this case, one detector element has failed. However, we assume as a worst case 
assumption that when this happens, any other elements in series with this element also 
stop functioning. This assumption is equivalent to treating the failures as “open circuit” 
conditions, leading to a condition in which current flow to other elements in the power 
circuit branch is “cut off”. In the example of Figure 3, this leads to a loss of not 1 but 2 
detector elements.  
 
For arbitrary configurations of detectors and power cables connecting them, the 
possibilities are too numerous to analyze unless the number of elements and connections 
between them are relatively small. However, there are some configurations which can be 
examined, either using analytical techniques or numerical simulations. The value in 
undertaking such an analysis is that it can yield results which represent limiting values of 
some parameters which give us an idea of bounds within which the solutions to more 
general cases must be constrained. 
 
For example, consider the completely parallel and statistically independent network of 
Figure 4. In this network, since all of the elements are powered independently, if we 
assume that the failure of any one element has no bearing on the probability of failure for 
any of the other elements, we may argue that the rate at which this network experiences 
detector element failures over time must be lower than any other configuration. This 
network also serves as a similar limiting case for networks with elements that fail in some 
other fashion than resulting in an open circuit. In those cases, failure of an element in 
series does not necessarily result in the cut off condition described earlier and therefore, 
actual failures may more closely approximate the behavior of the completely independent 
network. For this reason, we will spend a good deal of this report addressing 
computations for this valuable case.  
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To examine the behavior of the loss of detector elements as a function of time, we define 
a random process {Zn}, where, at discrete points in time indexed by an integer, n, the 
value of the process is defined by a random variable, Zn. That is,  
 
Zn = the number of failed detector elements at time n where n = 0, 1, 2, … 
 
We assume that Zn = 0 at time n= 0 (that is, all elements are functional when the 
experiment begins). This implies that 
 
Z0 = 0 
 
Assume that there are a total of N elements in the detector. We assume for simplicity that 
the probability of failure of each element is given by q with the probability that an 
element is functioning given by p. Since these are the only possibilities,  
 
q = 1 – p 
 
We assume that all elements fail with the same probability and that the failure of any 
element is independent of the failure of any other elements. In other words, we assume 
that the failures are independent and identically distributed (more will be said about this 
later).  We also assume that the failure probability, q, is independent of time.  
 
At time n = 1, the detector may have anywhere from 0 to N failed elements. These 
possibilities correspond to the following values for the random variable, Z1: 
 
Z1 = 0   (all elements are functioning) 
Z1 = 1   (all but 1 of the elements are functioning) 
Z1 = 2   (all but 2 of the elements are functioning) 
. 
. 
. 
Z1 = k   (all but k of the elements are functioning) 
. 
. 
. 
Z1 = N   (all N elements have failed) 
 
We want to compute the probabilities associated with each of these values of the random 
variable, Z1. 
 
By combinatorial arguments, we can establish the following: 
 
P[Z1 = 0] = BN(0)q0pN-0 = BN(0) pN = pN 
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The term “P[Zk = x]” means “the probability that Zk = x”.  This gives the probability that 
x elements are no longer working in the detector. In this expression, the term BN(0) is a 
binomial coefficient with 
 
BN(k) = N!/(k!(N-k)!) 
 
Furthermore, the remaining values are given by: 
 
P[Z1 = 1] = BN(1)q1pN-1 
 
P[Z1 = 2] = BN(2)q2pN-2 
. 
. 
. 
 
P[Z1 = k] = BN(k)qkpN-k 
. 
. 
. 
 
P[Z1 = N] = BN(N)qNpN-N = BN(N) qN 
 
This handles all of the cases possible for n = 1. By the law of total probability: 
 
P[Z1 =0] + P[Z1 = 1] + P[Z1 = 2] + … P[Z1 = N-1] + P[Z1 = N] = 1 
 
This can also be shown using the binomial expansion for (p+q)N = 1N. 
 
Next, consider the cases for n = 2, 3, 4, … (that is, we want to examine the possibilities 
as time evolves). In general, we want to find a suitable formula for n where n is an 
arbitrary nonnegative integer. In other words, we want the probability distributions for 
the random variables, Zn, which characterize the time evolution of the process, {Zn}. We 
start by examining the case of n = 2.  
 
First we ask, “what is  
 
P[Z2 = 0] ?” 
 
If Z2 = 0, this can only occur if there have been no elements lost up to this point in time. 
This can only be possible if 
 
Z1 = 0  (no elements are lost up to time n = 1) 
 
and  
 
Z2 – Z1 = 0 (there are no elements lost in the time between n = 1 and n = 2). 
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These conditions can be expressed as  
 
P[Z2 = 0] = P[Z2 – Z1 = 0, Z1 = 0] 
 
where the expression on the right hand side of the equation is the joint probability of the 
two conditions that must be met in order that Z2 = 0. We can express this joint probability 
in a more convenient form through the use of the laws of conditional probability 
[Reference 1]: 
 
P[Z2 = 0] = P[Z2 – Z1 = 0 | Z1 = 0] P[Z1 = 0] 
 
We choose to approach the problem this way because we have already computed the 
probability, P[Z1 = 0]. Now, we need an expression for P[Z2 – Z1 = 0 | Z1 = 0]. 
 
Given that Z1 = 0 means that there were, at time n = 1, N functioning elements in the 
detector. This means that there are a pool of N elements from which combinatorial 
arguments can be drawn in examining detector failure probabilities at time n = 2. Then, 
the conditional probability, P[Z2 – Z1 = 0 | Z1 = 0] is equal to the probability that no 
elements are lost in the detector during the time between n = 1 and n = 2, when 
considerations are made based on a pool of N available elements. Therefore,  
 
P[Z2 – Z1 = 0 | Z1 = 0] = BN(0)q0pN-0 = BN(0) pN = pN 
 
This is the only way in which we can have the result that Z2 = 0. 
 
Next, we ask “what is  
 
P[Z2 = 1] ?” 
 
There are two ways in which this can happen. These are: 
 
Z1 = 0 and Z2 – Z1 = 1 
 
or 
 
Z1 = 1 and Z2 – Z1 = 0 
 
These two possibilities are mutually exclusive and therefore, their probabilities may be 
summed. In other words,  
 
P[Z2 = 1]   =        P[Z2 – Z1 = 1, Z1 = 0] 
   
  +  P[Z2 – Z1 = 0, Z1 = 1] 
 
Again, invoking conditional probability, we can write this as: 
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P[Z2 = 1]    =      P[Z2 – Z1 = 1 | Z1 = 0] P[Z1 = 0] 
   
  +  P[Z2 – Z1 = 0 | Z1 = 1] P[Z1 = 1] 
 
Given that Z1 = 0 means that at time n = 1, N detector elements were functioning leaving 
a pool of N elements for combinatorial arguments. Then, 
 
P[Z2 – Z1 = 1 | Z1 = 0] = BN(1)q1pN-1 
 
This is just the number of ways in which a single element failure can occur in a pool of N 
elements (BN(1)) times the probability that any single element (and only 1 such element) 
fails (q1pN-1).  
 
The second term is different because, given that Z1 = 1 means that there are only N-1 
elements for consideration in combinatorial arguments for this case. Therefore,  
 
P[Z2 – Z1 = 0 | Z1 = 1] = BN-1(0)q0p(N-1)-0 = p(N-1) 
 

This is just the number of ways in which no element failures can occur in a pool of N-1 
elements (BN-1(0)) times the probability that no element failures occur (q0p(N-1)-0).  
 
Now we look at the next case by asking “what is 
 
P[Z2 = 2] ?” 
 
By extending the arguments made above, it is possible to write: 
 
P[Z2 = 2]  =      P[Z2 – Z1 = 2 | Z1 = 0] P[Z1 = 0] 
   
  +  P[Z2 – Z1 = 1 | Z1 = 1] P[Z1 = 1] 
 

+  P[Z2 – Z1 = 0 | Z1 = 2] P[Z1 = 2] 
 
Again, by careful consideration of the implications of the conditioning events (for 
example, Z1 = 1 or Z1 = 2) and what that means to the size of the pool of available 
candidates for combinatorial arguments, we can write,  
 
P[Z2 – Z1 = 2 | Z1 = 0] = BN(2)q2pN-2 

 
P[Z2 – Z1 = 1 | Z1 = 1] = BN-1(1)q1p(N-1)-1 

 
P[Z2 – Z1 = 0 | Z1 = 2] = BN-2(0)q0p(N-2)-0 = p(N-2) 
 
The terms P[Z1 = 0], P[Z1 = 1], P[Z1 = 2] were all determined earlier.  
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Treatment of the remaining cases for n = 2 follows these arguments exactly. A pattern is 
seen to emerge that allows us to write: 
 
P[Z2 = k]  =      P[Z2 – Z1 = k | Z1 = 0] P[Z1 = 0] 
   
  +  P[Z2 – Z1 = k-1 | Z1 = 1] P[Z1 = 1] 
 

+  P[Z2 – Z1 = k-2 | Z1 = 2] P[Z1 = 2] 
 
+  P[Z2 – Z1 = k-3 | Z1 = 3] P[Z1 = 3] 
. 
. 
. 
 
+  P[Z2 – Z1 = k-j | Z1 = j] P[Z1 = j] 
. 
. 
. 
 
+  P[Z2 – Z1 = k-(k-1) | Z1 = k-1] P[Z1 = k-1] 
 
+  P[Z2 – Z1 = k-k | Z1 = k] P[Z1 = k] 
 

The parameter, k, can take on all values from 0 to N (that is, at any point in time, the 
number of elements that may have failed can be within the range of 0 elements to every 
element in the detector). We gave explicit formulas for the cases where k = 0, 1, and 2. 
The remaining formulas may be obtained by using the above general expression. 
 
We can also exploit the pattern that emerged through the expression of probabilities 
based on conditioning events (the number of elements that had failed up until the current 
point in time). Doing so results in the following: 
 
P[Z2 – Z1 = k | Z1 = 0] = BN(k)qkpN-k      =  αk,0 
 
P[Z2 – Z1 = k-1 | Z1 = 1] = BN-1(k-1)qk-1p(N-1)-(k-1)    =  αk,1 
 
P[Z2 – Z1 = k-2 | Z1 = 2] = BN-2(k-2)qk-2p(N-2)-(k-2)    =  αk,2 
 
P[Z2 – Z1 = k-3 | Z1 = 3] = BN-3(k-3)qk-3p(N-3)-(k-3)    =  αk,3 
. 
. 
. 
P[Z2 – Z1 = k-j | Z1 = j] = BN-j(k-j)qk-jp(N-j)-(k-j)    =  αk,j 
. 
. 
. 
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P[Z2 – Z1 = k-(k-1) | Z1 = (k-1)] = BN-(k-1)(k-(k-1))qk-(k-1)p(N-(k-1))-(k-(k-1)) =  αk,(k-1) 
 
P[Z2 – Z1 = k-k | Z1 = k] = BN-k(k-k)qk-kp(N-k)-(k-k)  = p(N-k)   =  αk,k 
 
We have expressed the conditional probabilities as elements of a matrix, A. That is, the 
term αi,j is the element in the ith row and the jth column of an (N+1)x(N+1) matrix, A 
(“underlined” terms are to be interpreted as vectors or matrices). Therefore, each of the 
terms identified above represent the elements of the kth row of the matrix, A. These 
elements correspond to conditional probabilities that are based on all possible 
conditioning events which can result in a loss of k elements at time n = 2. The use of this 
notation and the reasons behind it will be made clearer in a little while. 
 
In the expressions above, we have chosen not to simplify many of the terms (such as (k-
(k-1)) = 1) so as to explicitly demonstrate from where the results were obtained. Such an 
approach can also more effectively suggest how the computation of the necessary terms 
may be automated.  
 
Remember that all of the results expressed above were obtained while considering the 
possibilities at time n = 2. However, there is really nothing special about the analysis 
presented up to this point in time. This is due to the fact that we have assumed that the 
probabilities of failure for the elements, q, are independent of time. This simplification 
should be reconsidered when attempting to more accurately model the behavior of a 
connected power distribution network. For example, one might expect that, as elements 
fail, other elements in the network might be more electrically stressed (dissipating more 
power than nominal conditions might dictate) resulting in higher probabilities of failures 
in these more stressed elements. 
 
If we continue to ignore the effects of increased power dissipation and possible 
modification of element failure probabilities, we can find a convenient way to express the 
general time evolution of the network (that is, the actual evolution of the random process 
{Zn}).  
 
Let us define the N+1 dimensional column vector of probabilities (for n = 1) as: 
 
PZ(1) = (P[Z1 = 0] P[Z1 = 1] P[Z1 = 2] . . .  P[Z1 = N-1] P[Z1 = N] )T   
 
where the superscript “T” indicates the transpose of this N+1 dimensional row vector to 
form an N+1 dimensional column vector and the “underlined” terms are to be interpreted 
as vectors or matrices. The appearance of the “(1)” portion of PZ(1) is meant to indicate 
that these are the probabilities at time n = 1. 
 
Similarly, define the (N+1) dimensional column vector of probabilities (for n = 2): 
 
PZ(2) = (P[Z2 = 0] P[Z2 = 1] P[Z2 = 2] . . .  P[Z2 = N-1] P[Z2 = N] )T 
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In general, we define (for arbitrary n where n = 1, 2, 3…) the (N+1) dimensional column 
vector of probabilities:  
 
PZ(n) = (P[Zn = 0] P[Zn = 1] P[Zn = 2] . . .  P[Zn = N-1] P[Zn = N] )T 
 
This is the vector of probabilities at the time n. 
 
Then, we may write the results for n = 2 in terms of the results of n = 1 as follows: 
 
PZ(2)  = A PZ(1) 
 
where the matrix A is an (N+1) by (N+1) matrix made up of the elements ak,j the 
formulas for which were outlined earlier. The notation “(N+1) by (N+1)” means the 
matrix has N+1 rows and N+1 columns; we use the notation “(N+1)x(N+1)” to indicate 
the same thing. Note that 
 
αk,j = 0   (for all j > k) 
 
This means that there is zero probability of having fewer than k failed elements once k 
elements have already failed (no elements come back to life). This results in a matrix 
which is lower triangular. 
 
The assumption that the failure probabilities are independent in time allows us to realize 
that the matrix, A, may be repeatedly applied in the time evolution of this random 
process. In other words, we may write, in general: 
 
PZ(n+1)  = A PZ(n)  for n = 1, 2, 3, … 
 
This may also be written in the following form: 
 
PZ(n+1) = An PZ(1) 
 
where PZ(1) is the (N+1) dimensional column vector of probabilities that we computed 
for the time n = 1. Since the matrix, A, is lower triangular, so too will be all products of 
the form An. This formula gives us a particularly simple way to determine the 
probabilities associated with the possible states of detector loss in the network as a 
function of time. From the formula just given for PZ(n+1), it is possible to evolve the 
failure probabilities simply by n repeated matrix multiplications of the matrix A. Such an 
approach is sometimes discussed in the literature on stochastic processes associated with 
Markov chains and the Chapman-Kolmogorov equations [Reference 2]. 
 
One application of the formulas just demonstrated is to compute the expected value of the 
detector loss function of the configuration. Such a computation will actually represent a 
lower bound and will give us, as a function of time, the level of lost elements below 
which (on average) we should not expect to experience. In other words, for a given 
number of elements (ignoring how they are connected) and a given elemental failure 
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probability, q, we can estimate a function beyond which (on average), we should expect 
to do no better. Now, we will show how to compute this.  
 
The expected value of the discrete random variable Zn+1 is given by 
 
E[Zn+1] = (0 1 2 . . . N-1 N)T PZ(n+1) 
 
 = JT PZ(n+1) 
 
 = JT An PZ(1) 
 
where  
 

JT =    (0 1 2 . . . N-1 N)T 
 
The vector J is just the set of values that Zn+1 can assume (from 0 to N elements can be 
lost). 
 
A useful property to demonstrate is that the diagonal elements are all distinct. This 
follows from the previously derived formula for the diagonal matrix elements, αk,k: 
 
αk,k = P[Z2 – Z1 = k-k | Z1 = k] = BN-k(k-k)qk-kp(N-k)-(k-k) 

 

 = BN-k(0)q0p(N-k) 

 
 = p(N-k) 
 
Since  
 
BN-k(0) = 1 (for all N, k = 0, 1, 2, …, N) 
 
and 
 
q0 = 1 
 
we have  
 
αk,k = p(N-k)  (for all N, k = 0, 1, 2, …, N) 
 
If j is not equal to k, then αj,j is not equal to αk,k for any two allowable values of j and k 
(as long as p is different from 1 and 0). Furthermore, all of the diagonal elements are 
positive if p > 0. 
 
The terms along the diagonal of A are given by: 
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α0,0 = p(N-0) = pN 
 
α1,1 = p(N-1)  
 
α 2,2 = p(N-2) 
. 
. 
. 
α N-1, N-1 = p(N-(N-1)) = p1 
 
Observe that: 
 
αN, N = p(N-N) = p0 = 1 (for any value of N).  
 
Therefore, with the exception of the αN,N term, all of the diagonal elements are positive 
with a value less than 1 (if p is not equal to 1). 
 
Consider the meaning of the αN, N term. This term is equal to the conditional probability 
(at time n+1): 
 
αN,N = P[Zn+1 – Zn = 0 | Zn = N] = B0(0)q0p0  = 1   
 
This seems correct since we are certain (the probability is 1) that, given that we have lost 
all elements, we are going to lose no more. 
 
The fact that the matrix, A, is lower triangular means that the eigenvalues of that matrix 
are the diagonal elements. Furthermore, the formula for αk,k allows us to conclude that 
the diagonal elements are all nonzero provided p > 0. Since we have demonstrated that 
the diagonal elements are all distinct, that is, if αk,k is not equal to αj,j for j not equal to k, 
then we can be sure that a similarity transformation defined by a nonsingular matrix, X , 
exists such that: 
 
Λ = X-1A X  
 
where Λ is a diagonal matrix with elements λk,k. This assurance follows from the fact that 
there are no repeated eigenvalues which implies that there are N+1 linearly independent 
eigenvectors of A [Reference 3]. These eigenvectors can be used as the columns of the 
transformation matrix, X. To see this, define: 
 
X = [x0  x1       x2            x3            . . .  xN] 
 
where xi = the ith N+1 dimensional column vector of X 
 
   = the ith eigenvector of X corresponding to the eigenvalue, λi. 
Then,  
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A X = [λ0 x0  λ1 x1  λ2 x2 . . .   λN xN] 
 
But  
 
X Λ = [λ0 x0  λ1 x1  λ2 x2 . . .   λN xN] 
 
as well (as can be seen by multiplying out the terms) and therefore, 
 
A X = X Λ  
 
Since the columns of X are linearly independent, the inverse X-1 exists and the result  
 
Λ = X-1A X  
 
is valid. From this, we can write A as: 
 
Α = X Λ X-1 
 
We will have more to say about the similarity transformation and how to compute it in an 
appendix at the end of this note.  
 
As a check on the correctness of the formulation, we should be able to demonstrate that 
the probabilities which make up the components of PZ(n+1) all sum to 1 for any value of 
n. This computation is given by: 
 
P[Zn+1 =0] + P[Z n+1 = 1] + P[Z n+1 = 2] + . . .  P[Zn+1= N-1] + P[Z n+1 = N] = 1 
 
In terms of the elements of the matrix, A, we write this as: 
 
P[Zn = 0] (α0,0 + α1,0 + α2,0 + α3,0 + α4,0 + . . . αN-2,0 + αN-1,0 + αN,0)  +  
P[Zn = 1] (0     + α1,1 + α2,1 + α3,1 + α4,1 + . . . αN-2,1 + αN-1,1 + αN,1)  + 
P[Zn = 2] (0     +   0   + α2,2 + α3,2 + α4,2 + . . . αN-2,2 + αN-1,2 + αN,2)  + 
P[Zn = 3] (0     +   0   +   0   + α3,3 + α4,3 + . . . αN-2,3 + αN-1,3 + αN,3)  + 
. 
. 
. 
P[Zn = N-2] (  0   +   0   +   0   +  0  +  0   + . . . +  0  +  αN-2,N-2 + αN-1,N-2 + αN,N-2)  + 
P[Zn = N-1] (  0   +   0   +   0   +  0  +  0   + . . . +  0  +   0          + αN-1,N-1 + αN,N-1)  + 
P[Zn = N]    (  0   +   0   +   0   +  0  +  0   + . . . +  0  +   0          +  0          + αN,N) = 1 
 
where, as before, we have the formula for the matrix elements: 
 
αk,j  =  P[Z2 – Z1 = k-j | Z1 = j] = BN-j(k-j)qk-jp(N-j)-(k-j)  
 
       =   BN-j(k-j)qk-jp(N-j)-(k-j) 
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The fact that this expression is correct may be demonstrated by recognizing that each of 
the sums of terms in parentheses is equal to 1. Each of these sums represents the 
summation of the elements of a single column of A. Therefore, 
 
α0,0 + α1,0 + α2,0 + α3,0 + α4,0 + . . . αN-2,0 + αN-1,0 + αN,0  = 1  
 
α1,1 + α2,1 + α3,1 + α4,1 + . . . αN-2,1 + αN-1,1 + αN,1  = 1 
 
α2,2 + α3,2 + α4,2 + . . . αN-2,2 + αN-1,2 + αN,2  = 1 
 
α3,3 + α4,3 + . . . αN-2,3 + αN-1,3 + αN,3  = 1 
. 
. 
. 
αN-2,N-2 + αN-1,N-2 + αN,N-2  = 1 
 
αN-1,N-1 + αN,N-1  = 1 
 
αN,N  = 1 
 
This follows from the fact that each sum of terms for the columns of A is a sum of the 
binomial coefficients for pools of size N (0th column), N-1 (1st column), N-2 (2nd 
column), …, 1 (N-1st column), and 0 (Nth column). One way to see this is to write the 
elements of the matrix A in terms of the binomial coefficients:  
 
 BN(0)pN               0                             0                           0 . . .             0 
  
 BN(1)pN-1q1      BN-1(0)pN-1             0                 0 . . .            0 
 
 BN(2)pN-2q2      BN-1(1)pN-2q1          BN-2(0)pN-2           0 . . .                        0 
 
A =      BN(3)pN-3q3      BN-1(2)pN-3q2          BN-2(1)pN-3q1     BN-3(0)pN-3 . . .       0 

. 

. 

. 
BN(N-2)p2qN-2      BN-1(N-3)p2qN-3      BN-2(N-4)p2qN-4   BN-3(N-5)p2qN-5. . . 0 
 
BN(N-1)p1qN-1      BN-1(N-2)p1qN-2      BN-2(N-3)p1qN-3   BN-3(N-4)p1qN-4. . . 0 
 
BN(N)qN                     BN-1(N-1)qN-1         BN-2(N-2)qN-2         BN-3(N-3)qN-3. . .     BN(0)p0 

 
Since such sums of binomial coefficients always equal 1, we have demonstrated what 
was needed to establish the correctness of the formulation. 
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Another useful check is to consider the limiting probabilities. In other words, what is the 
behavior of the vector of probabilities, PZ(n) as n goes to infinity? We might expect the 
following to be true: 
 
limn PZ(n) = eN 

 
In other words, we might expect the detector to end up after a long time in the state where 
all of the elements have failed. We can prove that the limit exists and that limn PZ(n) = eN 
with the following argument by starting with the relation that: 
 
PZ(n+1) = A PZ(n) 
 
Therefore, if the limits exist, then  
 
limn PZ(n+1) = limn A PZ(n) = A limn PZ(n) 
 
First assume that the above limit exists and define  
 
PZ = limn PZ(n) = limn PZ(n+1) 
 
Then, we have: 
 
PZ = A PZ 
 
If we guess that  
 
PZ = eN 
 
we can test the validity of 
 
A eN = eN 
 
By direct multiplication, we see that this is true (refer to the form of A where the 
elements are expressed in terms of the binomial coefficients). The only requirement is 
that  
 
BN(0)p0 = 1 
 
which is true. In other words, the limiting value of the sequence of probabilities, PZ(n), is 
an eigenvector of the matrix A corresponding to the eigenvalue, 1.  
 
To prove that the limit above does exist, we simply consider the form produced under 
repeated applications of the similarity transformation: 
 
PZ(n+1) = An PZ(n) 
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 = (X Λ X-1)n PZ(1) 
 
 = X Λn X-1 PZ(1) 
 
Therefore, 
 
limn PZ(n+1) = limn X Λn X-1 PZ(1) 
 
  = X limn Λn X-1 PZ(1) 
 
The notation “limn f(n)” means “the limit of f(n) as n approaches infinity”. This leads to:  
 
limn  Λn =  limn (diag((λ0,0 )n, (λ1,1 )n , (λ2,2 )n , (λ3,3 )n , . . . (λN,N )n )) 
 
  = diag(limn(λ0,0 )n, limn(λ1,1 )n , limn(λ2,2 )n , limn(λ3,3 )n , . . . limn(λN,N )n ) 
 
  = diag(limn(α0,0 )n, limn(α1,1 )n , limn(α2,2 )n , limn(α3,3 )n , . . . limn(αN,N )n ) 
 

 = diag(0, 0, 0, …, 0, 1) 
 
  =  [ 0      0       0      0 . . .    0 eN] 
  
where   
 

0 = the N+1 dimensional column vector of all zero components 
 

eN = the N+1 dimensional standard basis column vector with  all components   
equal to 0 except the N+1st component which is equal to 1 

 
This result follows from the formulas derived for the terms αk,k earlier in which all αk,k 
except αN,N are expressed as powers of the probability, p. Therefore, the limiting values 
in the expression above all tend towards 0 with the exception of αN,N which is identically 
equal to 1. Therefore the limit of the product exists. 
 
This demonstration also allows us to satisfy another intuitive consideration, namely that, 
over a long time, we expect all of the elements to eventually fail. This is equivalent to the 
assertion that: 
 
limn E[Zn+1] = N 
 
This follows immediately from the formula: 
 
limn E[Zn+1] = limn JT PZ(n+1) 
 
         = JT limn PZ(n+1) 
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         = JT eN  
 
         = N 
 
Mathematically, the solution just demonstrated is equivalent to a detector constructed of 
completely independent, parallel elements all supplied by their own cables (see Figure 4 
at the back of this note). If we assume that the probability of failure is the same for all 
elements and that these failure events are all independent, we will have the same solution. 
Such a detector represents the most reliable construction possible and confirms our 
assumption that the results presented here represent the best case scenario (for other 
designs, the expected value of the loss function will rise more rapidly). Figure 5 (see the 
back of this note) illustrates this behavior. The mathematical form of this plot will be 
demonstrated presently. 
 
The time where the plot of the expected value crosses a threshold of acceptable 
performance (where that threshold is between 0 and N) is called the average survival time 
for the level of performance. From the plot, we should expect that survival time to be 
maximized for a fixed level of acceptable performance when the network is the 
independent parallel network.  
 
The shape of the curve can be examined by computing the difference term: 
 
E[Zn+1] - E[Zn]  =  JT (PZ(n+1) - PZ(n)) 
 
 = JT (An - An-1) PZ(1) 
 
 = JT An-1(A - I) PZ(1) 
 
In the limit of large values of n, we have: 
 
limn ( E[Zn+1] - E[Zn] )  = limn JT (An - An-1) PZ(1) 
 
            = JT limn (An - An-1) PZ(1) 
 
            = JT (limn An - limn An-1) PZ(1) 
 
            = JT (0) PZ(1) 
 
            = 0T PZ(1) 
 
            = 0 
 
since  
 
 limn An = limn An-1  
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limn An - limn An-1 = 0 (0 is an N+1 by N+1 dimensional matrix in this last 
equation) 

 
Therefore, the slope of the curve for E[Zn] approaches 0 as n approaches infinity. 
 
 
 
Alternative Analytical Approach Based on Single Element Probabilities: 
Suppose that we consider a single detector element with a probability of failure given by: 
 
q = 1 – p 
 
We define a random process, {Xn, n = 0, 1, 2, …} such that: 
 
Xn = 0   if the element is functioning at time n 
Xn = 1   if the element is functioning at time n 
 
Xn+1 = 1 if  Xn = 1  for n = 1, 2, … 
 
X0 = 0   
 
Then we can ask, what is P[Xn = k] where k = 0 or k = 1. 
 
Consider n = 1: 
 
P[X1 = 0] = p 
 
P[X1 = 1] = 1 – p = q 
 
Consider n = 2: 
 
P[X2 = 0] = P[X2 - X1 = 0, X1 = 0]  
      
     = P[X2 - X1 = 0 | X1 = 0] P[X1 = 0] 
 
     = P[X2 - X1 = 0] P[X1 = 0] 
 
     = p P[X1 = 0] 
 
P[X2 = 1] =   P[X2 - X1 = 1, X1 = 0]  
  
  +   P[X2 - X1 = 0, X1 = 1] 
 
  =  P[X2 - X1 = 1 | X1 = 0] P[X1 = 0] 
 
  +  P[X2 - X1 = 0 | X1 = 1] P[X1 = 1] 
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  =  P[X2 - X1 = 1] P[X1 = 0] 
 
  +  P[X2 - X1 = 0 | X1 = 1] P[X1 = 1] 
 
Given that X1 = 1, we must have: 
 

P[X2 - X1 = 0 | X1 = 1] = 1        (it must be so if there is only 1 element) 
 
Therefore: 
 
P[X2 = 1] =   (1 – p) P[X1 = 0]  +  1 (1-p) 
 
We can summarize the possibilities for n = 2 in the matrix formulation: 
 
 
PX(2) = A PX(1) 
 
where: 
 
  P[X2 = 0] 
PX(2)   =  
  P[X2 = 1] 
 
 
  P[X1 = 0] 
PX(1)   =  
  P[X1 = 1] 
 
 
  p     0 
A      =  
  1 - p     1 
 
In general, as for the case of N detector elements, we may write: 
 
PX(n+1) = An PX( (1) 
 
We may also diagonalize A to produce the matrix, Λ, using the similarity matrix, X, 
where: 
 
Λ = X-1 A X 
 
 
 p 0 
Λ    =  

0 1 
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Using the formulas derived earlier for an N+1 by N+1 matrix, A, we find that: 
 
 
 
  1 0 
X    =  

-1 1 
 
 
 
 
  1 0 
X-1  =  

 1 1 
 

Writing  
 
 An  =  X Λn X-1 
 
we can compute: 
 
 PX(n+1) = X-1 Λn X PX(1) 
 
First, compute: 
 
 
 
 
 
X-1 Λn X  =  
 
 
  1 0 pn 0 1 0 
  

 1 1 0 1 -1 1 
 
    
  pn 0 
   =  
  1- pn 1 
 
Therefore: 
 
 

 19



  P[Xn+1 = 0]  pn P[X1 = 0]             pn+1 
PX(n+1)   =    =         =  
  P[Xn+1 = 1]  (1- pn )P[X1 = 0] + P[X1 = 1]           (1- pn )p + (1-p) 
 
 
 
 
  pn+1 
 = 

1 - pn+1 
 
This leads us to a simple formula for E[Xn+1]: 
 
E[Xn+1] = 0 P[Xn+1 = 0] + 1 P[Xn+1 = 1] 
 
   = P[Xn+1 = 1] 
 

  = 1 - pn+1 
 
If we realize that a collection of N such detector elements has an average value of N 
times this expectation for Xn+1, we conclude that: 
 
E[Zn+1] = N(1 - pn+1) 
 
Using this formulation, it is much easier to examine properties of the expectation curve, 
E[Zn+1], as a function of time (index n). For example, the monotonically increasing nature 
of the curve is demonstrated as follows: 
 
E[Zn+1] - E[Zn] = N(1 - pn+1) - N(1 - pn) 
 
      = N -  N pn+1 – N + N pn 
 
      = N (pn - pn+1) 
 
      = N pn (1 – p) 
 
      > 0                (since p < 1) 
 
Taking some limits for increasing n yields: 
 
limn E[Zn+1] = limn N (1 – pn+1) 
 
          = N 
 
limn ( E[Zn+1] - E[Zn] ) = limn N pn (1 – p) 
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   = 0  
 
Therefore, the curve for E[Zn+1] asymptotically approaches N in a monotonically 
increasing fashion as time grows larger and larger. This is consistent with the plots shown 
in Figure 2 for the average behavior of the loss function. An interesting result from the 
analysis of this process is that the variance of the random variable Zn actually decreases 
with time. This is due to the fact that elements are being lost and the possible states of the 
detector are becoming more and more limited as time increases.  
 
Another moment that we can compute using this formulation is the variance of the 
process, {Zn}, as a function of time. This is defined as: 
 
Var(Zn) = E[(Zn – E[Zn])2] 
 
 = E[(Zn)2] - (E[Zn])2 
 
Since the parallel elements fail independently of each other, we can use the property that, 
for independent random variables X1, X2, X3, ... Xm 
 
Var(X1 + X2 + X3 + ...  + Xm)  =  Var(X1) + Var(X2) + Var(X3) + ... Var(Xm)  
 
This will allow us to express Var(Zn) as: 
 
Var(Zn) = N Var(Xn) 
 
 = N(E[(Xn)2] - (E[Xn])2) 
 
Then, we write: 
 
E[(Xn)2] = 02 P[Xn+1 = 0] + 12 P[Xn+1 = 1] 
 
 = E[Xn] 
 
 = 1 - pn 
 
Then we compute: 
 
(E[Xn])2 = (1 - pn)2 
 
 = 1 - 2pn + p2n 
 
Taking the difference of these two terms yields: 
 
Var(Xn) = 1 - pn - (1 - 2pn + p2n) 
 
 = pn (1 - pn) 
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Another way to express this is: 
 
Var(Xn) = (1 - pn) - (1 - pn)2 
 
Therefore, for the loss in all of the detector elements, we have: 
 
Var(Zn) = N Var(Xn) = N pn (1 - pn) 
 
We can demonstrate two properties of Var(Zn) from this formulation. First, we take the 
lim as n tends to infinity: 
 
limn Var(Zn) = 0 
 
This means that the uncertainty of the loss of the number of elements eventually 
disappears (this makes sense; eventually we know that all of the elements will be lost). 
 
We can also demonstrate that the uncertainty is a monotonically decreasing function of 
the time index, n. We see this by observing that: 
 
Var(Zn) / Var(Zn-1) = [N pn (1 - pn)] / [N pn-1 (1 - pn-1)] 
 
 = p ((1 - pn)/ (1 - pn-1)) 
 
Since p < 1,  
 

(1 - pn) > (1 - pn-1)      
 

so 
 
(1 - pn)/ (1 - pn-1) > 1 
 

Notice that, in the limit as n tends towards infinity,  
 

limn (1 - pn)/ (1 - pn-1) = 1 
 
This means that we can find an index, n0, such that, (1 - pn)/ (1 - pn-1) is as close to 1 as 
we want it to be. Then, we can find an n0 such that p ((1 - pn)/ (1 - pn-1)) is less than 1. For 
all n > n0,  
 
 Var(Zn) / Var(Zn-1) < 1 
 
or 
 
 Var(Zn)  <  Var(Zn-1) 
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This means that for sufficiently large n, the variance monotonically decreases with 
increasing n. 
 
Note that we can not conclude that, for all values of p and n, Var(Zn) tends monotonically 
towards 0. As an example, consider the case where n = 2 and p = 3/4. In this case,  
 

Var(Zn) / Var(Zn-1) = p ((1 - pn)/ (1 - pn-1)) 
 
  = p ((1 – p2)/ (1 - p1)) 
 
  = ¾ ((1 – (¾)2)/ (1 – ¾)) 
 
  = ¾ (7/16)/(1/4) 
 
  = 21/16 
 
Since this is greater than 1, we conclude that, for some range of increasing n, the variance 
is actually growing. But, eventually, it will begin to decrease and once it does, it 
decreases monotonically for all increasing n.  
 
Now we can relate the probabilities for a single detector element to the probabilities for a 
collection of N independent, identically distributed such elements. Define  
 
 
PZ(n) = ( P[Zn = 0] P[Zn = 1] P[Zn = 2] . . .  P[Zn = N-1] P[Zn = N] )T 

 

PX(n) = ( P[Xn = 0] P[Xn = 1] )T 
 
Then, by considering the combination of N of the single detectors with their two state 
probabilities, we may express the components of PZ(n+1) as: 
 
P[Zn+1 = 0] = BN(0)  (P[Xn+1 = 0])N (P[Xn+1 = 1])0 

 
= BN(0) (pn+1)N 

 
P[Zn+1 = 1] = BN(1) (P[Xn+1 = 0])N-1 (P[Xn+1 = 1])1 
 

= BN(1) (pn+1)N-1 (1 - pn+1)1 
 
P[Zn+1 = 2] = BN(2) (P[Xn+1 = 0])N-2 (P[Xn+1 = 1])2 
 

= BN(2) (pn+1)N-2 (1 - pn+1)2 
. 
. 
. 
P[Zn+1 = k] = BN(k) (P[Xn+1 = 0])N-k (P[Xn+1 = 1])k 
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= BN(k) (pn+1)N-k (1 - pn+1)k 

. 

. 

. 
 
P[Zn+1 = N-2] = BN(N-2) (P[Xn+1 = 0])2 (P[Xn+1 = 1])N-2 
 

= BN(N-2) (pn+1)2 (1 - pn+1)N-2 
 
P[Zn+1 = N-1] = BN(N-1) (P[Xn+1 = 0])1 (P[Xn+1 = 1])N-1 
 

= BN(N-1) (pn+1)1 (1 - pn+1)N-1 
 
P[Zn+1 = N] = BN(N) (P[Xn+1 = 0])0 (P[Xn+1 = 1])N 
 

= BN(N) (1 - pn+1)N 
 
These formulas offer another way to express the probabilities that were derived in terms 
of the Chapman-Kolmogorov equations (using the product of An). 
 
Survival Time Computation: 
Assume that we are given a design target in the form of a requirement that some 
percentage of the detector still be functioning (on average) after the passage of some time 
period. Then, given the level of function (call it E, the number of elements still 
functioning out of N) and the probability, p, we may compute (from the expression for 
the average loss in the detector), E[Zn] = N(1 - pn), 
 

E < N(1 - pn) 
or 
 

E/N < (1 - pn) 
 
This leads to  
 

pn < 1 – E/N 
 
yielding 
 

n ln(p) < ln (1 – E/N)  
 
or (since ln(p) < 0 for 0 < p < 1) 
 

n > [ln (1 – E/N)]/[ln(p)] 
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In this formulation, a higher level of E corresponds to a higher level of acceptable loss in 
the detector. For a given level of E, we call this the survival time of the detector. 
 
Extensions to More Complicated Architectures: 
The results just presented can be extended to architectures more complicated than a 
simple arrangement of parallel (independent) detectors. Such architectures include: 
 

1. Parallel arrangements of serially connected simple detector elements 
2. Series connections of parallel arrangements of simple detector elements  
3. Parallel arrangements of serially connected elements with periodically spaced 

cross connections 
 
We briefly discuss these three cases. 
 
Extension to Parallel Arrangements of Series Connected Simple Detector Elements: 
The first arrangement above results in a system design in which the number of cables 
from the tracker bulkhead to the detector elements is reduced (see Figure 6). Since the 
independence of all of the elements is reduced, we expect the reliability to suffer but the 
material budget to be reduced. The analysis is a straightforward generalization of the 
above results with modifications to the failure probabilities for each independent element 
and to the possible values which are part of the expected value calculation.  
 
We may approach the extension to this architecture by considering each series connection 
of M elements as a single entity. The probability that this entity is functioning is given by 
pM with: 
 
pM = pM 
 
where p is the probability that each independent element in the series connection is 
functioning. If we assume that the number of elements is still equal to N and that we have 
arranged these N elements in L independent strings of M elements each where: 
 
N = LM 
 
we may follow a path similar to the approach that led to the matrix formulation of the 
vector of probabilities, PZ(n) to produce a new vector of probabilities. This new vector 
however differs in that the possibilities for the number of non-functioning elements is not 
0, 1, 2, … but rather 0, M, 2M, 3M, … according to which of the series connected strings 
are not functioning. Rather than repeat the analysis here, we can make use of the fact that 
the problem of a single string of series connections is much the same as that for a single 
detector element of weight M with p = pM. Furthermore, for such an arrangement, the 
only possibilities for the operating state (the number of failed detectors) are 0 (all of the 
elements in the string are functioning and powered) or M (at least one element has failed 
rendering the string of M elements non-functional).  
 
This leads to a modified expectation for a single string of series connected detectors of: 
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E[Xn] = 0 P[Xn = 0] + M P[Xn = M] 
 
   = M P[Xn+1 = M] 
 
   = M (1 - pMn) 
 
For L parallel arrangements of these strings of M detectors in series, we have: 
 
E[Wn] = LM(1 – (pM)n) 
 
 = N(1 – (pM)n) 
 
where {Wn} is a new random process with  a spectrum of values drawn from the set 0, M, 
2M, 3M, … and defined for integer n = 0, 1, 2, … with the restriction that W0 = 0. As 
expected, this expected value rises more rapidly than does the similar computation for 
E[Zn] reflecting the fact that series connections lose more elements when an element 
fails. The local and asymptotic behavior of this function is in agreement with what we 
should expect for such an arrangement. 
 
We can examine the consequences of this configuration on the survival time of the 
network, previously calculated for the independent parallel case. 
 
From the relation, 
 

E[Wn] = N(1 – (pM)n)  
 

we have (for a given threshold of acceptable loss) 
 

n > [ln (1 – E/N)]/[M ln(p)] 
 

(found by replacing p with pM in the previous expression) 
 
As before, a higher level of E corresponds to a higher level of acceptable loss in the 
detector. We see that the move to series connected strings of length M for the architecture 
reduces the survival time of the resulting network of detector elements by a factor of 1/M. 
 
An obvious deficiency of this arrangement is that the loss of a single detector element 
eliminates an entire string of elements.  
 
Extension to Series Arrangements of Parallel Connected Simple Detector Elements: 
The second arrangement above results in a system design in which the number of cables 
from the tracker bulkhead to the detector elements is also reduced (see Figure 7). This 
option avoids the deficiency of the first option in that the loss of multiple detector 
elements must be suffered before the series path is broken. However, once broken, the 
entire detector is lost. Again, since the independence of all of the elements is reduced, we 
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expect the reliability to suffer but the material budget to be reduced. The analysis is not 
however a straightforward generalization of the results for either the fully parallel 
topology or the parallel connection of series detectors. In particular, the probabilities of 
loss for the entire detector are considerably more complicated due to the dependent 
nature of the failure events introduced by the series connections. It is, however, possible 
to consider an approach to the calculation of the expected value of the detector function 
by some modifications to the probability distributions of the parallel blocks and the use of 
discrete time convolution applied to the specific calculation of the expected value. These 
ideas will be presented in another note.  
 
Extension to Parallel Arrangements of Series Connected Simple Detector Elements 
with Periodically Spaced Cross Connections: 
The third arrangement is an attempt to restore some reliability to the detector with a small 
penalty to the material budget by introducing local cables to reduce the consequences of 
individual detector element failures (see Figure 8). The analysis of this arrangement 
requires us to consider the lack of independence resulting from the cross connections 
introduced. A way to approach this analysis is to consider the output probabilities of a 
single unit of the detector made up of elements with the cross connections. By designing 
the detector as serially connected arrays of regularly space elements of this type, we will 
attempt to formulate the probabilities for a single such configuration. If this is possible, 
then the analytical techniques derived above will apply to independent arrays of this type.  
 
Unfortunately, the analysis is complicated by the need to consider what we call the 
“feedback failures” on upstream elements induced by the failure of downstream elements 
(this is the “cut off” failure illustrated in Figure 3). This occurs when a downstream 
element failure causes the output current path for an otherwise functioning upstream 
element to be broken. This results in the loss of the upstream element as well. Analysis of 
the possibilities is complicated as the introduction of cross connections introduces many 
dependencies in the equations defining failure events and their resulting probabilities. 
This gives us an opportunity to consider other methods for analyzing the situation. One of 
these methods is to configure a model of the architecture in a Field Programmable Gate 
Array device and to perform repeated trials with random variable inputs to drive the gates 
of the synthesized model to evaluate the configuration. This approach which may be 
thought of as a type of “hardware assisted” Monte Carlo simulation will be discussed in 
another note. 
 
Generalization of the Time Evolution Process: 
A simplifying assumption that was made for all of the analysis above was that the 
probability of failure of detector elements is independent of time (and therefore, the state 
of the detector as a function of time). This approach can be generalized if we know how 
failure probabilities for individual detector elements may change as time passes and the 
distribution of power in the network changes as elements fail. The approach would be to 
modify the form of the matrix A in such cases. If that could be done, we would expect the 
form of the computation to become: 
 
 E[Zn+1] = JT A(1) A(2) A(3) … A(n) PZ(1) 
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where now, the matrices A(k) may all be different in general. If we can figure out a 
method to modify the matrix A (given failures in the network) that accounts for the 
effects of increased stress, we might be able to evaluate a topology for the dynamic case 
without having to resort to statistical simulation. It could also be profitable to identify 
sensitive parts of topologies and evaluate them for the impact of the loss at those parts. 
 
Appendix: Some Properties of the Similarity Transformation of a Lower Triangular 
Matrix with Distinct, Nonzero Eigenvalues 
 
Proposition: Let A be an MxM lower triangular matrix with distinct nonzero eigenvalues. 
In other words, the diagonal elements of A are such that αi,i is not equal to αj,j if i is not 
equal to j and αi,i is not equal to 0 for all i. Then, there exists an MxM unit lower 
triangular matrix, X, (that is, X is a lower triangular matrix with 1’s at all diagonal 
elements) such that 
 
A X = X Λ  
 
where Λ is the diagonal matrix: 
 
Λ = diag(α1,1 , α2,2 , α3,3 , . . . αM,M ) 
 
Proof: We follow the method of proof frequently used to establish the existence of the 
Schur decomposition of an arbitrary square matrix [Reference 4]. This method is based 
on induction on the dimension, M, of the matrix, A.  
 
Let M = 2 to establish the basis for induction. Then, we have: 
  
 α1,1 0 
A =   
 α2,1 α2,2 
 
 
 α1,1 0 
Λ =   
 0 α2,2 
 
 
We seek a matrix, X, such that 
 
 ξ1,1 0 
X =   
 ξ2,1 ξ2,2 
 
where  
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 ξ1,1 = ξ2,2 = 1 
 
and 
 
A X = X Λ  
 
By multiplying out the products represented by A X and X Λ, and equating term by term, 
we have: 
 
ξ1,1 α1,1 + ξ2,1 (0) = ξ1,1 α1,1 + (0) 0  (1, 1 elements) 
 
(0) α1,1 + ξ2,2 (0) = ξ1,1 (0) + (0) α2,2  (1, 2 elements) 
 
ξ1,1 α2,1 + α2,2 ξ2,1  = ξ2,1 α1,1 + (0) ξ2,2 (2, 1 elements) 
 
(0) α2,1 + ξ2,2 α2,2 = ξ2,1 (0) + ξ2,2 α2,2  (2, 2 elements) 
 
From the equations for the 1, 1 elements and the 2, 2 elements, we are free to choose any 
nonzero values for ξ1,1 and ξ2,2. Therefore, we choose: 
 
ξ1,1 = ξ2,2 = 1 
 
Then, using these in the equation for the 2, 1 elements, we have: 
 
α2,1 + α2,2 ξ2,1  =  ξ2,1 α1,1 
 
or  
 
ξ2,1  =  α2,1/( α1,1 - α2,2 ) 
 
Since α2,2 is not equal to α1,1 (by hypothesis), division in this formula is well defined. 
Therefore, since we have established the values of X consistent with the required 
formulas, we have proven that such a matrix exists for the case of M = 2. 
 
Now, for the induction step, assume that the assertion is true for a value M = k-1. That is, 
assume that for every (k-1)x(k-1) matrix A which meets the requirements of the 
proposition, a (k-1)x(k-1) matrix, X, which also meets the requirements always exists. 
Then, what does this imply for a kxk matrix, A?  
 
To examine this case, we partition the matrices A and Λ as:  
 
 A0 0 
A =   
 aT αk,k 
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 Λ0 0 
Λ =   
 0 αk,k 
 
 
Then, we seek a kxk unit lower triangular matrix, X such that 
 
A X = X Λ 
 
Let us partition X as: 
 
 X0 0 
X =   
 xT ξk,k 
 
In these partitions,  
 
A0 is a (k-1)x(k-1) matrix 
Λ0 is a (k-1)x(k-1) matrix 
X0 is a (k-1)x(k-1) is a yet to be determined unit lower triangular matrix  
 
0 is a (k-1) column vector of zeroes 
aT is a (k-1) row vector 
xT is a (k-1) row vector which is yet to be determined 
 
The value ξk,k is also to be determined (in fact, we seek to set it to 1).  
 
Then multiplying out the partitioned matrices on each side of A X = X Λ, we have the 
following requirements: 
 
A0 X0 = X0 Λ0     (for the 1, 1 partition) 
 
A0 0 + ξk,k 0 = X0 0 + αk,k 0   (for the 1, 2 partition)  
 
aT X0 + αk,k xT = xT Λ0   (for the 2, 1 partition)  
 
aT 0 + ξk,k αk,k = xT 0 + αk,k ξk,k   (for the 2, 2 partition) 
 
From the equations for the 1, 2 and 2, 2 partitions, we are free to choose  
 
ξk,k = 1 
 
The equation for the 1, 1 partition is valid by the hypothesis that has been made for 
systems of dimension (k-1) meeting the requirements. In other words, we assume as part 
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of the induction hypothesis that such a matrix X0 exists. The equation for the 1, 2 
partition does not add any information. We are left to deal with the equation for the 2, 1 
partition. Taking the transpose of this equation yields: 
 
Λ0 x = X0

T a + αk,k x 
 
We may write this as: 
 
(Λ0 -  αk,k I) x = X0

T a 
 
where I is the (k-1)x(k-1) identity matrix. 
 
The right hand side of this equation is just a constant vector. There will be a solution, x, 
to this equation for any value of this vector, X0

T a, if and only if the matrix  
 
Λ0 -  αk,k I  
 
is nonsingular. This is the case because none of the diagonal elements of Λ0 are equal to 
αk,k since the diagonal elements of A have been assumed to be distinct. Therefore, this is 
a diagonal matrix with all nonzero diagonal elements and a solution does exist. Our proof 
by induction is complete. 
 
The derivation just given suggests an algorithm for computing the transformation matrix, 
X. This algorithm starts in the upper left corner of A and uses the equations on the 2x2 
principal submatrix A0 to compute the 2x2 principal submatrix, X0. Computation of the 
1x1 case is just to assign ξ1,1 = 1. A key step is the solution to the linear system of 
equations given by 
 
(Λ0 -  αk,k I) x = X0

T a 
 
However, the solution to this system is particularly simple given the diagonal nature of 
the matrix of coefficients, (Λ0 - αk,k I). Then, the technique is expanded to the 3x3 
principal submatrix, A0 to compute the 3x3 principal submatrix, X0 and so on. This 
special direct technique prevents us from having to use a general iterative technique for 
computing eigenvectors to formulate the transformation matrix, X. Since the technique is 
direct, it has the benefit of avoiding questions of convergence. However, the efficiency of 
this direct approach should be compared with that of available methods (such as 
implemented in MATLAB). 
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Figure 1: 

A Distribution Network of Detector Elements 
 

 32



Tracker 
Bulkhead Tracker 

Bulkhead

N = Number of Detector Elements
= 8

Z = Number of Detector Elements Not Working
= 1  (one element is not working)

Failed Element

 
 

Figure 2: 
Failure of an Isolated Detector Element 
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Figure 3: 
Failure of Two Dependent Detector Elements 
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Figure 4: 
A Parallel Network of Independent Detector Elements 
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Figure 5: 
Average Behavior of Loss of Elements in the Parallel Detector Architecture 
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Figure 6: 
A Parallel Network of Serially Connected Detector Elements 
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Figure 7: 

A Serial Network of Parallel Connected Detector Elements 
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Figure 8: 

A Parallel Network of Serially Connected Detector Elements 
With 

Cross Connections Between Serial Chains 
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