
– 1–

W ′-BOSON SEARCHES

Revised September 2009 by M.-C. Chen (UC Irvine) and
B.A. Dobrescu (Fermilab).

The W ′ boson is a hypothetical massive particle of electric

charge ±1 and spin 1, which is predicted in various extensions

of the Standard Model.

W ′ couplings to quarks and leptons. The Lagrangian terms

describing couplings of a W ′ boson to fermions are given by
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Here u, d, ν and e are the Standard Model fermions in the

mass eigenstate basis, i, j = 1, 2, 3 label the fermion generation,

and PR,L = (1 ± γ5)/2. The coefficients CL
qij

, CR
qij

, CL
lij

, CR
lij

are complex dimensionless parameters. If CR
lij

�= 0, then the ith

generation includes a right-handed neutrino. It is often assumed

that there are correlations between the left- and right-handed

couplings [1]. Although this is true in some of the original

models that include a W ′ [2], there exist theories where all the

left- and right-handed couplings are free parameters.

Unitarity considerations imply that the W ′ is a gauge boson

associated with a spontaneously broken-gauge symmetry. This

is true even when it is a composite particle (e.g., the charged

techni-ρ in technicolor theories [3]) , or a Kaluza-Klein mode in

theories where the W boson propagates in extra dimensions [4].

The simplest extension of the electroweak gauge group that

includes a W ′ is SU(2)1 × SU(2)2 × U(1), but larger groups

are also encountered in some theories. A generic property of all

these gauge theories is that besides a W ′ they contain at least

a Z ′ boson, whose mass is typically comparable or smaller than

MW ′. Despite the severe limits on Z ′ bosons [5], theories where

the properties of the new gauge bosons would allow the W ′ to

be discovered before the Z ′ are quite common (for example, a

leptophobic W ′ decaying to tb̄ may be observed easier than a

Z ′ in the tt̄ final state which has higher backgrounds).
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The renormalizable photon-W ′ coupling is completely fixed

by electromagnetic gauge invariance. By contrast, the renor-

malizable W ′WZ and W ′W ′Z couplings are model-dependent,

and the same is true for the W ′ couplings to Z ′ or Higgs bosons.

Depending on the symmetry-breaking sector, a tree-level

mass mixing may be induced between the electrically-charged

gauge bosons. Upon diagonalization of their mass matrix, the

W − Z mass ratio and the couplings of the observed W are

shifted from the Standard Model values. Given that these

are well measured, the mixing angle between the two gauge

bosons must be smaller than about 10−2. Similarly, a Z − Z ′

mixing is induced in generic theories, leading to even tighter

constraints. There are, however, theories in which these mixings

are negligible even when the W ′ and Z ′ masses are below the

electroweak scale (for example, this is a consequence of a new

parity, as in Ref. 6).

A popular model [2] is based on the “left-right symmetric”

gauge group, SU(2)L × SU(2)R × U(1)B−L, with the Standard

Model fermions that couple to W transforming as doublets

under SU(2)L, and the other ones transforming as doublets

under SU(2)R. In this model the W ′ couples primarily to

the right-handed fermions, and its coupling to left-handed

fermions arises solely due to W -W ′ mixing. As a result, CL
q is

proportional to the CKM matrix, and its elements are much

smaller than the diagonal elements of CR
q .

There are many other models based on the SU(2)1 ×
SU(2)2 × U(1) gauge symmetry. In the “alternate left-right”

model [7], all the couplings shown in Eq. (1) vanish, but

there are some new fermions such that the W ′ couples to pairs

involving a Standard Model fermion and a new fermion. In

the “ununified Standard Model” [8], the left-handed quarks

are doublets under one SU(2), and the left-handed leptons

are doublets under a different SU(2), leading to a mostly

leptophobic W ′: CL
lij

� CL
qij

and CR
qij

= CR
lij

= 0. Fermions

of different generations may also transform as doublets under

different SU(2) gauge groups [9]. In particular, the couplings

to third generation quarks may be enhanced [10].
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The W ′ couplings to Standard Model fermions may be

highly suppressed if the quarks and leptons are singlets under

one SU(2) [11], or if there are some vectorlike fermions that

mix with the Standard Model ones [12]. Gauge groups that

embed the electroweak symmetry, such as SU(3)W × U(1) or

SU(4)W × U(1), also include one or more W ′ bosons [13].

Collider searches. At LEP-II, W ′ bosons could have been

produced in pairs via their photon and Z couplings. The pro-

duction cross section depends only on the W ′ mass, and is large

enough for MW ′ ≤ √
s/2 ≈ 105 GeV so that W ′ bosons are

ruled out for most patterns of decay modes.

Searches for W ′ bosons in the Run II at the Tevatron have

been performed so far by the DØ and CDF Collaborations for

W ′ decays into eν [14,15] or tb̄ [16,17]. Assuming that the W ′

boson has a narrow width, the contribution of the s-channel

W ′ exchange to the total rate for pp̄ → f f̄ ′X , where f and

f ′ are fermions and X is any final state of charge ±1, may be

approximated by the branching fraction B(W ′ → f f̄ ′) times

the production cross section

σ
(
pp̄ → W ′X

) ≈ π

48 s

∑
i,j

[
(CL

qij
)2 +

(
CR

qij

)2
]

wij

(
s, M2

W ′
)

,

(2)

where the i, j indices label the fermion generations. The func-

tions wij include the information about proton structure, and

are given to leading order in αs by

wij(z) =

∫ 1

z

dx

x

[
ui(x) dj (z/x) + ui(x) dj (z/x)

]
, (3)

where ui(x) and di(x) are the parton distributions inside the

proton for the up- and down-type quark of the ith generation,

respectively. QCD corrections to W ′ production are sizable, but

preserve the above factorization of couplings at next-to-leading

order [18].

Similar considerations apply at the LHC, except that the qq̄

initial state involves a sea parton in pp collisions. Nevertheless,

the energy and luminosity will be higher than at the Tevatron,

so that W ′ bosons with masses in the several TeV range will be
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probed. Preliminary studies of the discovery potential in the eν

and μν channels have been presented by the CMS and ATLAS

Collaborations in Ref. 19. If a W ′ boson will be discovered

and the final state fermions have left-handed helicity, then

the effects of W − W ′ interference could be observed at the

LHC [20] (and perhaps at the Tevatron [21]) , providing useful

information about the W ′ couplings.

In the eν channel, the signal consists of a high-energy

electron and a large missing transverse energy, with the invariant

mass distribution forming a peak at MW ′. The best upper limit

to date on the production cross-section σ(pp̄ → W ′X) times

the branching fraction B(W ′ → eν) has been set by DØ at

around 10 − 40 fb for MW ′ in the 0.5 − 1.2 TeV range [15].

This limit at 95% CL, based on 1 fb−1 of data, applies only

if the right-handed neutrino of the first generation is light

compared to MW ′/2 and escapes the detector. In the particular

case where the W ′ couplings to right-handed fermions are equal

to the Standard-Model W couplings to left-handed fermions

(CR
q = gVCKM, CR

l = g, CL
q = CL

l = 0), the limit corresponds to

MW ′ > 1.0 TeV.
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Figure 1: 95% CL exclusion limit from CDF [17]
in the gauge coupling versus MW ′ plane, using the
tb̄ and t̄b final states.
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In the tb̄ channel, the signal consists of a W decaying

leptonically and two b-jets. The current best upper limit on the

W ′ coupling to quarks (CR
q11 normalized to the Standard Model

W coupling) set by CDF with 1.9 fb−1 [17], is shown in Fig. 1.

In some theories (e.g., [6]) , the W ′ couplings to Standard

Model fermions are suppressed by discrete symmetries. W ′

production then occurs in pairs, through a photon or Z. The

decay modes are model-dependent and often involve other new

particles. The ensuing collider signals arise from cascade decays

and typically include missing transverse energy.

A fermiophobic W ′ which couples to WZ may be produced

at hadron colliders in association with a Z, or via WW fusion.

This would give rise to (WZ)Z and (WZ)jj final states (the

parantheses represent a resonance) at the LHC [22]. The study

of these processes would be important for understanding the

origin of electroweak symmetry-breaking.

Low-energy constraints. The properties of W ′ bosons are

also constrained by measurements of processes at energies much

below MW ′. The bounds on the tree-level W − W ′ mixing [23]

are mostly due to the change in the properties of the W

compared to the Standard Model. Limits on the deviation in the

ZWW coupling provide a leading constraint for fermiophobic

W ′ bosons [12].

Constraints arising from low-energy effects of W ′ exchange

are strongly model-dependent. If the W ′ couplings to quarks

are not suppressed, then box diagrams involving a W and a W ′

contribute to neutral meson-mixing. In the case of W ′ couplings

to right-handed quarks as in the left-right symmetric model,

the limit from KL − Ks mixing is severe: MW ′ > 2.5 TeV [24].

However, if no correlation between CR
qij

and CR
lij

is assumed,

then the limit on MW ′ may be significantly relaxed [1]. There

are also W ′ contributions to the neutron electric dipole moment,

muon decays, and other processes.

If right-handed neutrinos have Majorana masses, then there

are tree-level contributions to neutrinoless double-beta decay,

and a limit on MW ′ versus the νR mass may be derived [25]. For

νR masses below a few GeV, the W ′ contributes to leptonic and

semileptonic B meson decays, so that limits may be placed on
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various combinations of W ′ parameters [1]. For right-handed

neutrino masses below ∼ 30 MeV, most stringent constraints

on MW ′ are due to the limits on νR emission from supernova.
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