
 1

1.1 The Fermilab Accelerator Control System

K. Cahill, L. Carmichael, D. Finstrom, B. Hendricks, S. Lackey, R. Neswold, D.
Nicklaus, J. Patrick, A. Petrov, C. Schumann, J. Smedinghoff, and G. Vogel

Mail to: patrick@fnal.gov
Fermilab, Box 500, Batavia, IL USA 60510

1.1.1 Introduction

For many years the Fermilab physics program has been dominated by the
superconducting Tevatron accelerator producing beams for many fixed target and the
proton-antiproton colliding beam experiments CDF and D0. More recently, major
experiments have used beam from intermediate accelerators. The MiniBooNE and
MINOS experiments use 8 and 120 GeV beam respectively for neutrino oscillation
studies. Several other experiments and test beams have also used 120 GeV beam. This
paper describes the control system for the accelerator complex that was originally
developed for the start of Tevatron operation in 1983. This system is common to all
accelerators in the chain, and has been successfully evolved to accommodate new
hardware, new software platforms, new accelerators, and increasingly complex modes
of operation.

1.1.2 Fermilab Accelerator Complex

The Fermilab accelerator complex (Figure 1) consists of a 400 MeV linac, 8
GeV Booster synchrotron, 120 GeV Main Injector, 980 GeV Tevatron based on
superconducting magnets, an anti-proton collection facility, and an 8 GeV anti-proton
“Recycler” storage ring in the Main Injector tunnel. Beam is delivered to 8 and 120
GeV fixed target experiments, to an anti-proton production and accumulation facility, a
high intensity neutrino source, and a 1.96 TeV proton anti-proton collider. The final
Tevatron fixed target experiments ended in 2000. In 2001 a Tevatron collider run (“Run
II”) began with substantial upgrades from the previous 1992-96 run and continues at
this time. Prior to that, Fermilab had never mixed collider and fixed target running.
However, in late 2001 an 8 GeV fixed target experiment (“MiniBooNE”) began
operation, followed by 120 GeV fixed target experiments in early 2003, and the NUMI
neutrino beam generated from the Main Injector in late 2004. The control system is
required to support all these operation modes simultaneously.

1.1.3 Control System Overview

The Fermilab accelerator control system, often referred to as ACNET
(Accelerator Network), is a unified system controlling all accelerators in the complex
including all technical equipment such as water and cryogenics. ACNET is
fundamentally a three tiered system (Figure 2) with front-end, central service, and user
console layers. Front-end computers directly communicate with hardware over a wide
variety of field buses. User console computers provide the human interface to the
system. Central service computers provide general services such as a database, alarms,
application management, and front-end support. The central database is a key

mailto:%20patrick@fnal.g
http://mylab.institution.org/%7Emypage

2

component of the system by not only providing general persistent data support, but also
by providing all of the information to access and manipulate control system devices.
Communication between the various computers is carried out using a connectionless
protocol also named ACNET over UDP. The global scope of the control system allows
a relatively small operations staff to effectively manage a very large suite of
accelerators and associated equipment.
 The control system was originally developed for the Tevatron, which began
operation in 1983, and applied to all accelerators in the complex at the time. While the
fundamental architecture has remained similar, in the years since there has been
considerable evolution in field hardware and computing technology employed. This has
allowed the system to handle new accelerators and increasingly complex operational
demands.

Figure 1: The Fermilab Accelerator Complex

1.1.4 Device Model

Access to the control system follows a device model. The ACNET system
employs a flat model with names restricted to 8 characters. While there is no formal
naming hierarchy, by convention the first character of the device refers to the machine
and the second character is always a “:” For example, T: for Tevatron devices, B: for
Booster devices, etc. Informal conventions in the remaining 6 characters provide some
categorization by machine subsystems. Recently it has become possible to assign a 64
character alias, allowing a more verbose device name. However this is not yet in wide
use. Each device may have one or more of a fixed set of properties including reading,
setting, digital status and control, and analog and digital alarm information. Reading
and setting properties may be single values or arrays. While mixed type arrays are not
transparently supported, this is often done with the required data transformation
between platforms done in library code. Device descriptions for the entire system are

 3

stored in a central database. Entries may be created and modified using either a
graphical interface or a command language utility known as DABBEL. There are
approximately 200,000 devices with 350,000 properties in the Fermilab system.

Figure 2: Control System Architecture

1.1.5 Communication Protocol

Communication among the various layers of the control system is done through
a home-grown protocol known as ACNET. The ACNET protocol was created in the
early 1980s and transferred accelerator data between PDP-11s and VAX systems over
DEC's proprietary PCL (Parallel Communication Link.) As the decade progressed and
newer hardware became available, IEEE 802.5 token ring and later Ethernet was added
to the controls system's network and ACNET adapted accordingly. By the end of the
decade, Ethernet and TCP/IP emerged as the dominant network technologies. So,
ACNET became a protocol carried over UDP. This move provided three benefits. It
allowed any TCP/IP-capable platform to use ACNET. It supported the use of
commercial routers to make ACNET packets easily available across WANs, and it let
the IP layer handle packeting issues. The ACNET protocol is currently supported on
Linux and VxWorks platforms. The Linux implementation is written so that it should be
easily portable to other UNIX-like operating systems.

ACNET was designed to be, foremost, a soft, real-time data acquisition
protocol. Limitations on network bandwidth and processor memory at the time resulted
in a very efficient design for returning machine data at high rates with minimal
overhead. As a result, returning large data types can be awkward, but returning lots of
small pieces of data (the typical case) works well.

Messages are directed at specific tasks on the target node; a daemon process
receives and forwards the messages appropriately. ACNET is a multilevel protocol. At
the lowest level ACNET peers communicate by one of two methods: Unsolicited
Messages (USMs) and Request/Reply Messages. USMs are less "expensive" than
Request/Reply transactions and are useful for broadcasting state to multiple clients.

Request/Reply communication, however, is the main workhorse of the control
system. A requesting task sends the request to a replying task. This can either be a

4

request for a single reading, or a request for multiple periodic readings without re-
requesting. A single packet may include requests for data from multiple devices. The
replying task then sends one or more replies to the requester asynchronously. If the
replier needs to stop the replies (due to an error, for instance), it can include an "End-of-
Mult-Reply" status. Likewise, if the requester no longer wants the stream, it sends a
cancel message to the replier, which shuts down the stream. Multicast requests have
recently been added to the protocol, in which case the requestor will receive streams of
data from all repliers in the multicast group.

Higher-level protocols atop the request/reply layer provide the specifics for data
acquisition. The primary one is called RETDAT (RETurn DATa) and is used for simple
data acquisition. It allows a process to receive a stream of data either at a periodic rate
or whenever a specified clock event occurs. The newer GETS32/SETS32 protocol adds
a more comprehensive set of event collection options and includes precise timestamps
in the reply to aid in correlation of data across the complex. The Fast Time Plot protocol
is used for acquiring device readings at high rates. To reduce the required network
bandwidth, readings at rates up to 1440 Hz are blocked into single network packets and
delivered to the requester several times per second. The Snapshot protocol specifies
acquisition of a single block of up to 4096 points of data at whatever rate can be
supported by the underlying hardware.

1.1.6 Timing System

ACNET makes use of several types of timing systems to coordinate operations
of the accelerator complex. Overall system timing is provided via the timelines that are
broadcast on the TCLK clock system. Individual accelerator beam related timing,
associated with such devices as kickers and instrumentation, is supplied by the Beam
Sync Clock systems. Slowly changing machine data (<720 Hz.) which is useful across
the complex (accelerator ramps, machine state settings, beam intensities, etc.) is made
available via the MDAT (Machine DATa) system. These timing system signals are
available via both hardwire (fiber and copper) transmission and network multicast.

TCLK is the highest level clock system in the complex. It is an 8-bit, modified
Manchester encoded clock transmitted on a 10 MHz carrier with start bit and parity.
Clock events can be placed no closer than 1.2 μS apart on the hardwire transmission.
The network multicast of TCLK provides a 15 Hz transmission of groups of TCLK
events that have occurred during the previous 67 msec period. This provides soft real-
time information to user applications and central service processes without requiring a
special clock receiver card. Timelines are groups of TCLK events that define machine
cycles that repeat over a given time period. Timelines are made up of “modules” that
define what happens within the complex (with required internal timing and machine
state info) over the period specified by the module. A typical timeline module will
include TCLK reset events associated with the Booster, Main Injector and the
destination machine/experiment. A VME based front-end with special application
software known as the Timeline Generator (TLG, described below [1]) provides a
flexible user interface that allows operators to manipulate timelines as needed to meet
changing operational conditions.

The various accelerator beam sync clocks (TVBS, MIBS and RRBS) are also 8-
bit modified Manchester encoded clocks. However, their carriers are sub-harmonics of
the given accelerator’s RF frequency (RF/7, ~7.5 MHz). They all carry revolution

 5

markers sourced from the low level RF (LLRF) systems along with beam transfer
events synchronized to the revolution markers. This allows precise timing of kickers
and instrumentation.

A more recent addition to the timing systems is the use of states. Machine states
refer to phases of operation such as proton injection, antiproton injection, acceleration,
etc. They are used for example by the LLRF systems to determine what type of RF
manipulations will take place within a given machine cycle and when. The Tevatron
Low Beta Sequence state is used to change magnet settings for the low beta squeeze and
various other state variable transitions are used to trigger data acquisition. To trigger a
state transition, any control system task may set a virtual device in a state server, and
the transition is then forwarded by multicast or direct communication to other elements
of the system. A few selected state values are transmitted on the MDAT network. This
allows for timing flexibility beyond the 256 event limit set by TCLK. Also as state
values are held in virtual devices, applications may query them at any time.

1.1.7 Supported Hardware

 The ACNET control system comprises a variety of hardware and field buses that
have evolved over the life time of the accelerator complex. While the functions have
remained similar over the years, new hardware technology has been integrated in to the
controls system whenever possible given the schedule and budget. The evolution of
the ACNET system’s hardware mirrors the evolution of controls hardware technology
in general.

Early on, the controls system hardware included PDP-11s connected to
Lockheed MAC 16 minicomputers with CAMAC as the field bus. Numerous custom
CAMAC cards were developed for the timing system, data acquisition and control
functions. Two notable and widely used systems, MADCs and ramp generators, are
described in more detail below.

1.1.7.1

1.1.7.2

 Data acquisition:

Analog signals are digitized by in house designed multiplexed analog to digital
converters (MADCs) which are connected through a CAMAC interface. The MADCs
allowed multiple users to sample 14 bit data from up to 128 channels per MADC at a
maximum frequency of ~90 KHz for a single user/single channel. Early models
allowed 6 simultaneous continuous fast time plot channels and the newer model of
CAMAC interfaces allow 16 simultaneous plot channels. Data can be sampled on any
clock event, external input or at a programmable rate.

The MADCs have served well for nearly three decades and are now being
replaced with HOTLink Rack Monitors (HRMs). A variety of commercial and custom
digitizers are used for specialized high rate applications. There are still significant
systems that are controlled with CAMAC equipment and thousands of channels are
connected through MADCs.

 Ramp generators:

During the course of operations many power supplies must be ramped. Often
they must be ramped in a different manner depending on the type of beam cycle. To
satisfy this requirement we have developed flexible ramp generating hardware which

6

can save sets of tables locally and play the appropriate ramp on specific clock events.
This allows different types of beam cycles to be interleaved seamlessly without having
to reload ramp tables using higher level software for each cycle.

1.1.7.3 Field buses:

As microprocessor technology progressed, VME and VXI based designs were
incorporated into the controls system and processing was distributed. MAC 16s were
replaced with VME and VXI front-ends. Eventually VME became the standard control
system front-end platform.

Newer power supply controls are most often implemented in Programmable
Logic Controllers (PLCs) and many devices come with Ethernet connectivity. The
ACNET control system has been interfaced to several popular manufacturer’s PLCs.

GPIB and Ethernet connectivity to instrumentation allows for remote
diagnostics including oscilloscopes, signal generators, spectrum analyzers, etc.

1.1.8 Front-End Systems

 Data from hardware devices enters the Fermilab control system through the
front-end computers. These computers are responsible for acquiring the data from the
hardware or field bus and responding to the timing system to ensure prompt collection.
These closest-to-the-hardware nodes communicate with the rest of the control system
using the ACNET protocol. Another important function is to provide a mapping
between the central device database and the actual hardware readings and settings. At
start-up time, a front-end may have its device settings downloaded from the central
database. To implement these common tasks, three different architectures have evolved
at Fermilab: MOOC (Minimally Object Oriented Controls), IRM (Internet Rack
Monitor) [2], and OAC (Open Access Client) [3].

The IRM software architecture provides 15 Hz hard real time performance to
match the pulse rate for the Fermilab linac. It also provides synchronized data
collection across all the 15Hz IRM nodes. Custom processing is possible by adding
"local applications" to an IRM node. The IRM architecture is built into a standard VME
crate providing multiple channels of general-purpose analog and digital I/O. This off-
the-shelf I/O capability of the IRM makes it a good choice for many applications with
about 185 in use and it is the standard for controls in the linac. The HOTLink Rack
Monitor (HRM) [4] provides more analog channels and higher digitization rates in a
more modern hardware architecture.

MOOC nodes are also VME-based, built on the vxWorks real-time operating
system running on PowerPC based computers. MOOC provides more customization
and varieties of acquisition schemes than the IRM. In MOOC, in object-oriented
fashion, the developer writes a software class to support a type of device, and then
creates an instance of this class for each device. Thus there is great flexibility in device
support, while the MOOC framework provides all interactions with the timing system
and the ACNET communications. There are roughly 275 MOOC systems in the
Tevatron, Main-injector, and anti-proton source. Data is acquired from a variety of
field buses, including VME, Arcnet, CAMAC, GPIB, and others.

OACs are front-ends that typically run on centralized server nodes using a
framework written in Java, with no special hardware device connections. OACs use the

 7

same communication protocols as other front-ends, but their position in the system
gives them easy access to the central database and data from all other front-ends.
Access to the timing system is via the above described multicast. Besides providing
utility functions such as virtual devices, some typical tasks performed by OACs include:

• Computational combination of data from other front-ends, including

database driven algebraic expressions or custom Java code to perform
emittance calculations for example.

• Ethernet-based data acquisition, including commercial hardware such as
oscilloscopes, PLCs, or custom Ethernet-enabled FPGA devices.

• Process control, including finite state machines, PID loops, and beam
trajectory stabilization.

Additionally, the Fermilab data loggers are built on the OAC architecture. There
are about 120 OACs plus another 70 data loggers in the system.

Besides these common front-ends, there are also around 25 systems running
LabVIEW. They act as front-end nodes in the control system by the inclusion of
LabVIEW modules programmed to follow the ACNET communications protocol.
LabVIEW front-ends are typically used in instrumentation systems such as wire
scanners or synchrotron light systems. GUIs developed in LabVIEW are generally used
only by instrumentation experts. With the systems connected as front-end nodes, data is
available to standard control system services such as data logging and alarms. Standard
applications provide the required subset of the LabVIEW functionality to operators.

These front-end architectures have proven successful in fulfilling the key
requirements of data acquisition, timing system response, communications protocol
support, and database mapping across the diverse accelerator chain at Fermilab,
supporting both legacy hardware and new systems.

1.1.9 Central Services

The central tier of this three tiered control system houses central services.
Examples of central service functionality include alarm collection and distribution, data
logging, and servlets supporting web applications.

1.1.9.1 Data logging

Logging of accelerator data is done by tasks writing to MySQL databases
distributed over 70 central service nodes. Each distributed data logger supports 18
tables having a nominal capacity of 60 devices circularly sharing a 5e8 point data space.
A full logger overwrites old points in 1446 days when sampled at a 15 second interval.
Overwrite times are shorter or longer dependent on the number of devices in a logger’s
table and the sampling frequency. More than 50 of these loggers organized by machine
or department and log data on periodic rates, TCLK events or software state event
transitions. The remaining loggers are reserved for specific diagnostic functions such as
TCLK event or software state transitions or device setting modifications. Other loggers
provide archives of logged data. So that no data is lost when a specific logger wraps
around, each day’s data, currently over 5 Gigabytes, is transferred to permanent
archives of several terabytes on spinning media.

8

1.1.9.2

1.1.9.3

1.1.9.4

1.1.9.5

1.1.9.6

1.1.9.7

 Sequenced Data Acquisition

Sequenced Data Acquisition (SDA) saves scalar, snapshot, and fast time plot
data during defined periods of important machine operations. The most complex
example is for Tevatron Collider stores, where a typical shot collects about 25K scalars,
1K snapshots, and a few hundred fast time plots with specific collection requirements.
The data is used for post-mortem as well as shot to shot analysis to study trends in
Collider performance. An extensive suite of tools automatically produces summary
information and plots available via the web. This facility is extremely valuable for
studying trends in accelerator performance.

 Save/Restore

Save/Restore services provide for operator initiated saves of the complex for
future display or restore. Four times a day, automatic saves are initiated that
encompass nearly all addressable devices on operational nodes. Besides providing a
backup to operator initiated saves, the big saves expose lurking data acquisition
problems, and the data is reflected into loggers that although is sparse provides a quick
historical assessment of nearly all the operational channels of the control system.

 Alarms

Each front-end is responsible for scanning its devices for alarm conditions.
When detected, the front-end sends an ACNET message to a central alarm server [5].
The central alarm server supports an alarm protocol for reporting and clearing alarms
from the hundreds of alarm reporting nodes and an alarm distribution methodology that
includes multicasting of alarm updates to nodes that service hundreds of alarm display
clients. This architecture provides excellent scalability with both the number of alarm
producers and alarm clients.

 Front-End download

When a front-end system is rebooted, it needs to know the current setting values
and alarm thresholds for its devices. As front-ends do not have easy access to the main
database, a front-end download service provides this functionality. A separate setting
service keeps the database up to date. Front-ends forward new setting values to this
server that then saves them.

 Accountability

Various central services record considerable information about control system
activities. The data acquisition setting routines forward settings to a service that logs
settings for accountability providing application access to who, what, when, and where
a setting was performed. Also logged are data acquisition jobs initiated by Java
programs, data acquisition errors, application usage, CPU utilization by node, and
database queries. This information is made available via web based reports.

 Data Acquisition Engines

Java clients do not communicate directly with front-ends but instead go through
Data Acquisition Engines (DAEs). Performing all data acquisition through the central

 9

layer allows more reliable control of security and settings logging, better isolating the
front-ends from improper requests. Also the engines perform consolidation of common
requests from Java clients across the control system. A single request is made to the
front-end and the data are then distributed to all requesting clients. The engines also
simulate data acquisition conditions which may not be directly supported by some front-
end systems.

1.1.9.8

1.1.9.9

1.1.9.10

 Servlets

Several Java based servlets provide control system access to web based
applications including the parameter page, logger display, and SDA viewer
applications. Logged data acquisition errors, CPU utilization, logger fetch, and SQL
statement logging are other examples of servlet-provided access to web based displays.

 Time-Line Generator

The Time Line Generator (TLG) is an ACNET client-server system that
generates timelines which place 256 possible events on to the TCLK network and 16 bit
states on the MDAT network. The TLG denotes a move away from flat timeline
generation to the production of rule-based structured timelines. Each timeline is built on
a user application and then executed on the server, a MOOC front-end. A structured
timeline is represented by a set of modules and a rule set. A subset of this rule set
includes the priority of each module, starting time of each module, the number of
repetitions and the end time of each module. Placement of each module is governed by
these rules. Each module consists of a set of events, states and its own rule set. These
rules govern event and state placement, linkage between different event types and
additional actions. The overall result of the timeline is the generation of a set of events
and states with specific rules governing how each event and state is placed and how
they react to other events and states. The move to rule-based structured timelines has
resulted in a great deal of flexibility and robustness being built into the system. Users
can now target a specific component of the timeline to be changed by simply swapping
modules in and out of the current timeline. The rule set would then allow the timeline
events and states to adjust their priority and placement based upon these changing user
specifications. This methodology allows supporting very complex modes of operation
of the accelerator chain. Furthermore modifications can be made and implemented very
efficiently. The TLG system makes it very straightforward to quickly switch from
operations that include NuMI/MINOS, pbar production, MiniBooNe and 120 GeV fixed
target, to a subset of these or to a Tevatron injection timeline.

 Experiment communication

Experiments need to obtain accelerator information such as accelerator state,
beam intensities and losses. Also it is sometimes useful for the experiments to send
information to the accelerator, such as colliding beam luminosities and collision points
measured by their detectors. As the experiments do not have direct access to most of the
accelerator control system and also have a different programming environment, this is
accomplished by a central service communicating via the XML-RPC protocol. APIs for
XML-RPC are available in many languages. Each experiment writes its own
applications to obtain desired accelerator information and they may also set virtual
accelerator devices with experiment information through this service.

10

1.1.9.11

1.1.10.1

 Databases

 The Fermilab control system utilizes several data storage facilities. The predominant
data storage is located in several Sybase relational databases that total over 100GB of
data. There are separate databases for all device and scaling information for the control
system, application data storage, lattice information, Save/Restore, and SDA data for
shot analysis. Datalogger data is stored in distributed MySQL databases containing a
total of over 7TB of data. A filesharing service is also available to manage shared
access to historical data files used by older applications.

1.1.10 Application Frameworks

Applications are written using one of two frameworks. In the CLIB framework,
applications are written in C/C++ for the Linux platform. Graphics is based on a custom
library on top of basic X-Window calls. A newer framework using the Java language
allows for development of applications that can run on any platform and provides a
more modern look and feel. Both frameworks provide common functions and a
common look and feel within that framework. Both capture all application code
required for operations in a CVS repository and provide a place to launch them.

 CLIB framework

There are roughly 600 Linux-based applications which are used to operate the
Fermilab accelerator complex. They are written primarily by people who operate the
accelerator including machine physicists, engineers, and operators rather than by
individuals from the controls department.

The structure of these applications is rather simple consisting basically of an
infinite event processing loop. The basic events are initialization, user interrupt,
periodic (15 Hz), and termination. The initialization event occurs once and allows the
programmer to set up any initial conditions, and the termination interrupt occurs once at
the end of the program to allow for operations such as saving files and cancelling device
requests. The periodic interrupt supports updating displays while the user interrupt
event allows the program to respond to a user’s request. There are other events that are
used to a lesser degree including the notification that a global control system state value
has changed and the occurrence of a clock event as examples.

To support the writing of these programs, there is a large shared library named
CLIB which stands for Console Library. This library contains approximately 1700
entry points which support such topics as data acquisition, user interface, data
manipulation, program control, network messaging, error message handling, ACL
(Accelerator Command Language) support, and other miscellaneous routines. CLIB is
written and maintained by the controls department and is linked at runtime which
allows global functionality changes as well as bug fixes to be implemented easily across
the entire suite of applications.

In addition to CLIB, there are other smaller libraries which are called user
libraries. Many of these libraries are written by controls department personnel while
others are written by machine physicists and engineers.

To simplify the creation and modification of applications and user libraries,
there is a C/C++ Software Development Environment (SDE). Its first purpose is to
allow users to develop application programs without much software development

 11

expertise. Users must know C/C++ but need not understand Makefiles, compiler/linker
options, and revision control systems. A second goal is to make sure operational
software is never lost. To this end, the SDE automatically places files in a revision
control system, in particular CVS. Capturing the entire source in a revision control
system allows the SDE to provide a retreat functionality. A retreat of an application
program can be done by any user if it turns out in hind-sight that the most recent
change(s) are causing problems. The SDE also provides a facility to develop new
libraries to avoid code duplication between similar applications. Libraries can be either
statically or dynamically linked.

1.1.10.2 Java framework

Besides the CLIB framework, the Fermilab Accelerator Control System includes
a newer infrastructure supporting user applications written in Java. These applications
can run under Windows, Linux, Solaris, Mac, and FreeBSD platforms on both central
nodes and user computers. There are also a number of web applications providing data
to the users via the HTTP protocol. The Java infrastructure consists of three major parts:
the application framework, the application index, and the building system.

The Java Application Framework [6] facilitates development of standardized
control applications by providing an implementation of a uniform Swing look-and-feel
and several core services. This includes authentication, logging, printing, screen
capture, submission of data to an electronic logbook, and access to application
properties in a central repository. Kerberos V5 is used as a common method of
authentication for both standalone and web applications, via a customized Kerberos
client [7].

The Application Index [8] is a central web-based database of all Java Controls
applications and an application that provides for their launching via Java Web Start. For
each program, the database provides a URL of a corresponding JNLP file (a standard
descriptor understood by the Web Start client). The URLs are combined in a tree,
according to the application’s fields of use. The Index also supports searching programs
by name, description, and author. The JNLP files are generated dynamically upon each
request using current information in the database, such as the program's class path,
initial and maximum memory heap size, required version of Java Virtual Machine, and
others. This allows for changing of runtime parameters quickly from a single place. The
Application Index also allows viewing of central logs and statistics on running
applications collected by the Application Framework.

Currently all Java code, including locally developed code and third party
libraries, is maintained in a single source tree in CVS. Developers write code using their
method of choice. A custom Eclipse plug-in is available that simplifies development of
accelerator applications. When ready to install new code in the system, developers
commit code to CVS and request a new release via a web interface. A building system
(which is a set of Perl and Ant scripts on a central server) schedules new builds, checks
out relevant modules from the repository, compiles the code, creates and signs jar files,
and deploys the binaries. The latest production version of Java Controls is made
available through a shared drive on a file server and over the web. The former is used
by various server-side processes, such as servlets and OACs, and for development. The
latter is mainly for the web-startable client applications. All released jar files (including
third-party libraries) are properly signed so that their origin can be verified using the
department's public key certificate.

12

1.1.11 Key Applications

Described below are some of the more important core applications in the
system.

1.1.11.1 Parameter Page

The Parameter Page (Figure 3) is a general purpose program which allows
display and control of lists of accelerator devices. For each device it displays the device
name, descriptive text, reading, setting, alarm limit/status, and digital status. Device
settings, alarm limits, and digital control can be modified by users. Groups of devices
may be combined into “knobs” that allow correlated changes to be made to members of
the group.

Accelerator subsystems have been organized into a hierarchy of persistent
parameter device lists called subpages by the subsystem experts and operators. Users
can easily add devices to subpages at any time by entering device names.

Figure 3: A Parameter Page in the Java Framework

1.1.11.2 Fast Time Plot Utility

 The Fast Time Plot utility allows control system users to plot devices in real
time. Data sample rates up to 1440 Hz are supported. The x axis can be referenced to
any accelerator clock event, time since the plot was started, or another device. Device

 13

readings can be combined into simple expressions using add, subtract, multiply and
divide operators before being plotted.

1.1.11.3

1.1.11.4

1.1.11.5

 Snapshot plot utility

The Snapshot Plot utility supports plots with data collection rates of up to 20
MHz. Hardware determines what rates a given device supports. In addition to
displaying snapshot plots for individual users, snapshot plots can be initiated by the
SDA utility and the Snapshot Manager for automated data collection and analysis.

 ACL

ACL (Accelerator Command Language) is a simple to use but powerful
scripting language which is designed to operate an accelerator complex. It contains
syntax for using control system device specifications in much the same way as variables
are used in standard programming languages. There are over 160 commands ranging
from controls-specific ones such as read and set to generic if and looping statements.
There are also over 100 supported intrinsic functions which can be used in expressions.

The main goal when creating this language was to empower end users to encode
powerful algorithms for controlling the accelerator complex. The people who best
know what needs to be done to fix a problem or to add a new functionality are often not
programmers by nature. They could make up a software specification to solve the
problem, but this involves delay and often details are lost in translation. ACL is a
solution to this situation.

Machine physicists, engineers, and operators have created many ACL scripts
which are executed in the environment of the Fermilab Sequencer. These scripts have
helped to make the operation of the accelerator complex more robust and efficient.

ACL scripts can be executed in a number of environments. They can be
executed as mentioned above as atomic commands in the Fermilab Sequencer. They
can also be executed as embedded commands in parameter pages, and they can be used
to update displays and to implement machine control in Lex SA. ACL scripts can be
executed directly within any application program using a library routine. In this mode,
ACL variables can communicate results to the calling application. There is also a
command line interface which is useful for quickly diagnosing problems with the
control system.

 Sequencer

The Fermilab Sequencer [9] is the primary program for coordinating the
operation of the accelerator complex. It is especially important for handling the
complex sequence of operations necessary for injecting the protons and antiprotons into
the Tevatron Collider and bringing them to collision.

The Sequencer was designed so that machine experts could configure it. It
could be thought of a simple programming environment using a custom command set
consisting of roughly 60 entries. One of these commands also provides an entry into a
wider programming environment by executing an ACL (Accelerator Command
Language) script. These commands are organized into groups which are referred to as
aggregate commands. An aggregate command is usually thought to express the
execution of a major accelerator state change. Aggregates are in turn grouped into

14

modes. Modes generally represent a portion of the accelerator complex such as the
Main Injector or the Tevatron Collider.

The Sequencer supports two execution modes, command edit and command
execution. The Sequencer is edited by machine experts and operators directly from the
program without any formal programming taking place. Once the editing operation is
finished, the insertion, modifications, or deletions are stored to a relational database
table. There are tables for each individual command type as well as tables for
organizing the commands in the proper sequence.

In execution mode, users can choose to execute a single command, a set of
commands, or an entire aggregate command. If multiple commands are selected, they
are executed sequentially until completion for the most part. There are a few command
types which have options for spawning off operations in parallel when sequential
operation does not have to be strictly enforced. When an error is encountered, an alarm
message is displayed to the user and execution ceases. The user can then decide at what
point to resume execution.

Multiple Sequencer modes operate in concert to manage the operation of
initiating a store in the Collider. These modes typically coordinate their execution by
the use of global control system state values.

1.1.11.6

1.1.11.7

 Lex SA

Lex SA is a user-editable synoptic graphics program based on the CLIB
framework. It was created to allow end users to create displays including those which
appeared like schematic drawings of various accelerator systems. It supports a set of
graphic objects which include drawing primitives, scanned images, and objects which
will display the readings of control system values in various ways. There are also
objects which can execute ACL (Accelerator Command Language) scripts to change the
display or to make device settings. This feature makes the display capabilities
extensible by the end user.

Lex SA is actually comprised of two programs, an editor and a display program.
In the editor program, users can drag and drop the various types of graphical objects
onto the canvas and can edit their properties. Users can also create and save complex
graphical objects comprised of primitive objects which they can save away for future
use. The entire display can then be saved to a relational database for use by the display
program. There is a table for each type of object as well as tables to store how the
objects are joined together to make the display.

The display program can be launched from several dedicated applications
including the editor. A Lex SA display can also be mapped to each subpage of any
parameter page. Once the display is initialized and running, users can click on fields to
execute ACL scripts and they can knob analog setting values. There is also a
companion program that supports dynamically building a parameter page of devices by
clicking objects in the display. There are also objects that when clicked will start up
another display allowing individual displays to be linked together.

 Java Synoptic

Synoptic [10,11] is a client-server system for graphical data representation,
similar to Lex SA and EPICS EDM screens. In addition to providing a more modern
look and feel than Lex SA, it can display "live" images in conventional web browsers

 15

using very low bandwidth and, in most cases, without the need of additional software.
As in the case of Lex SA there are separate display and editor applications.

In a simplest use case, a read-only Synoptic display is opened as a web page
(Figure 4) in a regular browser. Upon request, the Synoptic web server makes up a
layout of the display, initializes data acquisition, and periodically generates images in a
Scalable Vector Graphics (SVG) format. JavaScript code in the browser polls the server
every 1-2 seconds for new graphical data and feeds it to an SVG viewer. Since the new
image usually looks very similar to the previous one, it is sufficient for the client to
receive only differences between successive images. The latest Mozilla Firefox, Apple
Safari, and Google Chrome include embedded SVG viewers. Currently Microsoft
Internet Explorer requires a third-party plug-in. All listed browsers show SVG images
fairly consistently and render partial updates without flickering.

To enable settings from Synoptic to the control system, a display has to be
opened in a Synoptic Viewer application. All data acquisition tasks in this case are
started locally, and the display's image is rendered directly on the application's canvas.
Unlike the web interface, Synoptic Viewer may only be used from certain locations
within the lab for security reasons.

A specialized graphical editor called Synoptic Builder is used to create and edit
the displays. Like Synoptic Viewer, this is a console Java application, normally
launched through Web Start. The builder includes a library of components that can be
placed on a display. There are separate components for data acquisition, data
transformation, and data visualization. The first two groups are hidden at runtime. The
components are interconnected with data pipes. The builder also allows static images
and symbols to be included. Synoptic displays are stored in XML format either locally
(for later use in Synoptic Viewer) or in a central CVS repository (for both Synoptic
Viewer and the web interface).

1.1.11.8 Web applications

A number of applications have been written that run entirely in a web browser.
This includes many tools to view SDA data, and a parameter page and device database
viewer. Web applications currently do not follow a standard framework. They are
written using generic servlets deployed on Tomcat servers with client code written as
Java Server Pages (JSPs) or Javascript.

1.1.12 Console Infrastructure

CLIB applications must run under a specialized console environment. This
consists of a set of tasks that launch and manage applications, perform data acquisition,
handle graphics rendering, and other functions. The console applications framework has
evolved from earlier versions of the control system and thus has an older look and feel.
Application programs are started from an Index Page program (Figure 5) which displays
menus of programs pertaining to each accelerator. Programs have a main window for
user interaction and optional windows to display graphics. Applications are run on any
of 75 application server computers which contain the complete console framework
environment. The framework uses the X Window system for user interaction and
display. User workstations can be any internet connected computer which is running an
X Window server. Also a special version of the console framework has been created
that renders its graphics to a Java applet. This allows running a console from any web

16

browser without installing special software. For security reasons, only a subset of
applications may be launched in this environment and settings are not permitted. A
“CLIB Peeker” facility [12] allows one to view internal information about any currently
running application.

Figure 4: An example synoptic display in a web browser

For Java applications, a separate web-startable Index Page application or Java
applet is used. Recently it has become possible to launch Java applications from the
above consoles providing a single environment for all applications.

1.1.13 Security

The control system is on a dedicated network inside a firewall that restricts
access both in to and out of it. This greatly limits the probability of computer
compromise from external attacks.

In such a large and diverse system, it is also desirable to control setting
capability even among accelerator personnel. To accomplish this, “classes” are defined
and applied to both people and remote consoles. Specific devices can only be set by
those in certain classes. Furthermore, applications run from outside the main control
room start with settings disabled. They must be manually enabled by the user. These
features reduce the probability of accidental settings disrupting operations.

 17

Figure 5: A Console Index Page

1.1.14 Past Evolution

Over the many years since ACNET has been developed enormous advances
have been made in computing and hardware technology rendering many components of
the original system obsolete. The control system has been able to evolve to take
advantage of new technology as well as deal with the increasing operational demands of
the complex.

While much field hardware remains in CAMAC, there is now a rich diversity of
VME, VXI, Multibus, GPIB, and Ethernet connected hardware. The latter includes
commercial scopes and spectrum analyzers as well as custom developed hardware.

Front-end systems were originally PDP-11 and Lockheed-Martin MAC-16
computers. These gave way to i386 Multibus and 68000 VME based systems running
the MTOS operating system. All of these older systems have now been replaced by
VME based 68040 or Power PC processors running the VxWorks or pSOS operating
systems.

Console applications originally ran on PDP-11 computers with custom graphics.
These gave way to VAXStations with X-Window graphics. In recent years all VAX
software was ported to Linux and now runs on standard PCs.

Communication via the ACNET protocol originally used Digital PCL11-B links.
These were migrated to IEEE 802.5 token ring links, and now this traffic travels
exclusively over Ethernet.

Programming was originally done in FORTRAN and assembler, and later C.
Now C++ is supported, and Java is supported for higher level software. The Sybase
relational database was introduced, replacing older VAX based databases.

Hardware subsystems have been continually replaced as needed. Most notably
the beam position and beam loss monitor systems for the Tevatron and Main Injector

18

were replaced in recent years. As these are large systems and there has been limited
accelerator shutdown time, these upgrades had to be done in a staged manner during
operational periods. Partial old and new systems had to coexist until the replacement
was complete.

1.1.15 Future Directions

The Tevatron Collider is currently scheduled to end operation by October, 2010.
The complex will then be upgraded to increase the intensity delivered to the neutrino
physics program. The new NOνA experiment is expected to run until at least the late
2010’s, and other new experiments are expected to make use of 8 GeV beam. The
ACNET control system will continue to be used during this era. Obsolete hardware will
be replaced as needed, and some effort will go toward modernizing the CLIB
application environment.

An 8 GeV superconducting linac, known as Project X [13], has been proposed to
further increase the beam intensity available for these and other new experiments.
Prototype accelerators, HINS [14] and NML[15], for the Project X linac are currently
under development at Fermilab. Until recently they have used the EPICS [16] and
DESY DOOCS [17] control systems and been independent of the main ACNET system.
A number of front-ends and synoptic display screens have been developed. Effort is
currently underway to integrate these facilities back into ACNET. A prototype
integration of an EPICS IOC under MOOC has been developed in the style of the
EPICS2TINE interface [18]. EDM has been extended to support communication via the
ACNET protocol as well as EPICS Channel Access. This allows inclusion of ACNET
devices on already developed screens. EDM screens may now be launched from
ACNET consoles. Clock events from these facilities have been added to the general
TCLK clock event multicast and are available to data loggers and other central services.
The current plan is to base the core Project X control system on ACNET, while
supporting EPICS IOCs as needed. This will allow other EPICS based labs developing
subsystems for Project X to work in the system with which they are most familiar.

1.1.16 Summary

Though originally developed in 1983, the ACNET control system has evolved to
meet the increasingly complex operational needs of the Fermilab accelerator chain as
well as take advantage of new technology developed since then. Its very modular nature
has allowed both hardware and software systems to be upgraded as needed with
minimal disruption to operations. The very efficient ACNET communication protocol
has handled the continually increasing number of computers and associated volume of
data. Solid development frameworks at all levels of the system have met the needs of
developers and promoted commonality in the code. Powerful yet straightforward to use
core applications such as the Parameter Page, plotting programs, Sequencer, and
Accelerator Command Language make the system very accessible to operations
personnel. Extensive logging of accelerator data as well as events, settings, errors etc.
greatly aid diagnosis of subtle problems in this very large system. With the recent port
of all application software to Linux from VAX/VMS, ACNET will be viable for the
projected lifetime of the upgraded neutrino physics program and should form a strong
basis for the control system of the proposed Project X accelerator.

 19

1.1.17 Acknowledgements

The Fermilab control system has been developed by numerous people over
many years. This includes not only controls department members, but machine
specialists, operations and other technical support personnel as well.

1.1.18 References

1. L. Carmichael, “Automated Task Scheduling Using Multiple FSMs at
Fermilab”, proceedings of the 1997 ICALEPCS, Beijing, China (1997).

2. R. Goodwin, M. Kucera, and M. Shea, “Use of Small Stand-alone Internet
Nodes as a Distributed Control System”, proceedings of the 1993 ICALEPCS,
Berlin, Germany (1993).

3. D. Nicklaus, “Java-based Open Access Front Ends in the Fermilab Controls
System”, proceedings of the 2003 ICALEPCS, Gyeongju, Korea (2003).

4. A. R. Franck, R. W. Goodwin, P. A. Kasley, M. Shea, “HOTLink Rack
Monitor”, proceedings of the 2001 ICALEPCS, SLAC, Stanford, CA (2001).

5. S. Ahn, “Fermilab Beams Division Alarms Processing System”, proceedings of
the 1999 ICALEPCS, Trieste, Italy (1999).

6. http://www-bd.fnal.gov/controls/java/framework/af-guide.pdf
7. A. D. Petrov and D. J. Nicklaus, “Secure Client Tier for the Accelerator Control

System”, proceedings of the 2005 ICALEPCS, Geneva, Switzerland (2005).
8. http://www-bd.fnal.gov/appix
9. T.B. Bolshakov, A.D. Petrov, S.L. Lackey, “Synoptic Display - A Client-Server

System for Graphical Data Representation”, proceedings of the 2003
ICALEPCS, Gyeongju, Korea (2003).

10. http://synoptic.fnal.gov
11. J. Annala, “The Fermilab Sequencer used in Collider Operation”, proceedings of

the 1995 ICALEPCS, Chicago, IL (1995).
12. J. Wang and B. Hendricks, “A Diagnostic Tool for Console Applications of the

Fermilab Accelerator Control System”, proceedings of the 1997 ICALEPCS,
Beijing, China (1997).

13. S. Nagaitsev, “Fermilab’s Project X”, proceedings of the XXIV Linear
Accelerator Conference, Victoria, B.C. Canada (2008).

14. R. Webber, “Overview of the High Intensity Neutrino Source Linac R&D
Program at Fermilab”, proceedings of the XXIV Linear Accelerator Conference,
Victoria, B.C. Canada (2008).

15. B. Chase, M. Votava, M. Wendt, “Controls, LLRF and instrumentation systems
for ILC test facilities at Fermilab”, proceedings of the 2007 Particle Accelerator
Conference, Albuquerque, N.M. (2007).

16. http://www.aps.anl.gov/epics
17. http://doocs.desy.de
18. P. Duval et. al., “The Babylonization of Control Systems”, proceedings of the

2003 ICALEPCS, Gyeongju, Korea (2003).

http://www-bd.fnal.gov/controls/java/framework/af-guide.pdf
http://synoptic.fnal.gov/
http://www.aps.anl.gov/epics

	1.1 The Fermilab Accelerator Control System
	1.1.1 Introduction
	1.1.2 Fermilab Accelerator Complex
	1.1.3 Control System Overview
	1.1.4 Device Model
	1.1.5 Communication Protocol
	1.1.6 Timing System
	1.1.7 Supported Hardware
	1.1.7.1 Data acquisition:
	1.1.7.2 Ramp generators:
	1.1.7.3 Field buses:

	1.1.8 Front-End Systems
	1.1.9 Central Services
	1.1.9.1 Data logging
	1.1.9.2 Sequenced Data Acquisition
	1.1.9.3 Save/Restore
	1.1.9.4 Alarms
	1.1.9.5 Front-End download
	1.1.9.6 Accountability
	1.1.9.7 Data Acquisition Engines
	1.1.9.8 Servlets
	1.1.9.9 Time-Line Generator
	1.1.9.10 Experiment communication
	1.1.9.11 Databases

	1.1.10 Application Frameworks
	1.1.10.1 CLIB framework
	1.1.10.2 Java framework

	1.1.11 Key Applications
	1.1.11.1 Parameter Page
	1.1.11.2 Fast Time Plot Utility
	1.1.11.3 Snapshot plot utility
	1.1.11.4 ACL
	1.1.11.5 Sequencer
	1.1.11.6 Lex SA
	1.1.11.7 Java Synoptic
	1.1.11.8 Web applications

	1.1.12 Console Infrastructure
	1.1.13 Security
	1.1.14 Past Evolution
	1.1.15 Future Directions
	1.1.16 Summary
	1.1.17 Acknowledgements
	1.1.18 References

