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ABSTRACT

In Lima et al. (2008) we presented a new method for estimating the redshift dis-
tribution, N(z), of a photometric galaxy sample, using photometric observables and
weighted sampling from a spectroscopic subsample of the data. In this paper, we ex-
tend this method and explore various applications of it, using both simulations of
and real data from the SDSS. In addition to estimating the redshift distribution for
an entire sample, the weighting method enables accurate estimates of the redshift
probability distribution, p(z), for each galaxy in a photometric sample. Use of p(z) in
cosmological analyses can substantially reduce biases associated with traditional pho-
tometric redshifts, in which a single redshift estimate is associated with each galaxy.
The weighting procedure also naturally indicates which galaxies in the photometric
sample are expected to have accurate redshift estimates, namely those that lie in
regions of photometric-observable space that are well sampled by the spectroscopic
subsample. In addition to providing a method that has some advantages over stan-
dard photo-z estimates, the weights method can also be used in conjunction with

photo-z estimates, e.g., by providing improved estimation of N(z) via deconvolution
of N(zphot) and improved estimates of photo-z scatter and bias.

Key words: distance scale – galaxies: distances and redshifts – galaxies: statistics –
large scale structure of Universe

1 INTRODUCTION

Optical and near-infrared wide-area surveys planned for the
next decade will increase the size of photometric galaxy sam-
ples by an order of magnitude, delivering measurements of
billions of galaxies. Much of the utility of these samples for
astronomical and cosmological studies will rest on knowl-
edge of the redshift distributions of the galaxies they con-
tain. For example, surveys aimed at probing dark energy
via clusters, weak lensing, and baryon acoustic oscillations
(BAO) will rely on the ability to coarsely bin galaxies by
redshift, enabling approximate distance-redshift measure-
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ments as well as study of the growth of density perturba-
tions. The power of these surveys to constrain cosmologi-
cal parameters will be limited in part by the accuracy with
which the galaxy redshift distributions can be determined
(Huterer et al. 2004, 2006; Zhan & Knox 2006; Zhan 2006;
Ma et al. 2006; Lima & Hu 2007).

Photometric redshifts—approximate estimates of
galaxy redshifts based on their broad-band photometric
observables, e.g., magnitudes or colors—offer one set of
techniques for approaching this problem. However, photo-z
estimators are typically biased to some degree, and they
can suffer from catastrophic failures in certain regimes.
These problems motivate the development of potentially
more robust methods.
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In Lima et al. (2008) we presented a new, empirical
technique aimed not at estimating individual galaxy red-
shifts but instead at estimating the redshift distribution,
N(z), for an entire photometric galaxy sample or suitably
selected subsample. The method is based upon matching the
distributions of photometric observables (e.g., magnitudes,
colors, etc) of a spectroscopic subsample to those of the pho-
tometric sample. The method assigns weights to galaxies in
the spectroscopic subsample (hereafter denoted the training
set, in analogy with machine-learning methods of photo-z
estimation), such that the weighted distributions of observ-
ables for these galaxies match those of the photometric sam-
ple. The weight for each training-set galaxy is computed by
comparing the local “density” of training-set galaxies in the
multi-dimensional space of photometric observables to the
density of the photometric sample in the same region. We es-
timate the densities using a nearest-neighbor approach that
ensures that the density estimates are both local and sta-
ble in sparsely occupied regions of the space. The use of the
nearest neighbors ensures optimal binning of the data, which
minimizes the requisite size of the spectroscopic subsample.
After the training-set galaxy weights are derived, we sum
them in redshift bins to estimate the redshift distribution
for the photometric sample.

As Lima et al. (2008) show, this weighting method pro-
vides a precise and nearly unbiased estimate of the underly-
ing redshift distribution for a photometric sample without
recourse to photo-z estimates for individual galaxies. More-
over, the spectroscopic training set does not have to be rep-
resentative of the photometric sample, in its distributions
of magnitudes, colors, or redshift, for the method to work.
(By contrast, the performance of training-set-based photo-z
estimators generally degrades as the training set becomes
less representative of the photometric sample.) The only re-
quirement is that the spectroscopic training set covers, even
sparsely, the range of photometric observables spanned by
the photometric sample. The weighting method can be ap-
plied to different combinations of photometric observables
that correlate with redshift—here, we confine our analysis
to magnitudes and colors.

In this paper we present additional applications of the
weighting method, test its performance on simulated data
sets, and show results of those applications using data from
the SDSS. The applications of the weighting method nat-
urally fall into two categories, those that enhance photo-z
estimators and those that (potentially) replace photo-z es-
timation. In the first category, we show that the weight-
ing method can be used to improve estimates of the scatter
and bias of training-set-based photo-z estimates as functions
of (true) spectroscopic redshift. Knowledge of such errors
are very important, since uncertainties in photo-z bias and
scatter are nuisance parameters that significantly degrade
the power of cosmological probes (e.g. Huterer et al. 2004;
Ma et al. 2006; Lima & Hu 2007). We also show that the
weights can be used to obtain improved estimates of the er-
ror distribution of the photo-z’s, P (zphot|zspec), and thereby
improve the deconvolution procedure used to infer the un-
derlying redshift distribution, N(z), from the distribution of
photo-z’s (Padmanabhan et al. 2005).

In the second category of applications, we consider the
weighting technique on its own, independently of ‘tradi-
tional’ photo-z estimates. The accuracy of the weighting

method in directly reconstructing N(z) is affected by pho-
tometric errors and by sparse or incomplete coverage by the
training set of the space of photometric observables spanned
by the photometric data. We develop and test a bootstrap
technique to estimate random errors in the weighted N(z)
estimate and present a technique for detecting systematic
errors in it as well. We also discuss the effects of training-set
non-representativeness on the N(z) estimate. Perhaps most
importantly, we show that the weighting procedure can be
used to estimate not only the redshift distribution for the
(entire) photometric sample, N(z), but also a redshift prob-
ability distribution, p(z), for each galaxy in the photometric
sample. Such a distribution contains much more information
than a discrete photo-z estimate, zphot. Use of p(z) instead
of zphot in cosmological analyses can potentially greatly re-
duce the biases arising from photo-z’s.

The paper is organized as follows. In §2 we review and
extend the weighting method for estimating the redshift dis-
tribution and the redshift probability distribution, focus-
ing in particular on sources and estimates of errors in the
method. In §3 we describe the actual and simulated SDSS
galaxy catalogs that we use to test the weighting method and
its alternatives. We demonstrate how the weighting method
improves upon photometric-redshift estimates in the mock
catalog in §4, and we demonstrate its effectiveness in esti-
mating N(z), in comparison with photo-z-based methods, in
§5. We apply the new methods to the real SDSS DR6 in §6.
We present our conclusions in §7 and include some technical
details of the analysis in the Appendices.

2 THE WEIGHTING METHOD

In this section, we briefly review and extend the weight-
ing method introduced in Lima et al. (2008). We define the
weight, w, of a galaxy in the spectroscopic training set as
the normalized ratio of the density of galaxies in the photo-
metric sample to the density of training-set galaxies around
the given galaxy. These densities are calculated in a local
neighborhood in the space of photometric observables, e.g.,
multi-band magnitudes. More formally, given a training-set
galaxy, we define its weight by

w ≡
1

NP,tot

ρP

ρT
, (1)

where NP,tot is the total number of galaxies in the photo-
metric sample, and ρP and ρT are the local number densities
in the space of observables for the photometric and training
sets,

ρP,T ≡
NP,T

VP,T
, (2)

where NP(T) is the number of photometric (training) set
galaxies within volume VP(T).

We adopt a nearest-neighbor approach to estimating the
density of galaxies in magnitude space, because it enables
control of statistical errors (shot noise) while also ensuring
adequate “locality” of the volume in magnitude space. We
define the distance dαβ in magnitude space between the αth

and βth galaxies in a (photometric or spectroscopic) sample
using a Euclidean metric,
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(dαβ)2 ≡ (mα − mβ)2 =

Nm
∑

a=1

(ma
β − ma

α)2 , (3)

where Nm denotes the number of magnitudes (i.e., different
passbands) measured for each galaxy. We use this distance
to find the set of nearest neighbors to the αth object, i.e.,
the set of galaxies with the smallest dαβ. For a fixed num-
ber of nearest neighbors Nnei, if we order the neighbors by
their distance from the αth galaxy, then we can define the
hypervolume in terms of the distance from galaxy α to the
N th

nei nearest neighbor, indexed by γ, i.e., Vm = (dαγ)Nm .
Estimating the local density in the spectroscopic train-

ing set using a fixed value for N(mα)T = Nnei ensures that
the density estimate is positive-definite and that the result-
ing weight is well defined. To estimate the corresponding
density in the photometric sample, we simply count the
number of galaxies in the photometric sample, N(mα)P,
that occupy the same hypervolume Vm around the point
mα. Since the densities are estimated in the spectroscopic
and photometric sets using the same hypervolume, the ratio
of the densities in Eqn. (1) is simply the ratio of the cor-
responding numbers of objects within the volume, and the
weight for the αth training-set galaxy is therefore given by

wα =
1

NP,tot

N(mα)P
N(mα)T

. (4)

Nnei can be chosen to balance locality, which favors small
Vm, against statistical errors, which favor large Nnei.

2.1 Weights and the Redshift Distribution N(z)P

As shown in Lima et al. (2008), by construction the weighted

spectroscopic training set has essentially identical distribu-
tions of multi-band magnitudes and colors as the photomet-
ric sample from which it is drawn, even though the spectro-
scopic set is in general not representative of the photometric
sample. The weighting procedure in effect corrects for that
non-representativeness, provided the training set adequately
spans the range of the photometric-observable space covered
by the photometric sample. Since the weighted training set
has identical distributions of photometric observables as the
photometric sample, it is reasonable to assume that the for-
mer also provides an accurate estimate of the binned redshift
distribution of the photometric sample,

N(z)wei ≡ N̂(z1 < z < z2)P =

NT,tot
∑

β=1

wβN(z1 < zβ < z2)T, (5)

where the weighted sum is over all galaxies in the train-
ing set. Lima et al. (2008) show that this indeed provides
a nearly unbiased estimate of the redshift distribution of
the photometric sample, N(z)P, under suitable conditions.
Examples of this application will be discussed in §5.1.

2.2 Weights and the Redshift Probability

Distribution p(z)

Although knowledge of the redshift distribution for a pho-
tometric sample, N(z)P, is sufficient for many applications,

there are of course instances in which one would like red-
shift information about individual galaxies in the sample.
As noted in the Introduction, photo-z estimators provide
one approach to this problem. However, photo-z estimates
are limited by the fundamental assumption that there is a
functional relationship between the photometric observables
and redshift. In fact, galaxies occupying a small cell in the
space of photometric observables will have a range of red-
shifts. One can therefore associate that cell with a redshift
probability distribution function (PDF), p(z|observables).
The shape of the PDF is determined by the choice of ob-
servables, the size of the cell, the photometric errors, and
the range of spectral energy distributions of the galaxies. If
the PDF is narrowly peaked, photo-z estimates can be both
precise (small scatter) and accurate (small bias). However, if
the distribution is broad, skewed, or multiply peaked, then
photo-z estimates will suffer large scatter, bias, and poten-
tially catastrophic failures. The ubiquitous positive bias of
photo-z estimates for low-redshift galaxies and negative bias
for high-redshift galaxies are consequences of this fundamen-
tal assumption. Low- and high-redshift objects can in some
cases occupy the same cell of magnitude space, but photo-z
estimators will assign them all essentially the same redshift.

To overcome these problems and avoid the biases in-
trinsic to photo-z estimates, it is preferable to use the full
redshift PDF for the galaxies in a small cell in the space of
photometric observables, p(z) ≡ p(z|observables). This PDF
encodes all the information available about the redshift of an
individual galaxy in a photometric sample. One can choose
to extract a single redshift estimate from the PDF, e.g., its
mean, median, or mode, but often that is not necessary in
applications.

The weighting method described above can be straight-
forwardly applied to estimate p(z) using a spectroscopic
training set. The estimator p̂(z) for a galaxy in the photo-
metric sample is given by the weighted redshift distribution
of its Nnei nearest neighbors in the training set, using the
metric of Eqn. (3),

p̂(z) =

Nnei
∑

β=1

wβδ(z − zβ) , (6)

where, as before, Nnei can be determined from simulations
by minimizing the sum of the shot-noise and “non-locality”
errors. In practice, we estimate p(z) in redshift bins. This es-
timate for p(z) was used in a study of galaxy-galaxy lensing
by Mandelbaum et al. (2007) and was shown to yield signif-
icantly smaller lensing calibration bias than use of photo-z
estimates.

We can also construct a new estimator for N(z)P by
summing the p̂(z) distributions for all galaxies in the pho-
tometric sample,

N̂(z)P =

NP,tot
∑

i=1

p̂i(z) . (7)

This estimator is similar but not identical to that of Eqn.
(5). We will see in §5.1.3 that these two are comparable in
recovering the true redshift distribution of a photometric
sample.
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2.3 Sources of Errors in the Weighting Method

The errors arising in the weights method can be considered
the errors in estimating p(z|observables) for a galaxy in the
photometric sample from the information in the training set.
Any differential selection effect between the spectroscopic
and photometric samples will lead to errors in p̂(z). There
are several kinds of selection effects: (1) statistical effects, (2)
large-scale structure (LSS), (3) spectroscopic failures in the
training set, (4) survey selection in the photometric observ-
ables, (5) survey selection in non-photometric observables,
and (6) non-locality of the weights.

Statistical errors arise because the training set is just
a subsample of the photometric survey and is subject to
statistical fluctuations. These fluctuations can be significant
in regions of magnitude space where the training set is very
sparse. In such regions, the shot-noise errors in p̂(z) will
either be large or else the nearest-neighbor volume must be
made large, leading to increased non-locality (see below).
Statistical errors can be estimated by bootstrap resampling
the training and photometric sets. If the magnitude errors
are well known, one can further Monte Carlo resample the
magnitudes. We present results of bootstrap error estimation
in §5.1.4.

Errors due to LSS can be significant if certain regions
of the space of photometric observables are only represented
in the training set by a spectroscopic survey that covers a
small solid angle, in which one or a few large structures dom-
inate. In this case, p(z|observables) for the training set will
comprise one or a few redshift spikes rather than a smooth
distribution. If these effects occur in regions of magnitude
space where the true redshift PDF is broad or multiply
peaked, they can potentially cause systematic errors in the
estimates of p(z) or N(z) for the photometric sample. The
resulting errors may be large if the linear size of the training-
set volume is not large compared to the galaxy clustering
correlation length. The errors from LSS can in principle be
estimated by constructing mock training-set volumes using
N-body simulations of structure formation.

Spectroscopic failures, i.e., targeted objects in the train-
ing set for which redshifts could not be obtained, can also
lead to systematic errors in p̂(z) if the failures happen sys-
tematically, for instance, if they occur preferentially for a
particular galaxy spectral type and if that type has a dif-
ferent redshift PDF from other galaxy types in the same
region of magnitude space. Since such spectroscopic fail-
ures will tend to occur in specific and identifiable regions
of magnitude space, however, one can at minimum excise
or downweight those regions in estimating quantities for the
photometric sample (see §2.4), at the cost of incompleteness.

The severity of these systematic errors is regulated by
the width of the redshift PDF. In the limit of a large number
of photometric observables with very small measurement er-
rors and a large spectroscopic training set, the redshift PDF
in a small cell in magnitude space approaches a delta func-
tion. In this regime, the effects of LSS and of spectroscopic
failures would be simply to increase the statistical errors in
certain regions of observable space, an effect accounted for in
the bootstrap error estimate. As one moves away from this
ideal limit, the systematic errors grow, in the sense that one
can no longer reliably estimate p(z|observables) for a galaxy
in the photometric sample from its training-set neighbors.

That effect is not captured by the bootstrap and must be
estimated by other means, e.g., using simulations. The mock
SDSS DR6 catalog we have constructed for this paper (see
§3.2) does not simulate LSS or spectroscopic failures; we
plan to study such effects in the future. Some of the surveys
that comprise the training set for the real DR6 data are in-
dividually affected by LSS effects. Having a combination of
them helps to alleviate the problem, though more testing is
required to quantify the possible systematics.

LSS and spectroscopic failures lead to unavoidable dif-
ferences in the selection functions for the photometric and
spectroscopic samples. In addition, there are differential se-
lection effects that are built in by those designing the spec-
trosocopic survey. For example, one typically makes magni-
tude and color cuts in selecting spectroscopic targets from
a photometric sample. In this case, where the selection is
made explicitly in the photometric observables, there will
be regions of observable space where the weights cannot be
used to reliably estimate redshift distributions. Again, such
regions are known from the target selection cuts and can
be safely excised from the photometric sample (see §2.4).
If, on the other hand, there are differences in spectroscopic
and photometric selection based on non-photometric observ-
ables, then systematic errors in p̂(z) can occur.

A variant of this problem arises when the training set
is selected using photometric observables that are different
from the ones measured in the photometric sample. For ex-
ample, for the SDSS DR6 photometric catalog, the spectro-
scopic target selection for the DEEP2 sample in the train-
ing set used a different magnitude system (coming from dif-
ferent photometric samples) from the SDSS. Similarly, the
selection of the 2SLAQ spectroscopic catalog made use of
photometric observables that were not used in the photo-z
estimation. Whether such cuts will cause systematic errors
depends on how well the selection in those systems can be
approximated using the SDSS ugriz filters.

Finally, the non-locality of the weights solution is a
source of systematic error. Here, non-locality refers to the
fact that, in the nearest-neighbor approach, we are using in-
formation from a finite volume to estimate the density at
a point in observable space, and the density varies over the
space. This procedure corresponds to applying a smooth-
ing kernel to the density field. Non-locality becomes a prob-
lem if the volume occupied by the neighbors (or the scale
of the smoothing kernel) becomes comparable to or larger
than the scale over which the density changes appreciably.
In this limit, the shape of the volume used to select the near-
est neighbors may be important. Non-locality errors are re-
duced by choosing a smaller neighbor volume for the density
estimate, but at the cost of increasing the shot-noise errors.
Ultimately, the combined errors can be reduced by increas-
ing the density of the training set in a particular region of
observable space, i.e., by measuring more spectra.

2.4 Selecting the “Recoverable” Part of a

Photometric Sample

One of the necessary conditions for the weights procedure to
work is that the spectroscopic training set covers the same
region of photometric observables as the photometric sam-
ple. That is, the weights can only recover the redshift PDF
of a galaxy in the photometric sample if it lies in the region
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of intersection of the redshift-observables hypersurfaces of
the training and photometric sets. Defining this region of
intersection is not always trivial, especially given the high
number of dimensions that may be involved. To do so, we
count how many times a galaxy in the photometric sample is
used in the weights calculation for all members of the train-
ing set. By definition, photometric galaxies that are never
counted in the weights procedure are not in the region of in-
tersection, hence the redshift distribution of those galaxies
will not be accurately recovered by the weighting procedure.
We make use of this criterion below. If one does not require
the photometric sample to be complete, one can choose to
excise such galaxies from consideration. Using several real
and mock catalogs, we have found empirically that using
∼ 5 nearest neighbors in the weights calculation is optimal
for determining the intersection region for the mock catalog.

As examples, consider the mock and real SDSS DR6
catalogs of §3. From Figs. 1b, 2b, and 3b, one might expect
that the combined training set covers the same region of
observables as the photometric sample. However, using the
definition of the previous paragraph, more than ∼ 43% of
the mock photometric-sample galaxies are not used in the
weights calculation, i.e., they are not well represented in
the training set. Fortunately, in the real SDSS DR6 catalog,
by the same criterion we find that ∼ 98% of photometric-
sample galaxies with r < 22 are well represented in the
training set. It is important to apply such a recoverability
test whenever a training-set method is used.

3 CATALOGS

To test the performance of the weighting method and com-
pare it with standard photo-z estimates, we employ two
kinds of catalogs. The first is drawn from the SDSS DR6
(Adelman-McCarthy et al. 2007) photometric sample and
various spectroscopic subsamples of it and allows us to dis-
play results of the weighting method on real data. The sec-
ond is a mock catalog constructed to have properties similar
to the SDSS DR6 photometric and spectroscopic samples.
The goal of the mock catalog is not to precisely reproduce all
features of the SDSS catalog but to have a sample with re-
alistic spectroscopic and photometric features and for which
we have ground truth (i.e., redshifts and galaxy types) for
all galaxies. In this section, we describe the relevant fea-
tures of the real and mock catalogs, relegating the details to
Appendix A.

3.1 SDSS DR6 Data

The SDSS DR6 photometric and spectroscopic data sam-
ples are drawn from those used by Oyaizu et al. (2007) to
produce a neural network photo-z catalog.

3.1.1 Photometric Sample

We use a random 1% subset of the galaxies in the SDSS
DR6 Photoz2 catalog described in Oyaizu et al. (2007) as
our photometric sample. This subset contains approximately
769,582 galaxies with r < 22. The catalog is approximately
flux-limited at this magnitude limit. For details of the parent
sample, see Appendix A and Oyaizu et al. (2007). The r

magnitude, g − r, and r − i color distributions are shown in
the bottom right panel of Fig. 1a and the bottom panels of
Fig. 2a.

3.1.2 Spectroscopic Training Set

The spectroscopic training sample we use for SDSS DR6
is drawn from a number of spectroscopic galaxy catalogs
that overlap with SDSS DR6 imaging. We impose a mag-
nitude limit of r < 23 on the spectroscopic samples as
well as additional cuts based on the quality of the spec-
troscopic redshifts reported by the different surveys (see Ap-
pendix A). The SDSS spectroscopic sample provides 531, 594
redshifts, principally from the MAIN and Luminous Red
Galaxy (LRG) samples. The remaining redshifts are: 20, 381
from the Canadian Network for Observational Cosmology
(CNOC) Field Galaxy Survey (CNOC2; Yee et al. 2000),
1, 531 from the Canada-France Redshift Survey (CFRS;
Lilly et al. 1995), 11, 040 from the Deep Extragalactic Evo-
lutionary Probe (DEEP; Davis et al. 2001) and DEEP2
(Weiner et al. 2005), 654 from the Team Keck Redshift Sur-
vey (TKRS; Wirth et al. 2004), and 52, 762 LRGs from the
2dF-SDSS LRG and QSO Survey (2SLAQ; Cannon et al.
2006).

The r-magnitude and color (g−r and r−i) distributions
for the spectroscopic samples are shown in Figures 1a and
2a. Although the magnitude and color distributions of the
combined spectroscopic sample are not identical to those
of the photometric sample, the spectroscopic sample does
span the ranges of apparent magnitude and colors of the
photometric sample. Fig. 3a gives the spectroscopic redshift
distribution for the combined spectroscopic sample.

3.2 SDSS DR6: Mock Catalog

Using spectral template libraries and observational data on
the redshift-dependent luminosity functions of galaxies of
different types, we have constructed mock photometric and
spectroscopic samples that reproduce the main features of
the real SDSS DR6 samples. We describe these briefly below.

3.2.1 Mock Photometric Sample

The simulated SDSS catalog contains 107 galaxies with
redshift z < 2.0 and magnitude 14 < r < 22. We
use the lf mock schechter code from the kcorrect pack-
age (Blanton et al. 2003) to generate redshift, type, and i-
magnitude relations. The inputs to the code are the redshift
range, Schechter luminosity function parameters, and the
ranges of absolute and apparent r-magnitudes. The code
outputs a list of redshifts and apparent r-magnitudes. We
set the range of absolute i-band magnitudes to (−24,−14).
Using data from the VVDS survey, Zucca et al. (2006) esti-
mated galaxy luminosity functions and Schechter-function
fits thereto for different galaxy types in redshift bins of
size ∆z = 0.2 from zmin = 0.2 to zmax = 1.5. We fit
simple polynomial functions to the Schechter parameters of
Zucca et al. (2006) to derive a continuous relationship be-
tween the Schechter parameters M∗, α, φ∗, redshift z, and
galaxy type T , using the centroid of each redshift bin for
the fit. To regularize the fits, we visually extrapolated the
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Figure 1. Normalized r magnitude distributions for the catalogs

comprising the real SDSS DR6 (top: figure a) and the mock SDSS
DR6 (bottom: figure b) catalogs. In each figure, the top four pan-
els indicate the distributions for the different spectroscopic sub-
samples (see text), bottom left panels indicate flux distributions
for the combined spectroscopic samples, and bottom right pan-
els distributions for the photometric samples. In each panel, Ntot

denotes the total number of galaxy measurements used in each
sample.

results of Zucca et al. (2006) to the z = (0, 0.2) bin and,
where needed (for certain galaxy types), for the (1.2, 1.5)
bin. The detailed fits are given in Appendix B.

Galaxy colors are generated using the four Coleman,
Wu, & Weedman spectral templates (Coleman et al.
1980)—E, Sbc, Scd, Im—extended to UV and
NIR wavelengths using synthetic templates from

Figure 2. Distributions of g− r and r− i colors for the catalogs

comprising spectroscopic training and photometric sets for the
real SDSS DR6 (top: figure a) and the mock SDSS DR6 (bottom:

figure b). Top rows give distributions for the SDSS spectroscopic
sample, middle rows the distributions for the other spectroscopic
samples, bottom rows the distributions for the photometric sam-
ples. The real and mock SDSS spectroscopic color distributions
differ primarily because the latter does not include LRGs.

Bruzual A. & Charlot (1993). These templates are mapped
to galaxy SED type T (used by Zucca et al. (2006)) as
(E, Sbc, Scd, Im) → T = (1, 2, 3, 4). To improve the
sampling and coverage of color space, we have created
additional templates by interpolating between adjacent
templates. The redshift, r-magnitude, and type relations
are first generated without photometric errors; errors are
then added to produce observed magnitudes. Magnitude
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Figure 3. (Top, figure a) Spectroscopic redshift distribution for
the combined SDSS DR6 spectroscopic training set. (Bottom, fig-

ure b) Spectroscopic redshift distributions for the mock SDSS
DR6 training and photometric sets.

errors are modeled as sky-background dominated errors
approximated as Gaussians that are uncorrelated between
the different SDSS filters.

The resulting magnitude and color distributions for the
mock photometric sample are shown in the lower right panel
of Fig. 1b and the bottom panels of Fig. 2b. The redshift
distribution for the sample is shown as the dark grey region
in Fig. 3b. The r-magnitude distribution of the mock pho-
tometric sample peaks at slightly brighter magnitude than
for the actual DR6 photometric sample, and the r − i dis-
tribution is slightly less peaked than that of the real data,
but overall the real and mock distributions are quite similar

in their photometric properties. As noted above, the goal of
the mocks is not to exactly reproduce the real data distri-
butions.

3.2.2 Mock Spectroscopic Training Set

We construct the mock spectroscopic training set by piecing
together a variety of different catalogs with different selec-
tion functions, each meant to qualitatively represent one of
the spectroscopic training samples described above in §3.1.2.
We obtain each component catalog of the training set by
generating an independent realization of the mock photo-
metric sample and applying the selection cuts of the spec-
troscopic catalog to the realization. The selection cuts we use
for each component spectroscopic catalog are given in Ta-
ble 1. As discussed in Appendix A2, many of the real training
set galaxies are located in the southern celestial stripe, which
was imaged repeatedly by the SDSS. In the real training set,
multiple photometric measurements of the same galaxy were
treated as independent. We have simulated this effect in the
mock training set by regenerating the magnitudes of each
galaxy in the mock training sets as needed. The number of
unique mock galaxies and total number of galaxies (count-
ing all realizations of the same galaxy as different objects)
are shown in the second and third columns of Table 1. For
comparison, we have also generated spectroscopic catalogs
with the same total number of objects but using only unique
objects. We found no discernible differences in the resulting
photo-z’s or weights.

The r-magnitude, color (g − r and r − i), and spectro-
scopic redshift distributions of the spectroscopic samples for
the mock SDSS DR6 data are shown in Figs. 1, 2, and 3.
As is evident from comparison of the a and b components
of Figs. 1 and 2, there are some noteworthy differences be-
tween the selection cuts used for the mock training set and
the actual target selection cuts applied in constructing the
spectroscopic surveys described in §3.1.2 and Appendix A2.
For example, for the SDSS spectroscopic catalog, the mock
sample is flux limited at r = 18, while the actual spectro-
scopic catalog comprises the MAIN sample, with a flux limit
of r = 17.7, and the LRG sample, with red colors and a
flux distribution that peaks around r ∼ 19. For the other
spectroscopic surveys, the actual photometric selection cuts
were typically made in non-SDSS passbands, while our mock
data and selection cuts were generated using the SDSS ugriz
bands. Therefore, the mock photometric cuts do not exactly
match the actual cuts used. As a result of this mismatch,
e.g., the peak of the r-magnitude distribution of the mock
2SLAQ sample is about one magnitude fainter than the cor-
responding peak in the real data, as shown in the upper left
panels of Figs. 1a and b.

4 APPLICATIONS OF THE WEIGHTING

METHOD I: IMPROVING PHOTOMETRIC

REDSHIFT MEASURES

With the mock and real galaxy catalogs in hand, we can
now test the performance of the weighting method in differ-
ent applications. In this section, we describe the utility of
the weighting method in improving the performance of tra-
ditional photo-z estimates. In the next section, we use the
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Table 1. Mock Spectroscopic Training Set Properties: Number of galaxies and photometric selection cuts applied.

Catalog Unique objects All Objects Selection Cuts

mockSDSS 531,672 531,672 r 6 18.0
mockDEEP+DEEP2 2,419 31,716 g − r < 2.35(r − i) − 0.45,

g − r < 1.95, 1.1 < r − i < 2,
r < 22

mockTKRS+CFRS+CNOC2 1,827 23,681 u < 23, g < 23,
r < 22, i < 22

mock2SLAQ 11,082 51,251 ((r − i) − (g − r))/8 > 0.55,
0.7(g − r) + 1.2(r − i − 0.18) > 1.6,
17.5 6 i 6 19.8,
0.5 < g − r < 3, r − i < 2

weighting method to directly estimate N(z) and compare
the results with photo-z-based estimates.

4.1 Estimating Photo-z Bias and Scatter

We have applied an Artificial Neural Network (ANN) photo-
z estimator, described in Appendix C and in more detail in
Oyaizu et al. (2007), to the SDSS DR6 mock catalog of §3.2.
The network is trained on the mock spectroscopic training
set described in §3.2.2 and used to estimate redshifts for the
mock photometric sample of §3.2.1. We have also trained
and applied the network using the real DR6 data described
in §3.1.

The results of the ANN photo-z estimator are displayed
in Fig. 4, which shows the inferred redshift zphot vs. true red-
shift zspec. Panel (b) shows the results for the mock spectro-
scopic training set, while panel (c) shows the results for the
mock photometric sample. For comparison, panel (a) shows
results for the real SDSS DR6 training set data. As was seen
in Fig. 3b, the redshift distribution of the mock photometric
sample is considerably deeper than that of the mock training
set. Not surprisingly, the photo-z errors as a function of red-
shift for the mock photometric sample are somewhat larger
than one would estimate based on the training set (compare
the 68 and 95% contours in panels (b) and (c)). This is a
problem since, for real (as opposed to mock) galaxy cata-
logs, one does not have the information necessary to make
panel (c), i.e., one can only estimate photo-z performance
using the training set. Since the training set is, as in this
mock example, usually not representative of the photomet-
ric sample, the statistics of photo-z quality for the training
set are not accurate indicators of photo-z quality for the
photometric sample.

To make this point more quantitative, we consider two
standard statistical measures of photo-z quality, the scatter
and bias as functions of spectroscopic redshift,

σ2(zj) ≡ (1/Nj)Σ
Nj

i=1|zphot,i − zspec,i|
2, (8)

b(zj) ≡ (1/Nj)Σ
Nj

i=1(zphot,i − zspec,i), (9)

where Nj is the number of objects in the jth zspec bin, i.e.,
with true redshifts in the interval zj ± ∆z. Fig. 5 shows
these measures for the mock training sample (left panels)
and photometric sample (right panels) for five different neu-
ral network solutions. These five solutions come from net-

works with the same structure (same number of layers and
nodes per layer, see Appendix C) but with different initial
values for the network weights wiαβ . The left panels of Fig.
5 show that the different solutions yield essentially identi-
cal results for the scatter and bias for the training set, but
the right panels show a dispersion of quality measures for
the photometric sample. We can address this issue by work-
ing with the average of the five photo-z solutions for each
galaxy. The solid (black) curve in the top right panel of Fig.
5 shows that the average photo-z solution results in a b(z)
that is the average of the biases of the individual neural net
solutions, as may be expected. The bottom right panel of
Fig. 5 shows a more interesting result, that the scatter of
the average photo-z solution is considerably smaller than
the average scatter of the individual neural net solutions.

Even if one uses the average photo-z solution, compar-
ison of the left and right panels of Fig. 5 demonstrates the
qualitative point made above, that the scatter and bias vs.
redshift for the training set are not accurate estimators of
the scatter and bias over the full redshift range for the pho-
tometric sample. As shown more explicitly in Fig. 6, the
training set scatter and bias tend to underestimate those
measures for the photometric sample, particularly at red-
shifts zspec < 0.3. This is simply because the training-set
objects are generally brighter than those in the photometric
set at similar redshift, which implies that the training-set
galaxies have smaller photometric errors and consequently
smaller photo-z errors.

The weighting procedure provides a straightforward av-
enue for addressing this problem of estimating the photo-
z scatter and bias for the photometric sample. Since the
weighted training set has, by construction, magnitude dis-
tributions similar to those of the photometric set, we can
instead use weighted versions of σ(z) and b(z) for the train-
ing set as estimates of the scatter and bias for the photo-
metric set, i.e.,

σ2
w(zj) ≡

(

1

Σ
Nj

i=1wi

)

Σ
Nj

i=1wi|zphot,i − zspec,i|
2, (10)

bw(zj) ≡

(

1

Σ
Nj

i=1wi

)

Σ
Nj

i=1wi(zphot,i − zspec,i), (11)

where the weights wi are given by Eqn. (1) and the sums
are over all objects in the training set. Fig. 6 shows the
scatter and bias for the training set, the weighted training
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Figure 4. zphot vs. zspec for (from left to right): (a) the real SDSS DR6 training set, (b) the mock SDSS training set, (c) the full mock
photometric set, and (d) the recoverable mock photometric set, i.e. the part of the mock photometric set that is well represented in the
training set. The dashed and dotted curves enclose 68% and 95% of the points in each zspec bin. In the lower right of each panel, σ is
the rms photo-z scatter averaged over all objects in the catalog, and σ68 is the range containing 68% of the objects in the distribution
of zphot − zspec.

set, and the full photometric set, where the average photo-
z of the five neural network solutions has been used. We
see that the weighted training set yields estimates of scatter
and bias that are much closer to those of the photometric set
over the entire redshift range. Moreover, as noted in §2.4, we
expect the weighting method to work best for the recoverable

portion of the photometric sample. Fig. 6 also shows the
scatter and bias vs. redshift for the recoverable photometric
sample, showing that the weighted training-set estimates are
very accurate in this case.

Since the weights can be used to improve the estimates
of photo-z scatter and bias for the photometric set, one
might hope that the weights could also be used to improve
the photo-z solution itself. However, because of the large
number of degrees of freedom of the ANN, most of the infor-
mation for the photo-z solution comes from small regions in
the space of photometric observables around each training-
set object. The weights do not vary strongly over those small
regions, and therefore the photo-z solution does not change
significantly between the unweighted and weighted cases.

4.2 Estimating Photo-z Errors

As demonstrated above, the weighting procedure improves
the estimates of photo-z scatter and bias for a photometric
sample but does not improve the photo-z accuracy itself. An-
other issue, which we now discuss, is the accuracy of photo-z
error estimates.

We estimate photo-z errors for objects in the photomet-
ric catalog using the Nearest Neighbor Error (NNE) estima-
tor (Oyaizu et al. 2007). The NNE method is training-set
based and associates photo-z errors to photometric objects
by considering the errors for objects with similar multi-band
magnitudes in a spectroscopic sample, hereafter termed the
“validation set”. The validation set is chosen to be indepen-
dent of the training set in order to avoid the issue of overfit-
ting, i.e., so that the ANN is not trained to fit the statistical
fluctuations of the training set, which would result in NNE
underestimating the photo-z errors.

The NNE procedure to estimate the redshift error σNNE

for a galaxy in the photometric sample is as follows. Using
the distance measure of Eqn. (3), we find the validation-
set nearest neighbors in magnitude space to the galaxy of

interest. Since the selected nearest neighbors are in the
spectroscopic sample, we know their photo-z errors, δz =
zphot − zspec, where zphot has been estimated using the neu-
ral network method. We calculate the 68% width of the δz
distribution for the neighbors and assign that number as the
photo-z error estimate for the photometric galaxy. Here we
select the nearest 100 neighbors of each object to estimate
its photo-z error. In studies of photo-z error estimators ap-
plied to mock and real galaxy catalogs, we found that NNE
accurately predicts the photo-z error when the training set
is representative of the photometric sample (Oyaizu et al.
2007). Here we investigate what happens when the training
set is not representative, and we also consider the impact
of weighting the neighbors using Eqn. (4) in computing the
NNE estimate.

Figure 7 shows the distributions of (zphot−zspec)/σNNE,
i.e., the photo-z error distribution normalized by the NNE
error estimate σNNE, for the training set (upper left panel),
for the photometric set using unweighted (upper right) and
weighted (lower left) validation-set objects, and for the re-
coverable photometric set (lower right) using the weighted
validation set. The dashed curves in these panels show Gaus-
sian fits to the error distributions; we also indicate the
best-fit Gaussian means (µGauss) and standard deviations
(σGauss), as well as the σ68 widths (about zero) of the distri-
butions (not of the fits). The Gaussian fits give equal weight
to each bin of the distributions and ignore objects for which
σNNE = 0. We see that the overall normalized error distribu-
tions are close to Gaussian for all the catalogs and that there
is little difference among the four cases. We conclude that
the NNE error estimate is robust even when the training
set is not representative and that the weights do not signif-
icantly affect the NNE estimator. In retrospect the latter is
not too surprising since the NNE estimate is derived from
a typically small nearest neighbor region, over which the
weights do not vary strongly.

4.3 Deconvolving the Photo-z Distribution

The photometric redshift distribution is the convolution of
the true redshift distribution N(zspec) with the distribution
of photometric redshift errors. For discrete distributions we
can express this as
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Figure 5. Upper panels: Photo-z bias b vs. zspec for the 5 neural network photo-z solutions for the mock SDSS sample: (top left) training
set (unweighted) and (top right) photometric set. Lower panels: Photo-z scatter σ vs. zspec for the 5 NN photo-z solutions of the (bottom
left) training set and (bottom right) photometric set.

N(zphot)i =
∑

j

P (zphot|zspec)ijN(zspec)j (12)

where the indices i and j refer to bins of zphot and zspec,
respectively, and P (zphot|zspec)ij is the probability that a
galaxy has photo-z in bin i given that its spectroscopic red-
shift is in bin j.

As noted in Padmanabhan et al. (2005), we can solve
Eqn. (12) for N(zspec) by inverting P (zphot|zspec)ij . How-
ever, the inversion problem is ill-conditioned for two reasons.
First, the convolution is a smoothing operation, and some of
the information in N(zspec)j is irretrievably lost in that pro-

cess. Second, small errors in P (zphot|zspec)ij are magnified
by the matrix inversion.

Both problems can be alleviated by using prior infor-
mation to regularize the inversion and restore some of the
lost information. Following Padmanabhan et al. (2005), we
use a forward difference operator, defined as

S =

Nbin−1
∑

j=0

([

N(z)
]

j+1
−

[

N(z)
]

j

)

, (13)

as a prior on the smoothness of the reconstruction. To incor-
porate the prior information into the deconvolution proce-
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Figure 6. (Left) Photo-z bias vs. zspec and (right) scatter vs. zspec for the weighted and unweighted mock SDSS training set as well
as for the mock photometric set and the recoverable photometric set. The weighted training set results more accurately match those for
the photometric set and very accurately match those for the recoverable photometric set.

dure, we must represent the deconvolution as a minimization
problem. If we define

E0 ≡
∑

i

∣

∣

∣
P−1(zphot|zspec)ij

[

N(zspec)
]

j

−
[

N(zphot)
]

i

∣

∣

∣

2

, (14)

then the deconvolution can be stated as the problem of min-
imizing E0 with respect to N(z). To incorporate the prior,
we define

E = E0 + λS , (15)

and the regularized deconvolution is achieved by minimizing
E. The parameter λ sets how much importance is given to
the smoothing and is often chosen ad hoc. Here, following
Press et al. (1992), we set

λ =
Tr

(

P T (zphot|zspec) · P (zphot|zspec)
)

Tr
(

BT · B
) , (16)

where B is the (Nbin − 1) × (Nbin) first difference matrix
given by B = δ(i+1)j −δij . This choice of λ gives comparable
weight to both parts of the minimization.

The preceding discussion summarizes the “standard”
photo-z deconvolution method for estimating the redshift
distribution. The weighting method can provide a better
estimate of P (zphot|zspec)ij for the photometric sample, re-
ducing the need for regularization and thereby improving
the deconvolution estimate of N(zspec). We can incorporate
the weights into the estimation of P (zphot|zspec)ij by cal-
culating, for each zspec bin, the zphot distribution for the
weighted training-set galaxies.

We postpone discussion of the performance of the de-
convolution and weighted deconvolution methods to the
next section, where we compare them with direct application
of the weighting method to estimation of N(zspec).

5 APPLICATIONS OF THE WEIGHTING

METHOD II: ESTIMATES OF N(Z) AND

P (Z) IN MOCK PHOTOMETRIC SAMPLES

5.1 The redshift distribution N(z)

We now have at hand a number of methods for estimat-
ing the true redshift distribution N(z) for a photometric
galaxy sample. Using photo-z’s, one can simply use the
photo-z distribution itself, N(zphot), as an estimator, or
the deconvolved photo-z distribution described in §4.3, or
the weighted, deconvolved photo-z distribution mentioned
at the end of §4.3. Alternatively, one can use the weighted
spectroscopic redshift distribution of the training-set galax-
ies to directly estimate N(z), i.e., Eqn. (5), without recourse
to photo-z’s. Finally, we can sum the redshift probability
distributions p(z) for each galaxy in the photometric sample
(again estimated from the weighted training set) to estimate
N(z), using Eqn. (6). In this section, we compare results of
these different estimates of N(z) using the mock SDSS DR6
sample. The results are summarized in Tables 2 and 3 and
the best results for each method are shown in Figs. 8, 9, and
10.

5.1.1 Measures of Reconstruction Quality

To compare the different methods, we need a statistical mea-
sure of the quality of the reconstruction of the estimated
redshift distribution. We use two. The first is a χ2 statistic
(per degree of freedom and per galaxy), defined here as

(χ2)X ≡
1

Nbin − 1

Nbin
∑

i=1

[

N(zi)X − N(zi
spec)

P
]2

N(zi
spec)P∆z

. (17)

Here Nbin is the number of redshift bins used, ∆z is the

c© 0000 RAS, MNRAS 000, 000–000



12 Cunha et al.

Figure 7. Distributions of (zphot − zspec)/σNNE for the (top left) training set, (top right) photometric set (using unweighted validation
set), (bottom left) photometric set (using weighted validation set), and (bottom right) recoverable photometric set (using weighted
validation set).

width of the bins, and N(zi)X is equal to N(zi
spec)

T
wei if

the weighting procedure is used or to N(zi
phot)

P if the red-
shift distribution is instead estimated using photo-z’s. The
usual definition of χ2 uses the numbers of objects in given
bins instead of the normalized probability N(zi); multiply-
ing our χ2 by NP,tot∆z gives the usual definition. We chose
the above statistic so that it is independent of the number
of galaxies and the number of redshift bins, allowing us to
more fairly compare reconstruction quality across different
data sets. Since the probabilities are normalized, the number
of degrees of freedom is Nbin − 1.

The second measure we employ is a binned version of

the Kolmogorov-Smirnov (KS) statistic, defined as the max-
imum difference between the two cumulative redshift distri-
butions being compared, for example, the cumulative dis-
tributions corresponding to N(zi

spec)
T
wei and N(zi

spec)
P. The

KS statistic is more sensitive to differences in the medians
of the two distributions being compared, whereas the χ2

statistic tends to stress the regions of the distribution that
are least well sampled, i.e., regions where N(zi) is small.
In our implementation, we use binned cumulative distribu-
tions instead of unbinned cumulative distributions, so this
statistic is not strictly the KS statistic.

Note that we do not use the absolute values of these
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Figure 8. True spectroscopic redshift distribution (solid grey) of
the mock SDSS photometric sample, and estimates of the redshift
distribution using the photo-z distribution (hatched) and decon-
volved photo-z distribution (black line).

Figure 9. True spectroscopic redshift distribution (solid) of the
recoverable mock photometric sample, and estimates of the red-
shift distribution using the photo-z distribution (hatched) and
deconvolved photo-z distribution (black line).

statistics as formal goodness-of-fit measures. Rather, we use
their relative values for the different estimators to compare
the quality of the different reconstructions—see Table 2.

5.1.2 Photo-z Estimates of N(z)

The photo-z estimate N(zphot) of the true redshift distribu-
tion for the mock SDSS photometric sample is shown in Fig.
8 (hatched histogram). We can see that N(zphot) underes-
timates the true distribution, N(zspec) (grey histogram), at
both low and high redshifts and overestimates it at inter-
mediate redshifts, 0.4 < zspec < 0.8. In addition, the peak
of N(zphot) is biased with respect to the peak of N(zspec).
Comparing the two distributions, we find that χ2 = 0.107
and KS = 0.0848. The photo-z and true redshift distribu-
tions for the recoverable photometric sample are shown in
Fig. 9 (hatched and grey histograms). Again, N(zphot) un-
derestimates N(zspec) at low and high redshifts and over-
estimates it in between. The reconstruction statistics are
similar to those for the full photometric sample, χ2 = 0.105
and KS = 0.0674. This indicates that the faithfulness of
N(zphot) as an estimate of the true redshift distribution is
not very sensitive to whether the training set is representa-
tive of the photometric sample: the errors in the recovered
redshift distribution are dominated by a systematic effect.
The fact that N(zphot) is more sharply peaked than N(zspec)
is a common feature of training-set-based photo-z estimates
and results from the breakdown of the fundamental photo-z
assumption that a single zphot can represent a full redshift
distribution 1. For the full photometric sample the peak in
N(zphot) is not as pronounced as it is for the recoverable
photometric sample, because the larger photo-z scatter in
regions not covered by the training set smoothes out the
peak.

We have also tested the photo-z deconvolution method
of §4.3 as an estimate of the redshift distribution. The stan-
dard (unweighted) deconvolution was not successful at re-
covering N(z), with χ2 = 0.577, KS = 0.124 for the full
photometric sample and χ2 = 0.499, KS = 0.140 for the
recoverable photometric sample. The result for the weighted

deconvolution method, where the weights have been esti-
mated using the five nearest neighbors, is shown by the black
line in Fig. 8; it is also not very effective for the full photo-
metric sample, with χ2 = 0.521 and KS = 0.989. Although
the peak of the deconvolved redshift distribution is at the
correct redshift, the distribution shows an oscillatory be-
havior with redshift. However, as shown in Fig. 9 (black line
vs. grey histogram), the weighted deconvolution performs
much better for the recoverable photometric sample, with
χ2 = 0.0648 and KS = 0.0266.

The deconvolution estimate of the redshift distribution
oscillates about the true distribution. This kind of behav-
ior is typical of the inversion techniques used to perform
the deconvolution. It can be alleviated by either increas-
ing the training-set size, decreasing the number of redshift
bins, or using prior knowledge to improve the estimate of
P (zphot|zspec). We briefly investigate the second of these
possibilities. As Table 3 shows, using only 20 as opposed
to 30 redshift bins improves the deconvolution estimate,
χ2 = 0.0509 and KS = 0.0235 (here with weights calcu-

1 Maximum-likelihood template-fitting photo-z methods suffer
from a similar problem but with opposite consequences. Because
of the different way in which p(z|observables) is estimated in those
cases, N(zphot) tends to be flatter than the true redshift distri-
bution (Brodwin et al. 2006)
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Figure 10. True spectroscopic redshift distribution (solid grey)
of the recoverable mock photometric sample, and estimates of the
redshift distribution using the weights (hatched) and p(z) (line)
methods.

lated using the two nearest neighbors). However, fewer bins
means coarser redshift information, so it would be preferable
to find a method that can accommodate a large number of
redshift bins. Table 3 also shows that the other methods are
not as sensitive to the number of bins. The deconvolution
can also be improved by Monte Carlo resampling the train-
ing set (Padmanabhan et al. 2005). Ideally, the resampling
should be done in the space of observables used to calcu-
late the photo-z’s. However, this approach is prohibitively
time consuming for large datasets, and it requires accurate
knowledge of the magnitude errors – which may be hard to
obtain.

5.1.3 Weighting Method Estimates of N(z)

The direct estimate of the redshift distribution for the pho-
tometric sample using the weighting method of Eqn. (5),
N(z)wei, is shown by the hatched region in Fig. 10. By con-
struction, this estimate is the same for both the full and
the recoverable photometric samples, that is, the weight-
ing method in practice provides an estimate of the redshift
distribution for the recoverable photometric sample. Com-
parison with the true redshift distribution of the recover-
able sample (solid grey histogram in Fig. 10) shows that the
weighting method provides the best redshift distribution es-
timate of any of the methods under consideration here. For
the full photometric sample, χ2 = 0.0341 and KS = 0.0456
(using 100 nearest neighbors), and for the recoverable sam-
ple, χ2 = 0.00571 and KS = 0.0145 (with 5 nearest neigh-
bors). As shown in Table 2, N(z)wei is relatively insensitive
to the number of neighbors used in the calculation.

Finally, using the sum of the p(z) estimates for each
galaxy in the photometric sample is almost identical to using
the weights to estimate N(z). The estimate N(

∑

p(z)) of

Table 2. Redshift Distribution Reconstruction Statistics - 30 bins

Full Photometric Set χ2 KS parameter

Photo-z 0.107 0.0848
Photo-z deconvolution (no weights) 0.577 0.124
Photo-z deconvolution (100 nb) 0.521 0.0989
Weights (100 nb) 0.0341 0.0456

Recoverable Photometric Set

Photo-z 0.105 0.0674
Photo-z deconvolution (no weights) 0.499 0.140
Photo-z deconvolution (2nb) 0.0682 0.0295
Photo-z deconvolution (5nb) 0.0648 0.0266
Photo-z deconvolution (100nb) 0.102 0.0351
Weights (2 nb) 0.00624 0.0129
Weights (5 nb) 0.00571 0.0145
Weights (100 nb) 0.00643 0.0246

p(z) (2 nb) 0.00540 0.0219
p(z) (5 nb) 0.00493 0.0201
p(z) (100 nb) 0.00534 0.0241

nb = neighbors

Table 3. Redshift Distribution Reconstruction Statistics - 20 bins

Recoverable Photometric Set χ2 KS parameter

Photo-z 0.105 0.0674
Photo-z deconvolution (no weights) 0.404 0.125
Photo-z deconvolution (2 nb) 0.0509 0.0235
Photo-z deconvolution (5 nb) 0.0566 0.0232
Photo-z deconvolution (100 nb) 0.0971 0.0290

Weights (2 nb) 0.00484 0.0129
Weights (5 nb) 0.00467 0.01327
Weights (100 nb) 0.00547 0.0232

nb = neighbors

the redshift distribution is shown by the solid black line in
Fig. 10, using 5 nearest neighbors to estimate p(z). For this
case, from Table 2 we have χ2 = 0.00493, KS = 0.0201 for
the recoverable photometric set, quite close to the values for
the N(z)wei estimate. Table 2 also shows that using fewer
nearest neighbors slightly improves the KS statistic but not
the χ2 statistic. Moreover, by using fewer neighbors, one is
unable to accurately characterize p(z), so we caution against
using fewer than 100 neighbors in the weighted estimate of
p(z).

5.1.4 Error estimate for N(zwei)

From Eqns. (1) and (2), the errors in the weights depend
upon the uncertainties in determining the volumes of the
training-set and photometric-set regions around an object
and upon the uncertainties in the number of nearest neigh-
bors for both the training and photometric sets. All of these
quantities are correlated, making error estimation for the
weighting method a challenge. Instead, we apply a bootstrap
resampling procedure to directly estimate the errors in the
quantity of interest, in this case the weighted estimate of the
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Figure 11. True spectroscopic redshift distribution (solid grey)
of the recoverable photometric set, the estimated redshift dis-
tribution using the weighting method (hatched region), and the
mean of the bootstrap samples for the weighting method (black
line). The error bars are given by the square root of the diago-
nal terms of the covariance matrix calculated from the bootstrap
samples.

redshift distribution, N(z)wei. We sample with replacement
from the training and photometric sets to generate resam-
pled training and photometric sets of the same sizes as the
originals. Then, for each pair of resampled training and pho-
tometric sets, we calculate the weights using Eqn. (4) and
generate N(z)wei using Eqn. (5). We repeat this procedure
10, 000 times and estimate the covariance matrix by

C(zα, zβ) =
1

ns − 1
×

ns
∑

i=1

(N̂i(zα) − 〈N̂(zα)〉)(N̂i(zβ) − 〈N̂(zβ)〉) , (18)

where ns is the number of bootstrap samples, N̂i(z) is the
weighted estimate of the redshift distribution in the ith boot-
strap sample, and 〈N̂(z)〉 is the mean of the bootstrap es-
timates. The correlation matrix is defined in the usual way
by ρ(zα, zβ) = C(zα, zβ)/σ(zα)σ(zβ).

Fig. 11 shows N(z)wei (hatched), the mean of the boot-
strap estimates (solid black), and error bars given by the
square root of the diagonal elements of the covariance ma-
trix. There are small anti-correlations between nearby red-
shift bins, of at most -0.2. Correlations between non-adjacent
bins are smaller by at least an order of magnitude.

5.1.5 Correcting Systematic Errors in the N(z) Estimate

From Fig. 10, we note that the N(zwei) distribution is
slightly flatter than N(zspec), a feature that also shows up
in other catalogs (see, e.g., Lima et al. 2008). This smooth-
ing of the redshift distribution is a consequence of using

non-negligibly small regions in magnitude space around the
training-set galaxies to estimate the weights. This is es-
pecially problematic for regions where the training set is
sparse, for then the “neighbor volume” used to calculate
the weights may be large compared to the typical scale of
change of the redshift/observable hypersurface. The prob-
lem is compounded when photometry errors are large, be-
cause large errors broaden the redshift distribution in a bin
of observables. Broader distributions require a larger num-
ber of training-set objects in order to be well characterized,
but increasing the number of training-set nearest neighbors
in the weights calculation increases the non-locality of the
estimate. The ideal solution would be to increase the total
number of training-set objects in the sample, or at least the
number in sparsely covered regions, but that is not always
an option. The poor man’s alternative is to develop ways to
characterize and correct for the systematic errors.

An empirical approach we have developed makes use
of the photometric redshifts in the following way. Starting
with the training set, compute the photo-z distribution of
the weighted training set, N(zphot)wei, i.e., use Eqn. (5) but
with z replaced by zphot everywhere. The difference between
N(zphot)wei and the photo-z distribution for the photometric
sample, N(zphot), is shown by the dotted line in Fig. 12. The
bias we are actually interested in is N(zspec)wei − N(zspec),
shown by the solid line in Fig. 12. We see that these two
differences have similar behavior with redshift, presumably
due to similar non-locality of the weight solution in re-
gions where the training set is sparse. We can therefore use
N(zphot)wei − N(zphot), the bias in the weighted photo-z
distribution and which is an observable for the photometric
sample, to estimate N(zspec)wei − N(zspec), the systematic
error in the weighted estimate of the true redshift distribu-
tion. The redshift distribution estimate can then be approx-
imately corrected for this bias.

To reduce the effect of random errors in the estima-
tion of the bias, we smooth N(zphot)wei − N(zphot) using a
“moving window” method. Each redshift window has width
greater than half of the separation between window cen-
troids. The smoothing factor is the ratio of the window size
to the redshift bin size when no smoothing is used. We
have used smoothing factors of 1, 2, 3, and 5 to calculate
N(zphot)wei−N(zphot). A smoothing factor of 1 corresponds
to a window size of 0.0367 in redshift. We picked the other
smoothing factors based on the natural scales set by the σ
and σ68 of the photo-z’s in the training and photometric
sets.

Table 4 shows the recovery statistics for the distribu-
tions corrected for systematics in this way, and Fig. 13 shows
the improvement in the N(z) estimate when the correction
with smoothing factor of 2 is applied. While these results
are suggestive, more testing should be done before adopting
this method as a correction for systematic errors in practice.

5.2 The Probability Distribution p(z)

In this section we examine the effectiveness of the weighted
training set in estimating the redshift probability distribu-
tion p(z) for individual galaxies, and the relation between
p(z), zphot, and zspec. For this study, we have increased
the size of the mock photometric set to 9, 000, 000 galaxies
in order to improve the statistics. As before, we calculate
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Figure 12. Bias in the weighting-method estimate of the redshift
distribution for the recoverable photometric set. Solid line shows
the bias in the true redshift distribution. Dotted line shows the
bias in the weighted photo-z distribution, also for the recoverable
photometric set. Since they approximately match, we can use the
bias in the weighted photo-z distribution, which is an observable,
to estimate the bias in the weighted true redshift distribution.

Figure 13. True spectroscopic redshift distribution (solid grey)
of the recoverable photometric set, and the estimated redshift
distribution using the weighting method, showing both the un-
corrected results (hatched) and results corrected for systematic
errors (black line) as described in the text.

Table 4. Redshift Distribution Reconstruction Statistics - Cor-

rection of Systematics

Recoverable Photometric Set - 5 neighbors - 0 < z < 1.1

Smoothing factor χ2 KS parameter

No correction 0.00571 0.0145
Unsmoothed 0.00487 0.0151
2 0.00351 0.0127
3 0.00349 0.0134
5 0.00355 0.0131

Bootstrap mean (no correction) 0.00600 0.0189

the training-set estimate of p(z), hereafter p(ztrain), for a
training-set galaxy by selecting its 100 nearest neighbors in
the training set. The spectroscopic redshift distribution of
these objects is p(ztrain). We then select all the galaxies in
the photometric sample that are closer to the given galaxy in
magnitude space than its 100th-nearest training-set neigh-
bor. The spectroscopic redshift distribution of the selected
photometric galaxies is, barring statistical fluctuations and
non-locality, the true redshift distribution, hereafter p(ztrue),
of the region of observable space centered about the selected
galaxy.

In Figure 14 we show the redshift distributions for three
galaxies. In each panel, p(ztrue) is shown as a grey histogram
with 60 bins, and p(ztrain) is shown as the hatched histogram
with 20 bins. We have rescaled the histograms by multiply-
ing each by the width of the histogram bin for easier com-
parison of the distributions. The solid vertical line indicates
the true redshift of the galaxy and the dashed vertical line
indicates its ANN zphot estimate. The left panel of the figure
is for an early-type (T = 1.5) galaxy with r-mag of 20.67 and
zspec = 0.48. This galaxy has 4,006 neighbors in the photo-
metric sample, i.e., that many photometric objects are as
close to it in magnitude space as its 100 nearest training-set
neighbors. In this example, the true redshift distribution of
this region of observable space is narrow, p(ztrain) is a quite
accurate estimate of p(ztrue), zphot is very near zspec, and
both are at the peak of the p(z) distributions.

The middle panel shows the distributions for a late-
type (T = 3.1) galaxy with r = 21.1 and zspec = 0.56.
There were 14,606 neighbors to this galaxy in the photo-
metric sample. With the exception of the extreme tails of
the distribution, p(ztrain) provides an accurate estimate of
p(ztrue). The redshift PDF p(ztrue) for this galaxy is much
broader than that for the galaxy in the left panel, in part
because the magnitudes of late-type galaxies do not corre-
late with redshift as well as those of early types. The neural
network photo-z is 0.39 for this object, higher than the peak
of p(ztrain) at z = 0.3 or its median at z = 0.34. The true
redshift of this object, zspec = 0.56, is far removed from the
peak of its redshift distribution. However, the photo-z error,
zphot − zspec = 0.16, is comparable to the photo-z scatter at
this redshift, σ(zspec = 0.56) ∼ 0.13 (see bottom right plot
of Fig. 5), which shows that this example is not atypical.
The broader p(ztrue) is, the more likely it is that zspec will
be far from the peak of the distribution. In that case, the
photo-zestimator cannot zero in on the correct redshift, and
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a single-point zphot estimate will be a poor redshift estimate
for a large fraction of the objects in this region of observable
space.

The right panel of Fig. 14 shows the distributions for
another early-type (T = 1.4) galaxy with r = 21.8 and
zspec = 0.31, with 18,366 neighbors in the photometric set.
This is the most pathological of the three examples. The
large width of p(ztrue) for this galaxy is due to its faint-
ness, which results in large magnitude errors. The peaks of
p(ztrain) and p(ztrue) are offset by ∼ 0.1 − 0.2, and p(ztrain)
shows a spurious second peak at z ∼ 1. Such fluctuations are
not uncommon when one uses 100 galaxies to estimate p(z).
The true redshift of this galaxy is at the low-redshift tail of
p(ztrue), and zphot for this object is catastrophically wrong
even though it is near the peak of p(ztrue). The catastrophic
error results from using a single number to represent a very
broad distribution, and in this case the galaxy in question
is quite different from most of its neighbors in magnitude
space. For a photometric survey, the redshift distribution is
typically broad near the photometric limit of the survey. To
avoid catastrophic errors and biases, one should work with
the full redshift probability distribution per object.

6 APPLICATION TO SDSS DR6 DATA

Now that we have tested the weighting method on mock
SDSS photometric samples, we apply it to the actual SDSS
DR6 photometric sample.

6.1 Bias and Scatter in SDSS Photo-z’s

Oyaizu et al. (2007) estimated photo-z’s for the SDSS DR6
photometric sample using an artificial neural network (see
Appendix C) and several different combinations of photo-
metric observables. One version, denoted there by D1, used
as input observables the five magnitudes ugriz and five con-
centration indices, also splitting the training set and the
photometric sample into 5 bins of r magnitude and per-
forming separate ANN fits in each bin. Version CC2 used as
inputs the four colors u− g, g − r, r − i, i− z, plus the con-
centration indices in g, r, and i. Here, as in §4.1, we use the
weighting method to obtain improved estimates of the bias
and scatter of these photo-z estimates. Figure 15 shows the
weighted and unweighted b(z) and σ(z) estimates derived
from the training set, along with third-order polynomial fits
to the weighted estimates. The polynomial fit coefficients are
given in Table 5. The differences between the weighted and
unweighted b(z) and σ(z) curves are qualitatively consistent
with the results on the mock sample (Fig. 6), but the real
data have larger scatter and bias than the mocks.

6.2 The SDSS Redshift Distribution

Fig. 16 shows the weighting method estimate, N(z)wei, for
the redshift distribution of the SDSS DR6 photometric sam-
ple with r < 22. The error bars on N(z)wei are given by the
square root of the diagonal elements of the covariance matrix
obtained by the bootstrap resampling procedure described
in 5.1.4.

The coarse-grained structure of the redshift distribution

is similar to that of the mock SDSS sample (Fig. 3). How-
ever, the fine-grained structure shows peaks and dips that
the study of §5.1.5 suggests are indications of systematic er-
ror. As noted there, large photometric errors, combined with
sparseness of the training set, can lead to distortions of the
inferred redshift distribution. This effect is likely present in
the weighted estimate of the SDSS DR6 redshift distribu-
tion for galaxies with r < 22. The bump in N(z)wei around
z = 0.75 is the result of the magnification of the sampling
errors in the training set caused by the lack of redshift infor-
mation in the photometry of faint galaxies, combined with
the lack of training-set coverage in that redshift range. When
we impose more stringent r-magnitude cuts, Fig. 17 shows
that the feature disappears.

We see another feature in N(z)wei in the range
0.2 < z < 0.4 that does not go away with tighter r-
mag cuts (see Fig. 17). Similar features can be seen in
the zCOSMOS+DEEP2/EGS redshift distribution used by
Mandelbaum et al. (2007) (see the bottom right panel of
Fig. 4 of Mandelbaum et al. 2007), in the CNOC2 distribu-
tion used in our training set (see Fig. 2 in Lima et al. 2008),
and in the full CNOC2 sample shown in Lin et al. (1999).
The feature in the DEEP2 data appears to be caused, at
least partially, by spectroscopic failures affecting both early-
and late-type galaxies in that redshift range (J. Newman,
private communication), and it is possible that this is af-
fecting the weighted estimate. In general, one should not
expect that the redshift distribution of a sample flux-limited
in one filter will be smooth, due to k-correction-like effects.
The complex shape of the spectral energy distributions of
galaxies implies that a flux limit based on a single filter will
preferentially select certain galaxy types at certain redshifts.
We do not see such a feature in the mock SDSS catalog,
because the mock was created with a smooth r-magnitude
distribution and redshift distribution, and we only applied
a cut in the r-band.

7 DISCUSSION AND FUTURE WORK

We have extended and applied the weighting technique of
estimating redshift distributions (Lima et al. 2008). The
weighting procedure allows one to use a spectroscopic train-
ing set to accurately estimate the bias and scatter of photo-
z’s as a function of redshift. In addition, the weighting
method provides a natural, robust way to select galaxies
in the photometric sample that are well represented in the
training set. Moreover, we have shown that the weighting
technique provides a precise estimate of the redshift distri-
bution of a photometric sample in the region of observable
space where the training set and the photometric sample in-
tersect. The estimate N(z)wei more accurately estimates the
redshift distribution for a photometric sample than meth-
ods based on photo-z’s. We have also extended the weight-
ing method to estimate the redshift probability distribution
function for individual galaxies, p(z). Use of this PDF can
substantially reduce biases associated with the use of single-
point photo-z estimates, and we recommend its use in the
analysis of future photometric galaxy surveys.

For the future, further investigations of the weighting
method should include study of optimizing the weights esti-
mation, e.g., with a variable number of nearest neighbors in
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Figure 14. Distributions of p(ztrue) (solid grey histograms) and p(ztrain) (hatched histograms) for three training-set galaxies in the mock
SDSS sample. The vertical solid (dashed) lines indicate zspec(zphot) for each galaxy. Left: an early-type galaxy at z = 0.48; middle: a
late-type galaxy at z = 0.56; right: a faint, early-type galaxy at z = 0.31.

Figure 15. Left panels: Estimated photo-z bias vs. redshift for the weighted and unweighted training set of the SDSS DR6 catalog for
four cases: (top left) D1 photo-z’s with r < 21, (top right) D1 photo-z’s with r < 22, (bottom left) CC2 photo-z’s with r < 21, and (bottom
right) CC2 photo-z’s with r < 22. Right panels: Estimated photo-z scatter vs. redshift for the weighted and unweighted training set of
the SDSS DR6 catalog for the same cases depicted in the left panels. In each plot the dashed line corresponds to the unweighted result,
the solid dark line to the weighted result, and the solid red line is a 3rd order polynomial fit to the weighted result. The fit coefficients
are given in Table 5.

different regions of observable space, and inclusion of sys-
tematic effects, e.g., associated with large-scale structure
and spectroscopic failures, in the mock catalogs.
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Table 5. Fit coefficients to the weighted estimates of photo-z bias and scatter vs. redshift for SDSS DR6 catalog

D1 Photo-z’s
r < 21 r < 22

b(z) [0.0900269,-0.293255,0.262842,-0.523857] [0.16574,-0.35082,0.192806,-0.355683]
σ(z) [0.167949,-0.82395,1.69819,-0.484006] [0.273305,-0.788055,0.951591,-0.0426683]

CC2 Photo-z’s

b(z) [0.0884344, -0.0574277, -0.607687, 0.279678] [0.193711, -0.527042, 0.421479, -0.408717]
σ(z) [0.217213, -0.77692, 1.36055, -0.406967] [0.329747, -1.0009, 1.31667, -0.262655]

All fits are 3rd order polynomials of the form a1 + a2z + a3z2 + a4z3 .

Figure 16. Estimated redshift distribution for the SDSS DR6 sample (with r < 22), computed using the weighting method (hatched)
and the mean of the bootstrap samples (solid line). The error bars are the diagonal bootstrap errors.
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APPENDIX A: SDSS DR6 DATA SAMPLE

A1 Photometric set

The Sloan Digital Sky Survey (SDSS) comprises a large-
area imaging survey of the north Galactic cap, a multi-
epoch imaging survey of an equatorial stripe in the south

Galactic cap, and a spectroscopic survey of roughly 106

galaxies and 105 quasars (York et al. 2000). The survey
used a dedicated, wide-field, 2.5m telescope (Gunn et al.
2006) at Apache Point Observatory, New Mexico. Imaging
was carried out in drift-scan mode using a 142 mega-pixel
camera (Gunn et al. 2006) that gathers data in five broad
bands, ugriz, spanning the range from 3,000 to 10,000 Å
(Fukugita et al. 1996), with an effective exposure time of
54.1 seconds per band. The images were processed using spe-
cialized software (Lupton et al. 2001; Stoughton et al. 2002)
and were astrometrically (Pier et al. 2003) and photometri-
cally (Hogg et al. 2001; Tucker et al. 2006) calibrated using
observations of a set of primary standard stars (Smith et al.
2002) observed on a neighboring 20-inch telescope.

The imaging in the sixth SDSS Data Release
(Adelman-McCarthy et al. 2007, hereafter DR6) covers a
nearly contiguous region of the north Galactic cap. In
any region where imaging runs overlap, one run was de-

c© 0000 RAS, MNRAS 000, 000–000



20 Cunha et al.

Figure 17. Weighted estimates of the redshift distribution for the SDSS DR6 photometric sample, with r < 21.5, r < 21.8, and r < 22.

clared primary2 and was used for spectroscopic target selec-
tion; other runs were declared secondary. The area covered
by the DR6 primary imaging survey, including the south-
ern stripes, is 8520 deg2, but DR6 includes both the pri-
mary and secondary observations of each area and source
(Adelman-McCarthy et al. 2007).

In this paper, we use a random 1% subset of the SDSS
DR6 Photoz2 catalog described in Oyaizu et al. (2007) as
our photometric sample. The Photoz2 catalog contains all
primary objects from DR6 (drawn from the SDSS CasJobs
website3) that have the TYPE flag equal to 3 (the type for
galaxy) and that do not have any of the flags BRIGHT,
SATURATED, SATUR CENTER, or NOPETRO BIG set.
For the definitions of these flags we refer the reader to the
PHOTO flags entry at the SDSS website4. The full Photoz2
photometric sample comprises 77, 418, 767 galaxies. The r
magnitude, g − r, and r − i color distributions are shown in
the bottom panels of Figs. 1a and 2a.

A2 Spectroscopic training samples

As noted in the text, the spectroscopic training sample
we use for SDSS DR6 is drawn from a number of spec-
troscopic galaxy catalogs that overlap with SDSS imaging.
Each survey providing spectroscopic redshifts defines a red-
shift quality indicator; we refer the reader to the respec-
tive publications listed below for their precise definitions.
For each survey, we chose a redshift quality cut roughly
corresponding to 90% redshift confidence or greater. The
SDSS spectroscopic sample provides 531, 672 redshifts, prin-
cipally from the MAIN and Luminous Red Galaxy (LRG)

2 For the precise definition of primary objects see
http://cas.sdss.org/dr6/en/help/docs/glossary.asp#P
3 http://casjobs.sdss.org/casjobs/
4 http://cas.sdss.org/dr6/en/help/browser/browser.asp

samples, with confidence level zconf > 0.9. The remain-
ing redshifts are: 21, 123 from the Canadian Network for
Observational Cosmology (CNOC) Field Galaxy Survey
(CNOC2; Yee et al. 2000), 1, 830 from the Canada-France
Redshift Survey (CFRS; Lilly et al. 1995) with Class > 1,
31, 716 from the Deep Extragalactic Evolutionary Probe
(DEEP; Davis et al. 2001) with qz = A or B and from
DEEP2 (Weiner et al. 2005)5 with zquality > 3, 728 from
the Team Keck Redshift Survey (TKRS; Wirth et al. 2004)
with zquality > −1, and 52, 842 LRGs from the 2dF-SDSS
LRG and QSO Survey (2SLAQ; Cannon et al. 2006)6 with
zop > 3.

We positionally matched the galaxies with spectroscopic
redshifts against photometric data in the SDSS BestRuns

CAS database, which allowed us to match with photometric
measurements in different SDSS imaging runs. The above
numbers for galaxies with redshifts count independent pho-
tometric measurements of the same objects due to multi-
ple SDSS imaging of the same region; in particular SDSS
Stripe 82 has been imaged a number of times. The numbers
of unique galaxies used from these surveys are 1, 435 from
CNOC2, 272 from CFRS, 6, 049 from DEEP and DEEP2,
389 from TKRS, and 11, 426 from 2SLAQ. The SDSS spec-
troscopic samples were drawn from the SDSS primary galaxy
sample and therefore are all unique.

APPENDIX B: SDSS DR6 MOCK CATALOG

Using spectral template libraries and observational data
on the redshift-dependent luminosity functions of galaxies
of different types, we have constructed mock photometric
and spectroscopic samples that reproduce the main features

5 http://deep.berkeley.edu/DR2/
6 http://lrg.physics.uq.edu.au/New dataset2/
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Table B1. Schechter luminosity function parameters (Zucca et al. 2006) used to derive polynomial fits to the relationships between the
Schechter luminosity function parameters, redshift, and galaxy spectral type. The parameters in Zucca et al. (2006) were derived using
the B-band of the VVDS survey; here we use them to generate the r-band magnitude distributions, using the appropriate k-corrections
by galaxy type (Blake & Bridle 2005)

.

Type z-bin α M∗

AB − 5log(h) φ∗(10−3h3Mpc−3)

1 0.0 - 0.2 −0.15+0.30
−0.30 −20.00+0.30

−0.30 6.15+0.70
−0.70

1 0.2 - 0.4 −0.04+0.28
−0.27 −20.27+0.27

−0.31 5.15+0.64
−0.64

1 0.4 - 0.6 −0.40+0.20
−0.20 −20.49+0.17

−0.18 3.12+0.30
−0.30

1 0.6 - 0.8 −0.22+0.17
−0.17 −20.22+0.09

−0.10 3.53+0.25
−0.25

1 0.8 - 1.0 −0.01+0.25
−0.24 −20.73+0.11

−0.12 2.36+0.18
−0.18

1 1.0 - 1.2 −1.23+0.34
−0.34 −20.53+0.11

−0.12 2.39+0.22
−0.22

1 1.2 - 1.5 −1.30+0.40
−0.40 −20.50+0.30

−0.30 2.3+0.30
−0.30

2 0.0 - 0.2 −0.60+0.20
−0.20 −20.00+0.20

−0.20 7.60+0.90
−0.90

2 0.2 - 0.4 −0.67+0.13
−0.13 −20.13+0.19

−0.21 6.50+0.56
−0.56

2 0.4 - 0.6 −0.50+0.15
−0.14 −19.97+0.12

−0.12 4.35+0.31
−0.31

2 0.6 - 0.8 −0.57+0.13
−0.13 −20.39+0.09

−0.10 4.58+0.26
−0.26

2 0.8 - 1.0 −0.60+0.20
−0.20 −20.55+0.10

−0.11 3.54+0.22
−0.22

2 1.0 - 1.2 −0.76+0.34
−0.33 −20.77+0.12

−0.13 3.01+0.23
−0.23

2 1.2 - 1.5 −1.57+0.61
−0.62 −20.82+0.13

−0.14 2.19+0.22
−0.22

3 0.0 - 0.2 −0.80+0.30
−0.30 −19.00+0.60

−0.60 10.0+0.60
−0.60

3 0.2 - 0.4 −0.84+0.10
−0.10 −19.14+0.12

−0.13 9.82+0.54
−0.54

3 0.4 - 0.6 −1.07+0.10
−0.10 −20.04+0.11

−0.11 6.31+0.30
−0.30

3 0.6 - 0.8 −0.79+0.13
−0.13 −20.10+0.09

−0.09 7.11+0.29
−0.29

3 0.8 - 1.0 −0.87+0.15
−0.15 −20.33+0.08

−0.08 6.27+0.27
−0.27

3 1.0 - 1.2 −1.39+0.26
−0.26 −20.38+0.10

−0.10 5.57+0.33
−0.33

3 1.2 - 1.5 −1.86+0.55
−0.59 −20.81+0.12

−0.13 3.67+0.27
−0.27

4 0.0 - 0.2 −1.55+0.20
−0.20 −19.60+0.40

−0.40 2.60+0.40
−0.40

4 0.2 - 0.4 −1.59+0.11
−0.12 −19.73+0.29

−0.33 2.59+0.13
−0.13

4 0.4 - 0.6 −1.53+0.18
−0.19 −19.38+0.17

−0.18 4.10+0.19
−0.19

4 0.6 - 0.8 −1.35+0.15
−0.15 −19.95+0.12

−0.12 4.07+0.16
−0.16

4 0.8 - 1.0 −1.68+0.20
−0.21 −20.10+0.12

−0.12 4.72+0.20
−0.20

4 1.0 - 1.2 −1.99+0.33
−0.34 −20.19+0.12

−0.12 6.95+0.36
−0.36

4 1.2 - 1.5 −2.50+0.52
−0.91 −20.53+0.12

−0.12 4.34+0.32
−0.32

of the real SDSS DR6 samples. In particular, we fit sim-
ple polynomial functions to the Schechter parameters of
Zucca et al. (2006) to derive a continuous relationship be-
tween the Schechter parameters M∗, α, φ∗, redshift z, and
galaxy type T , using the centroid of each redshift bin for
the fit. To regularize the fits, we visually extrapolate the re-
sults of Zucca et al. (2006) to the z = (0, 0.2) bin and, where
needed, for the (1.2, 1.5) bin.

The Schecter luminosity function is defined as

φ(M)dM =
2

5
φ∗(ln 10)

[

10
2

5
(M∗

−M)
]α+1

× exp
[

−10
2

5
(M∗

−M)
]

dM, (B1)

where φ(M)dM is the number of galaxies with absolute mag-
nitudes between M and M + dM .

The Schechter parameters we use are shown in Ta-
ble B1. The polynomials we derive are:

α = b1T
2 + b2Tz + b3z + b4z

2 + b5 (B2)

M∗ = c1T
2 + c2Tz + c3z + c4z

2 + c5 (B3)

φ∗ = d1T
2 + d2Tz + d3z + d4z

2 + d5

+d6T
2z + d7T

3 (B4)

We find the best-fit coefficients to be:

b = [−0.087, 0.050, 0.998,−1.143,−0.383],

c = [0.068,−0.202,−0.806, 0.227,−19.86],

d = [2.04,−5.20,−0.636, 0.910, 4.181, 1.417,−0.536].

APPENDIX C: ARTIFICIAL NEURAL

NETWORK PHOTO-Z’S

For comparison with the weighting method, we use an Artifi-
cial Neural Network (ANN) method to estimate photometric
redshifts (Collister & Lahav 2004; Oyaizu et al. 2007) We
use a particular type of ANN called a Feed Forward Mul-
tilayer Perceptron (FFMP), which consists of several nodes
arranged in layers through which signals propagate sequen-
tially. The first layer, called the input layer, receives the in-
put photometric observables (magnitudes, colors, etc.). The
next layers, denoted hidden layers, propagate signals until
the output layer, whose outputs are the desired quantities,

c© 0000 RAS, MNRAS 000, 000–000
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in this case the photo-z estimate. Following the notation of
Collister & Lahav (2004), we denote a network with k layers
and Ni nodes in the ith layer as N1 : N2 : ... : Nk.

A given node can be specified by the layer it belongs to
and the position it occupies in the layer. Consider a node
in layer i and position α with α = 1, 2, ..., Ni. This node,
denoted Piα, receives a total input Iiα and fires an output
Oiα given by

Oiα = F (Iiα) , (C1)

where F (x) is the activation function. The photometric ob-
servables are the inputs I1α to the first layer nodes, which
produce outputs O1α. The outputs Oiα in layer i are prop-
agated to nodes in the next layer (i + 1), denoted P(i+1)β ,
with β = 1, 2, ..Ni+1. The total input I(i+1)β is a weighted
sum of the outputs Oiα

I(i+1)β =

Ni
∑

α=1

wiαβOiα, (C2)

where wiαβ is the weight that connects nodes Piα and
P(i+1)β . Iterating the process in layer i + 1, signals prop-
agate from hidden layer to hidden layer until the output
layer. There are various choices for the activation function
F (x) such as: a sigmoid, a hyperbolic tangent, a step func-
tion, a linear function, etc. The choice of the activation func-
tion typically has no important effect on the final photo-z’s,
and different activation functions can be used in different
layers. In our implementation, we use a network configura-
tion Nm : 15 : 15 : 15 : 1, which receives Nm magnitudes
and outputs a photo-z. We use hyperbolic tangent activa-
tion functions in the hidden layers and a linear activation
function for the output layer.
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