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Abstract

We calculate the form factor f+(q2) for B-meson semileptonic decay in unquenched lattice QCD

with 2+1 flavors of light sea quarks. We use Asqtad-improved staggered light quarks and a Fermilab

bottom quark on gauge configurations generated by the MILC Collaboration. We simulate with

several light quark masses and at two lattice spacings, and extrapolate to the physical quark mass

and continuum limit using heavy-light meson staggered chiral perturbation theory. We then fit

the lattice result for f+(q2) simultaneously with that measured by the BABAR experiment using

a parameterization of the form factor shape in q2 which relies only on analyticity and unitarity in

order to determine the CKM matrix element |Vub|. This approach reduces the total uncertainty

in |Vub| by combining the lattice and experimental information in an optimal, model-independent

manner. We find a value of |Vub| × 103 = 3.38 ± 0.35.

PACS numbers: 12.15.Hh, 12.38.Gc, 13.20.He

∗ruthv@bnl.gov
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I. INTRODUCTION

The semileptonic decay B → πℓν is a sensitive probe of the heavy-to-light quark-flavor

changing b → u transition. When combined with an experimental measurement of the

differential decay rate, a precise QCD determination of the B → πℓν form factor allows a

clean determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vub| with

all sources of systematic uncertainty under control. In the Standard Model, the differential

decay rate for this process is

dΓ(B → πℓν)

dq2
=

G2
F |Vub|2

192π3m3
B

[
(m2

B +m2
π − q2)2 − 4m2

Bm
2
π

]3/2 |f+(q2)|2, (1)

where q ≡ pB − pπ is the momentum transferred from the B-meson to the outgoing leptons.

The form factor, f+(q2), parameterizes the hadronic contribution to the weak decay, and

must be calculated nonperturbatively from first principles using lattice QCD.

A precise knowledge of CKM matrix elements such as |Vub| is important not only be-

cause they are fundamental parameters of the Standard Model, but because inconsistencies

between independent determinations of the CKM matrix elements and CP -violating phase

would provide evidence for new physics. Although the Standard Model has been amazingly

successful in describing the outcome of most particle physics experiments to date, it cannot

account for gravity, dark matter and dark energy, or the large matter-antimatter asymmetry

of the universe. Thus we know that it is incomplete, and expect new physics to affect the

quark-flavor sector to some degree, although we do not know a priori what experimental

and theoretical precision will be needed to observe it.

The determination of |Vub| from B → πℓν semileptonic decay relies upon the assump-

tion that, because the leading Standard Model decay amplitude is mediated by tree-level

W -boson exchange, it will not be significantly affected by new physics at the current level

of achievable precision. Recently, however, hints of new physics have appeared in various

regions of the heavy-quark flavor sector such as CP -asymmetries in B → Kπ [1], constraints

on sin(2β) from ∆F = 2 neutral meson mixing and 1-loop penguin-induced decays [2], and

the phase of the Bs-mixing amplitude [3–5]. The unexpected inconsistency most relevant

to our new lattice QCD calculation of the B → πℓν form factor and |Vub| is the current

“fDs
puzzle” [6]. The HPQCD Collaboration’s lattice QCD calculation of the Ds-meson

leptonic decay constant fDs
[7] disagrees with the latest results from the Belle, BABAR,

and CLEO experiments [8–12] at the 3-σ level, although HPQCD’s determinations of the
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masses mD+ and mDs
and the decay constants fπ, fK , and fD+ all agree quite well with ex-

perimental measurements [13, 14]. Furthermore, because the significance of the discrepancy

is dominated by the statistical experimental uncertainties, it cannot easily be explained by

an underestimate of the theoretical uncertainties. Additional lattice QCD calculations of

fDs
are needed to either confirm or reduce the inconsistency. If the disagreement holds up,

however, it is evidence for a large new physics contribution to a tree-level Standard Model

process at the few percent-level. Therefore, although B → πℓν semileptonic decay provides

a theoretically clean method for determining |Vub| within the framework of the Standard

Model, we should keep in mind that new physics could appear in b→ u transitions.

Understanding and controlling all sources of systematic uncertainty in lattice QCD cal-

culations of hadronic weak matrix elements is essential in order to allow accurate determi-

nations of Standard Model parameters and reliable searches for new physics. The hadronic

amplitudes for B → πℓν, in particular, can be calculated accurately using current lattice

QCD methods because the decay process is “gold plated”, i.e., there is only a single stable

hadron in both the initial and final states. Lattice calculations with staggered quarks al-

low for realistic QCD simulations with dynamical quarks as light as ms/10, multiple lattice

spacings, large physical volumes, and high statistics. The resulting simulations of many

light-light and heavy-light meson quantities with dynamical staggered quarks are in excel-

lent numerical agreement with experimental results [15]. This includes both postdictions,

such as the pion decay constant [16], and predictions, as in the case of the Bc meson mass

[17]. Such successes show that the systematic uncertainties in these lattice QCD calculations

are under control, and give confidence that additional calculations using the same methods

are reliable.

The publicly available MILC gauge configurations with three flavors of improved stag-

gered quarks [18] that have enabled these precise lattice calculations make use of the

“fourth-root” procedure for removing the undesired four-fold degeneracy of staggered lat-

tice fermions. Although this procedure has not been rigorously proven correct, Shamir uses

plausible assumptions to argue that the continuum limit of the rooted theory is in the same

universality class as QCD [19, 20]. The rooting procedure leads to violations of unitary

that vanish in the continuum limit; both theoretical arguments [21, 22] and numerical sim-

ulations [23–25], however, show that the unitarity-violating lattice artifacts in the pseudo-
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Goldstone boson sector can be described and hence removed using rooted Staggered Chiral

Perturbation Theory (rSχPT), the low-energy effective description of the rooted staggered

lattice theory [26–28]. Given the wealth of numerical and analytical evidence supporting

the validity of the rooting procedure, most of which is reviewed in Refs. [29–31], we work

under the plausible assumption that the continuum limit of the rooted staggered theory is

QCD. We note, however, that it is important to have crosschecks of lattice calculations of

phenomenologically-important quantities using a variety of fermion formulations, since they

all have different sources of systematic uncertainty.

Both existing unquenched lattice calculations of the B → πℓν form factor use the MILC

configurations. When combined with the Heavy Flavor Averaging Group’s latest determi-

nation of the experimental decay rate from ICHEP 2008 [32], they yield the following values

for |Vub|:

|Vub| × 103 = 3.40 ± 0.20+0.59
−0.39 HPQCD [33], (2)

|Vub| × 103 = 3.62 ± 0.22+0.63
−0.41 Fermilab-MILC [34], (3)

where the errors are experimental and theoretical, respectively. Both analyses primarily rely

upon data generated at a “coarse” lattice spacing of a ≈ 0.12 fm, and use a smaller amount

of “fine” data at a ≈ 0.09 fm to check the estimate of discretization errors. Neither is

therefore able to extrapolate the B → πℓν form factor to the continuum (a→ 0). The most

significant difference in the two calculations is their use of different lattice formulations for

the bottom quarks. The HPQCD Collaboration [33] uses nonrelativistic (NRQCD) heavy

quarks [35], whereas we use relativistic clover quarks with the Fermilab interpretation [36]

via heavy quark effective theory (HQET) [37–39]. Both methods work quite well for heavy

bottom quarks. The Fermilab treatment, however, has the advantage that it can also be

applied to charm quarks; we can therefore use the same method for other semileptonic

form factors such as D → πℓν, D → Kℓν, and B → D∗ℓν [40, 41]. The two unquenched

lattice calculations of the B → πℓν form factor, which have largely independent sources

of systematic uncertainty, nevertheless lead to consistent values of |Vub| with similar total

errors of ∼ 15%.

In this paper we present a new model-independent unquenched lattice QCD calculation

of the B → πℓν semileptonic form factor and |Vub|. Our work builds upon the previous
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Fermilab-MILC calculation and improves upon it in several ways. We now include data on

both the coarse and fine MILC lattices, and can therefore take the a → 0 limit of our data

which is generated at nonzero lattice spacing. We also have additional statistics on a subset

of the coarse ensembles. The most important improvements, however, are in the analysis

procedures.

We have removed all model-dependent assumptions about the shape in q2 of the form

factor from the current analysis. Our result is therefore theoretically cleaner and more

reliable than those of previous lattice QCD calculations. The first refinement over previous

unquenched lattice B → πℓν form factor calculations is in the treatment of the chiral and

continuum extrapolations. We simultaneously extrapolate to physical quark masses and zero

lattice spacing and interpolate in the momentum transfer q2 by performing a single fit to our

entire data set (all values of mq, a, and q2) guided by functional forms derived in heavy-light

meson staggered chiral perturbation theory (HMSχPT) [42]. We thereby extract the physical

form factor f+(q2) in a controlled manner without introducing a particular ansatz for the

form factor’s q2 dependence. The second refinement over previous unquenched B → πℓν

lattice form factor calculations is in the combination of the lattice form factor result and

experimental data for the decay rate to determine the CKM matrix element |Vub|. We fit our

lattice numerical Monte Carlo data and the 12-bin BABAR experimental data [43] together

to the model-independent “z-expansion” of the form factor given in Ref. [44], in which the

form factor is described by a power series in a small quantity z with the sum of the squares of

the series coefficients bounded by unitarity constraints. We leave the relative normalization

factor, |Vub|, as a free parameter to be determined by the fit, thereby extracting |Vub| in

an optimal, model-independent way. Others have also fit lattice and experimental results

together using different, equally-valid, parameterizations [45, 46]. This work, however, is the

first to use the full correlation matrices, derived directly from the data, for both the lattice

calculation and experimental measurement.

This paper is organized as follows. In Sec. II we describe the details of our numerical

simulations. We discuss the gluon, light-quark, and heavy-quark lattice actions, and present

the parameters used, such as the quark masses and lattice spacings. We then define the

matrix elements needed to calculate the semileptonic form factors and discuss the method for

matching the lattice heavy-light current to the continuum. Next we describe our analysis for
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determining the form factors in Sec. III. This is a three-step procedure. We first fit pion and

B-meson 2-point correlation functions to extract the meson masses. We then fit the B → π

3-point function, using the masses and amplitudes from the 2-point fits as input, to extract

the lattice form factors at each value of the light quark mass and lattice spacing. Finally,

we extrapolate the results at unphysical quark masses and nonzero lattice spacing to the

physical light quark masses and zero lattice spacing using HMSχPT. In Sec. IV we estimate

the contributions of the various systematic uncertainties to the form factors, discussing each

item in the error budget separately. We then present the final result for f+(q2) with a

detailed breakdown of the error by source in each q2 bin. We combine our result for the

form factor with experimental data from the BABAR Collaboration to determine the CKM

matrix element |Vub| in Sec. V. We also define the model-independent description of the

form factor shape that we use in the fit and discuss alternative parameterizations of the form

factor. Finally, in Sec. VI we compare our results with those of previous unquenched lattice

calculations. We also compare our determination of |Vub| with inclusive determinations and

to the preferred values from the global CKM unitarity triangle analysis. We conclude by

discussing the prospects for improvements in our calculation and its impact on searches for

new physics in the quark flavor sector.

II. LATTICE CALCULATION

In this section we describe the details of our numerical lattice simulations. We first present

the actions and parameters used for the light (up, down, strange) and heavy (bottom) quarks

in Sec. IIA. We then define the procedure for constructing lattice correlation functions

with both staggered light and Wilson heavy quarks in Sec. II B. Finally, in Sec. IIC, we

show how to match the lattice heavy-light vector currents to the continuum with a mostly

nonperturbative method, so that lattice perturbation theory is only needed to estimate a

small correction.

A. Actions and Parameters

We use the ensembles of lattice gauge fields generated by the MILC Collaboration and

described in Ref. [18] at two lattice spacings, a ≈ 0.12 and 0.09 fm, in our numerical lattice
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TABLE I: Lattice simulation parameters. The columns from left to right are the approximate

lattice spacing in fm, the bare light quark masses aml/ams, the linear spatial dimension of the

lattice in fm, the dimensionless factor mπL (corresponding to the taste-pseudoscalar pion composed

of light sea quarks), the dimensions of the lattice in lattice units, the number of configurations used

for this analysis, the clover term cSW and bare κ value used to generate the bottom quark, and

the improvement coefficient used to rotate the bottom quark field in the b → u vector current.

a(fm) aml/ams L(fm) mπL Volume # Configs. cSW κb d1

0.09 0.0062/0.031 2.4 4.1 283 × 96 557 1.476 0.0923 0.09474

0.09 0.0124/0.031 2.4 5.8 283 × 96 518 1.476 0.0923 0.09469

0.12 0.005/0.05 2.9 3.8 243 × 64 529 1.72 0.086 0.09372

0.12 0.007/0.05 2.4 3.8 203 × 64 836 1.72 0.086 0.09372

0.12 0.01/0.05 2.4 4.5 203 × 64 592 1.72 0.086 0.09384

0.12 0.02/0.05 2.4 6.2 203 × 64 460 1.72 0.086 0.09368

simulations of the B → πℓν semileptonic form factor. The ensembles include the effects

of three dynamical staggered quarks — two degenerate light quarks with masses ranging

from ms/8 – ms/2 and one heavier quark tuned to within 10–30% of the physical strange

quark mass. This allows us to perform a controlled extrapolation to both the continuum

and the physical average u-d quark mass. The physical lattice volumes are all sufficiently

large (mπL ∼> 4) to ensure that effects due to the finite spatial extent remain small.

For each independent ensemble we compute the light valence quark in the 2-point and

3-point correlation functions only at the same mass, ml, as the light quark in the sea sector.

Thus all of our simulations are at the “full QCD” point. Note, however, that we still have

many correlated data points on each ensemble because of the multiple pion energies. Table I

shows the combinations of lattice spacings, lattice volumes, and quark masses used in our

calculation.

For bottom quarks in 2-point and 3-point correlation functions we use the Sheikholeslami-

Wohlert (SW) “clover” action [47] with the Fermilab interpretation via HQET [36, 37], which

is well-suited for heavy quarks, even when amQ ∼> 1. Because the spin-flavor symmetry

of heavy quark systems is respected by the lattice regulator, the expansion in 1/mQ of

the heavy-quark lattice action has the same form as the 1/mQ expansion of the heavy-
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quark part of the QCD action. Discretization effects in the lattice heavy-quark action

are therefore parameterized order-by-order in the heavy-quark expansion by deviations of

effective operator coefficients from their values in continuum QCD. Thus, in principle, the

lattice heavy-quark action can be improved to arbitrarily high orders in HQET by tuning a

sufficiently large number of parameters in the lattice action. In practice, we tune the hopping

parameter, κ, and the clover coefficient, cSW, of the SW action, to remove discretization

effects through next-to-leading order, O(1/mQ), in the heavy-quark expansion.

The SW action includes a dimension-five interaction with a coupling cSW that must be

adjusted to normalize the heavy quark’s chromomagnetic moment correctly [36]. In our

calculation we set the value of cSW = u−3
0 , as suggested by tadpole-improved, tree-level

perturbation theory [48]. We determine the value of u0 either from the plaquette (a ≈ 0.09

fm) or from the Landau link (a ≈ 0.12 fm). The tadpole-improved bare quark mass for SW

quarks is given by

am0 =
1

u0

(
1

2κ
− 1

2κcrit

)
, (4)

such that tuning the parameter κ to the critical quark hopping parameter κcrit leads to a

massless pion. Before generating the correlation functions needed for the B → πℓν form

factor, we compute the spin-averaged Bs kinetic mass on a subset of the available ensembles

in order to tune the bare κ value for bottom (and hence the corresponding bare quark mass)

to its physical value. We then use the tuned value of κb for the B → πℓν form-factor

production runs. Table I shows the values of the clover coefficient and tuned κb used in our

calculation.

In order to take advantage of the improved action in the calculation of the B → πℓν

form factor, we must also improve the flavor-changing vector current to the same order in

the heavy-quark expansion. We remove errors of O(1/mQ) in the vector current by rotating

the heavy-quark field used in the matrix element calculation as

ψb −→ Ψb =
(
1 + a d1~γ · ~Dlat

)
ψb, (5)

where ~Dlat is the symmetric, nearest-neighbor, covariant difference operator. We set d1 to

its tadpole-improved tree-level value of

d1 =
1

u0

(
1

2 +m0a
− 1

2(1 +m0a)

)
. (6)
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The values of the rotation parameter used in our calculation are given in Table I.

In order to convert dimensionful quantities determined in our lattice simulations into

physical units, we need to know the value of the lattice spacing, a, which we find by com-

puting a physical quantity that can be compared directly with experiment. We first deter-

mine the relative lattice scale by calculating the ratio r1/a on each ensemble, where r1 is

related to the force between static quarks, r2
1F (r1) = 1.0 [49]. These r1/a estimates are then

smoothed by fitting to a smooth function of the gauge coupling and quark masses. This

scale-setting method has the advantage that the ratio r1/a can be determined precisely from

a fit to the static quark potential [50, 51]. We convert all of our data from lattice spacing

units into r1 units before performing any chiral fits in order to account for slight differences

in the value of the lattice spacing between ensembles. In this work we use the value of

rphys
1 = 0.3108(15)(+26

−79) obtained by combining a recent lattice determination of r1fπ [52]

with the PDG value of fπ = 130.7 ± 0.1 ± 0.36 MeV [53] to convert lattice results from r1

units to physical units.

B. Heavy-light meson correlation functions

The B → πlν semileptonic form factors parameterize the hadronic matrix element of the

b→ u quark flavor-changing vector current Vµ ≡ iuγµb:

〈π|Vµ|B〉 = f+(q2)

(
pµ

B + pµ
π − m2

B −m2
π

q2
qµ

)
+ f0(q

2)
m2

B −m2
π

q2
qµ, (7)

where q2 is the momentum transferred to the outgoing lepton pair. For calculations on the

lattice and in HQET, it is more convenient to write the matrix element as [54]

〈π|Vµ|B〉 =
√

2mB

[
vµf‖(Eπ) + pµ

⊥f⊥(Eπ)
]
, (8)

where vµ = pµ
B/mB is the four-velocity of the B-meson, pµ

⊥ = pµ
π−(pπ ·v)vµ is the component

of the pion momentum orthogonal to v, and Eπ = pπ · v = (m2
B + m2

π − q2)/(2mB) is the

energy of the pion in the B-meson rest frame (~pB = ~0). In this frame the form factors f‖(Eπ)

and f⊥(Eπ) are directly proportional to the hadronic matrix elements:

f‖(Eπ) =
〈π|V0|B〉√

2mB

, (9)

f⊥(Eπ) =
〈π|V i|B〉√

2mB

1

pi
π

. (10)
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We therefore first calculate the hadronic matrix elements in Eqs. (9) and (10) in the rest

frame of the B-meson to obtain f‖(Eπ) and f⊥(Eπ), and then extract the standard form

factors f0(q
2) and f+(q2) using the following relations:

f0(q
2) =

√
2mB

m2
B −m2

π

[
(mB −Eπ)f‖(Eπ) + (E2

π −m2
π)f⊥(Eπ)

]
, (11)

f+(q2) =
1√
2mB

[
f‖(Eπ) + (mB − Eπ)f⊥(Eπ)

]
. (12)

These relations automatically satisfy the kinematic constraint f+(0) = f0(0).

The 2-point and 3-point correlation functions needed to extract the lattice matrix element

for B → πℓν decay are

Cπ
2 (t; ~pπ) =

∑

~x

ei~pπ·~x〈Oπ(0,~0)O†
π(t, ~x)〉, (13)

CB
2 (t) =

∑

~x

〈OB(0,~0)O†
B(t, ~x)〉, (14)

CB→π
3,µ (t, T ; ~pπ) =

∑

~x,~y

ei~pπ·~y〈Oπ(0,~0)Vµ(t, ~y)O†
B(T, ~x)〉, (15)

where OB and Oπ are interpolating operators for the B-meson and pion, respectively, and

Vµ is the heavy-light vector current on the lattice.

In practice, to construct the heavy-light bilinears we must combine a staggered light

quark, which is a 1-component spinor, with a 4-component Wilson-type bottom quark; we

do so using the method established by Wingate et al. in Ref. [55]. For the B meson we use

a mixed-action interpolating operator:

OB,Ξ(x) = ψα(x)γ5
αβΩβΞ(x)χ(x), (16)

where {α, β} are spin indices and Ω(x) ≡ γx0
0 γ

x1
1 γ

x2
2 γ

x3
3 . The fields ψ and χ are the 4-

component clover quark field and 1-component staggered field, respectively. Based on the

transformation properties of OB,Ξ(x) under shifts by one lattice spacing, Ξ plays the role of

a the (fermionic) taste index [31, 55]. Once OB,Ξ(x) is summed over 24 hypercubes in the

correlation functions that we compute, Ξ also takes on the role of a taste degree of freedom,

in the sense of Refs. [56, 57]. Because the heavy quark field Ψα(x) is slowly varying over a

hypercube, it does not affect the construction of Refs. [56, 57].

For the pion we use the local pseudoscalar interpolating operator,

Oπ(x) = ε(x)χ(x)χ(x), (17)
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where ε(x) ≡ (−1)(x1+x2+x3+x4)/a. We take the vector current to be

V µ
Ξ (x) = Ψα(x)γµ

αβΩβΞ(x)χ(x), (18)

where Ψ is the rotated heavy-quark field given in Eq. (5). When forming CB
2 (t) and

CB→π
3,µ (t, T ; ~pπ), we sum over the taste index. This yields the same correlation functions,

with respect to taste, as in Ref. [55]. Our principal difference with Ref. [55] is to use 4-

component heavy quarks instead of 2-component non-relativistic quarks, and to derive the

correlators in the staggered formalism, without the introduction of naive fermions.

We work in the rest frame of the B-meson, so only the pions carry momentum. We

compute both the 2-point function Cπ
2 (t; ~pπ) and the 3-point function CB→π

3,µ (t, T ; ~pπ) at

discrete values of the momenta ~pπ = 2π(0, 0, 0)/L, 2π(1, 0, 0)/L, 2π(1, 1, 0)/L, 2π(1, 1, 1)/L,

and 2π(2, 0, 0)/L allowed by the finite spatial lattice volume. We use only data through

momentum ~pπ = 2π(1, 1, 1)/L, however, because the statistical errors in the correlators

increase significantly with momentum.

We use a local source for the pions throughout the calculation, while we smear

the B-meson wavefunction in both the 2-point function CB
2 (t) and the 3-point function

CB→π
3,µ (t, T ; ~pπ):

ÕB,Ξ(t, ~x) =
∑

~y

S(~y)ψα(t, ~x+ ~y)γ5
αβΩβΞ(t, ~x)χ(t, ~x), (19)

where S(~y) is the spatial smearing function. This reduces contamination from heavier excited

states and allows a better determination of the desired ground state amplitude. In our study

of choices for how to smear the B-meson, we found that a wall source, S(~y) = 1, worked

extremely well for suppressing excited state contamination, but at the cost of large statistical

errors in the 2-point and 3-point correlation functions. In contrast, use of a 1S wavefunction,

S(~y) = exp(−µ|~y|), optimized to have good overlap with the charmonium ground state led to

smaller statistical errors at the cost of undesirably large excited state contributions to the 3-

point function that would make it difficult to extract the ground state amplitude. In order to

achieve a balance between small statistical errors and minimal excited state contamination,

we tune the coefficient of the exponential in the 1S wavefunction to the smallest value (i.e.,

the widest smearing) for which the B-meson 2-point effective mass is still well-behaved; we

find a value of aµ = 0.20 for the coarse ensembles. We note that our determination of the
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optimal B-meson smearing function is consistent with the theoretical expectation that the

B-meson wavefunction should be wider than the charmonium wavefunction.

For the calculation of the 3-point function, we fix the location of the pion source at ti = 0

and the location of the B-meson sink at tf = T , and vary the position of the operator over

all times t in between. If the source-sink separation is too small then the entire time range

0 < t < T is contaminated by excited states, but if the source-sink separation is too large

then the correlation function becomes extremely noisy. In practice, we set the sink time to

T = 16 on the coarse lattices; we have checked, however, that our results using this choice

are consistent with those determined from using T = 12 and T = 20. On the fine lattices we

scale the source sink separation by the approximate ratio of the lattice spacings, afine/acoarse,

and use T = 24.

In order to minimize the statistical errors given the available number of configurations

in each ensemble, we compute the necessary 2-point and 3-point correlations not only with

a source time of ti = 0, but also with source times of ti = nt/4, nt/2, and 3nt/4 (nt is the

temporal extent of the lattice) and the sink time T shifted accordingly. We then average

the results from the four source times; this effectively increases our statistics by a factor of

four.

C. Heavy-light current renormalization

In order to recover the desired continuum matrix element, the lattice amplitude must be

multiplied by the appropriate renormalization factor, Zbl
Vµ

:

〈π|Vµ|B〉 = Zbl
Vµ

× 〈π|Vµ|B〉, (20)

where Vµ and Vµ are the lattice and continuum b → u vector currents, respectively. This

removes the dominant discretization errors from the lattice current operator. In terms of

the form factors, Eq. (20) can be rewritten as

f‖ = Zbl
V0

× f lat
‖ (21)

f⊥ = Zbl
Vi
× f lat

⊥ , (22)

where explicit expressions relating f lat
‖ and f lat

⊥ to correlation functions are given in

Eqs. (40) and (41).
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In this work we calculate Zbl
Vµ

via the mostly nonperturbative method used in the earlier

quenched Fermilab calculation [54]. We first rewrite Zbl
Vµ

as

Zbl
Vµ

= ρhl
Vµ

√
Zbb

V Z
ll
V . (23)

The flavor-conserving renormalization factors Zbb
V and Z ll

V account for most of the value of

Zbl
V [38]. They can be determined from standard heavy-light meson charge normalization

conditions:

Z ll
V × 〈D|V ll,0|D〉 = 1, (24)

Zbb
V × 〈B|V bb,0|B〉 = 1, (25)

where the light-light and heavy-heavy lattice vector currents are given by

V ll,µ
ΞΞ′ (x) = χ†(x)Ω(x)†Ξαγ

µ
αβΩ(x)βΞ′χ(x), (26)

V bb,µ(x) = Ψbα(x)γµ
αβΨbβ(x), (27)

respectively. In order to reduce the statistical errors in Z ll
V , we compute the lattice matrix

element 〈D|V ll,0|D〉 using a clover charm quark as the spectator in the 3-point correlation

function. We eliminate contamination from staggered oscillating states in the determination

of Zbb
V by using a clover strange quark for the spectator in the 3-point correlation function

〈B|V bb,0|B〉. Once Z ll
V and Zbb

V have been determined nonperturbatively, the remaining

correction factor in Eq. (23), ρhl
Vµ

, is expected to be close to unity because most of the

radiative corrections, including contributions from tadpole graphs, cancel in the ratio [38].

We therefore estimate ρhl
Vµ

from 1-loop lattice perturbation theory [48].

The matching factor ρhl
Vµ

has been calculated by a subset of the present authors, and a

separate publication describing the details is in preparation [58]. The corrections to ρhl
Vµ

can

be expressed as a perturbative series expansion in powers of the strong coupling:

ρhl
Vµ

= 1 + 4παV (q∗)ρ
hl[1]
Vµ

+ O(α2
V ), (28)

where αV (q∗) is the renormalized coupling constant in the V -scheme and is determined from

the static quark potential with the same procedure as is used in Ref. [59]. The scale q∗,

which should be the size of a typical gluon loop momentum, is computed via an extension of

the methods outlined by Brodsky, Lepage, and Mackenzie [48, 60] and Hornbostel, Lepage,

and Morningstar [61]. The value of q∗ ranges from 2.0–4.5 GeV for the parameters used
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in our simulations. The 1-loop coefficient, ρ
hl[1]
Vµ

, and higher moments are calculated using

automated perturbation theory and numerical integration as described in Refs. [62, 63]. We

find that the perturbative corrections to matrix elements of the temporal vector current,

V0, are less than a percent, while the corrections to matrix elements of the spatial vector

current, Vi, are 3–4%.

III. ANALYSIS

In this section we describe the three-step analysis procedure used to calculate the B →
πℓν semileptonic form factor, f+(q2). In the first subsection, Sec. IIIA, we describe how we

fit the pion and B-meson 2-point correlation functions in order to determine the pion energies

and B-meson mass. We use both of these quantities in the later determination of the lattice

form factors f‖(Eπ) and f⊥(Eπ). Next, in Sec. III B, we construct a useful ratio of the 3-

point correlation function 〈π|V |B〉 to the 2-point functions. We then fit this ratio to a simple

plateau ansatz to extract the desired form factors. Finally, in Sec. IIIC, we extrapolate the

form factors calculated at unphysically heavy quark masses and finite lattice spacing to

the physical light quark masses and zero lattice spacing using next-to-leading order (NLO)

HMSχPT expressions extended with next-to-next-to-leading order (NNLO) analytic terms.

(We perform a simultaneous extrapolation in mq and a and interpolation in Eπ.) We then

take the appropriate linear combination of f‖(Eπ) and f⊥(Eπ) to determine the desired form

factor, f+(q2), with statistical errors.

A. Two-point correlator fits

The pion and B-meson 2-point correlators obey the following functional forms:

Cπ
2 (t; ~pπ) =

∑

m

(−1)mt |〈0|Oπ|π(m)〉|2 e
−E

(m)
π t

2E
(m)
π

, (29)

CB
2 (t) =

∑

m

(−1)mt |〈0|OB|B(m)〉|2 e
−m

(m)
B

t

2m
(m)
B

. (30)

In the above expressions, terms with odd m contain the prefactor (−1)t. This leads to visible

oscillations in time in the meson propagators; such behavior arises with staggered quarks

because the parity operator is a composition of spatial inversion and translation through
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one timeslice [64, 65]. The contributions of the opposite-parity oscillating states are found

to be significant throughout the entire time range and must therefore be included in fits to

extract the desired ground state energy.

Because the statistical errors in the pion energies and B-meson mass contribute very little

to the total statistical error in the B → πℓν form factor, we use a simple procedure to fit

the 2-point functions. Although this does not optimize the determinations of Eπ and mB, it

is sufficient for the purpose of this analysis. We first select a fit range, tmin–tmax, that allows

a good correlated, unconstrained fit including only contributions from the ground state and

its opposite-parity partner. We then reduce tmin by one timeslice and redo the fit. If the

correlated confidence level is too low (∼< 10%), we increase the number of states and try the

fit again with the same time range. Otherwise, if the fit is good, we reduce tmin by one more

timeslice and repeat the fit. We repeat this procedure until we can no longer get a good fit

without using a large number (greater than 4) of states. We note that, by including only as

many states as the data can determine, we minimize the possibility of spurious solutions in

which the fitter exchanges the ground state with one of the same-parity excited states. We

have, however, checked that this method yields the same results within statistical errors as

a constrained fit that includes up to three or four pairs of states.

Figure 1 shows examples of both mπ vs. tmin (left plot) and mB vs. tmin (right plot)

on the aml/ams = 0.02/0.05 coarse ensemble, which has the largest light quark mass of

the coarse ensembles. The masses are stable as tmin is reduced, and the statistical errors in

mB become smaller as additional timeslices are added to the fit. The statistical errors are

determined by performing a separate fit to 500 bootstrap ensembles; each fit uses the full

single elimination jackknife correlation matrix which is remade before every fit. The size of

the statistical errors does not change when the number of bootstrap ensembles is increased

by factors of two or four. We select the time range to use in the B → πℓν analysis based

on several criteria: a good correlated confidence level, relatively symmetric upper and lower

bootstrap error bars, no 5-σ or greater outliers in the bootstrap distribution, and no sign

of excited state contamination. The red (filled) data points in Fig. 1 mark the chosen fit

ranges for the ensemble in the example plots. Figures 2 and 3 show the corresponding pion

and B-meson correlator fits, respectively, which go through the data points (shown with

jackknife errors) quite well.

The gauge configurations have been recorded every six trajectories, and the remaining
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FIG. 1: Pion mass (left plot) and B-meson mass (right plot) versus minimum timeslice in 2-point

correlator fit. The red (filled) data points show the fit ranges selected for use in the B → πℓν form

factor analysis.

autocorrelations between consecutive configurations cannot be neglected. We address this

by averaging a block of successive configurations together before calculating the correlation

matrix and performing the fit. We determine the optimal block size by increasing the

number of configurations in a block until the single elimination jackknife statistical error

in the correlator data remains constant within errors. This is shown for a representative

timeslice of the pion propagator on a coarse ensemble in Fig. 4. We find that it is necessary

to use a block size of 5 on the coarse ensembles and 8 on the fine ensembles, and we use

these values for the rest of the form factor analysis. We note that the size of the statistical

errors that arises from blocking by 5 on the coarse ensemble is consistent with that estimated

based on a calculation of the integrated autocorrelation time.

The pion energy Eπ that is extracted from fitting the 2-point function, Cπ
2 (t; ~pπ), should

satisfy the dispersion relationE2
π = |~pπ|2+m2

π in the continuum limit due to the restoration of

rotational symmetry. Similarly, the pion amplitude, Zπ ≡ |〈0|Oπ|π〉|, should be independent

of ~pπ as a→ 0. As shown in Fig. 5, our results are consistent with these continuum relations

within statistical errors.1 We therefore replace the pion energy Eπ by
√

|~pπ|2 +m2
π when

1 As this analysis was being completed we generated data with four times the statistics on the aml/ams =

0.02/0.05 coarse ensemble. In order to make the comparison to the continuum expectation clearer, we use
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FIG. 2: Pion correlator fit corresponding to the red data point in the left-hand graph of Fig. 1.

The left plot shows the fit (red line) to the zero-momentum pion propagator on a log scale, while

the right plot shows the deviation of the fit from the data point for each timeslice. On both plots

the dashed vertical line indicates tmin. Single elimination jackknife statistical errors are shown.
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FIG. 3: B-meson correlator fit corresponding to the red data point in the right-hand graph of

Fig. 1. The left plot shows the fit (red line) to the B-meson propagator on a log scale, while the

right plot shows the deviation of the fit from the data point for each timeslice. On both plots the

dashed vertical line indicates tmin. Single elimination jackknife statistical errors are shown.

the higher statistics data in Fig. 5.
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FIG. 4: Single-elimination jackknife error versus block size in the zero-momentum pion propagator

at t = 6. The statistical errors in the errors are calculated with an additional single elimination

jackknife loop. The red line is an average of the errors for block sizes 5–8 and is only to make it

easier to see that the statistical error plateaus after a block size of 5; it is not used in the form

factor analysis.

calculating the lattice form factors f‖(Eπ) and f⊥(Eπ) in order to reduce the total statistical

uncertainty. The pion amplitude drops out of the form factor calculation, however, because

we take suitable ratios of 3-point to 2-point correlators.

B. Three-point correlator fits

The B → π 3-point correlator obeys the following functional form:

CB→π
3,µ (t, T ) =

∑

m,n

(−1)mt(−1)n(T−t)Amn
µ e−E

(m)
π te−m

(n)
B

(T−t), (31)

where

Amn
µ ≡ 〈0|Oπ|π(m)〉

2E
(m)
π

〈π(m)|Vµ|B(n)〉〈B
(n)|OB|0〉
2m

(n)
B

. (32)

Writing out the first four terms of CB→π
3,µ (t, T ) makes the behavior of the 3-point correlator

as a function of both t and T more transparent:

CB→π
3,µ (t, T ) = A00

µ e
−E

(0)
π te−m

(0)
B

(T−t) + (−1)(T−t)A01
µ e

−E
(0)
π te−m

(1)
B

(T−t)

+ (−1)tA10
µ e

−E
(1)
π te−m

(0)
B

(T−t) + (−1)TA11
µ e

−E
(1)
π te−m

(1)
B

(T−t) + . . . (33)
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FIG. 5: Comparison of pion energy Eπ (left plot) and amplitude Zπ (right plot) with the prediction

of the continuum dispersion relation. We also show a power-counting estimate for the size of

momentum-dependent discretization errors, which are of O(αs(a|~pπ|)2), as dashed black lines.

As in the case of the pion and B-meson propagators, the leading contributions from the

opposite-parity excited states (the A10
µ and A01

µ terms) change sign when t → t + 1; these

produce visible oscillations in the correlation function along the time direction. The sub-

leading contribution from the opposite-parity excited states (the A11
µ term), however, only

changes sign when the source-sink separation is varied, e.g., T → T + 1; this contribution is

not as clearly visible in the data as those that oscillate with the time slice t.

The lattice form factors are related to the ground-state amplitude of the 3-point function

CB→π
3,µ (t, T ) as follows:

f lat
‖ = A00

0

(
2Eπ

√
2mB

ZπZB

)
(34)

f lat
⊥ = A00

i

(
2Eπ

√
2mB

ZπZB

)
1

pi
π

, (35)

where, as before, Zπ ≡ |〈0|Oπ|π〉| and ZB ≡ |〈0|OB|B〉|. The pion and B-meson energies

and amplitudes are known from the 2-point fits described in the previous subsection. Thus

the goal is to determine the 3-point amplitude A00
µ for µ along both the spatial and temporal

directions.

In principle, the easiest way to determine the coefficient A00
µ is to divide the 3-point

function CB→π
3,µ (t, T ) by the appropriate 2-point functions and fit to a constant (plateau)
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ansatz in a region of time slices 0 ≪ t≪ T that are sufficiently far from both the pion and B-

meson sources, such that excited state contamination can be neglected. In practice, however,

oscillating excited-state contributions are significant throughout the interval between the

pion and B-meson, so our raw correlator data cannot be fit to such a simple function.

Therefore we construct an average correlator in which the oscillations are reduced before

performing any fits. This method for determining the form factors requires knowledge of Eπ

and mB; we use the values determined in the 2-point fits described in the previous subsection

and propagate the bootstrap uncertainties in order to properly account for correlations.

The final ratio of correlators used to determine A00
µ entails several pieces. To begin

consider the carefully constructed average of the value of the B-meson propagator at time

slice t with that at t+ 1:

CB
2 (t) −→ C

′B
2 (t) =

e−m
(0)
B

t

2

[
CB

2 (t)

e−m
(0)
B

t
+
CB

2 (t+ 1)

e−m
(0)
B

(t+1)

]

=
Z2

B

2m
(0)
B

e−m
(0)
B

t + (−1)t Z ′2
B

2m
(1)
B

e−m
(1)
B

t

(
1 − e−∆mB

2

)
+ . . . , (36)

where ∆mB ≡ m
(1)
B −m(0)

B . By removing the leading exponential behavior from the correlator

before taking the average we suppress the leading oscillating contribution by a factor of the

mass-splitting ∆mB/2 while leaving the desired ground state amplitude unaffected. Note

also that, while this procedure affects the size of the excited state amplitudes, it does not

alter the functional form of the correlator, nor does it alter the energies in the exponentials.

Therefore the average in Eq. (36) is equivalent to using a smeared source that has a smaller

coupling to the opposite-parity excited states. This averaging procedure can be iterated in

order to make the oscillating terms arbitrarily small. Empirically, we find that two iterations

are sufficient for all of our numerical data:

C
B

2 (t) ≡ e−m
(0)
B

t

4

[
CB

2 (t)

e−m
(0)
B

t
+

2CB
2 (t+ 1)

e−m
(0)
B

(t+1)
+
CB

2 (t+ 2)

e−m
(0)
B

(t+2)

]

≈ Z2
B

2m
(0)
B

e−m
(0)
B

t + (−1)t Z ′2
B

2m
(1)
B

e−m
(1)
B

t

(
∆m2

B

4

)
+ O(∆m3

B). (37)

At our various light quark masses and lattice spacings the mass-splittings lie in the range

0.1 ∼< ∆mB ∼< 0.3 in lattice units; thus use of the iterated average in Eq. (37) reduces

the leading oscillating state amplitude by a factor of ∼50–400 such that it can be safely

neglected.
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In the case of the B → π 3-point correlation function, we wish to reduce both the

oscillating contributions and the less visible non-oscillating contributions that arise from

the cross-term between the lowest-lying pion and B-meson opposite-parity states. If these

contributions are reduced sufficiently, we can safely neglect all of them when extracting the

ground-state amplitude A00
µ . We therefore construct a slightly more sophisticated average

which combines the correlator both at consecutive time slices (t and t+1) and at consecutive

source-sink separations (T and T + 1):

C
B→π

3,µ (t, T ) =
e−E

(0)
π t e−m

(0)
B

(T−t)

8

×
[

CB→π
3,µ (t, T )

e−E
(0)
π te−m

(0)
B

(T−t)
+

CB→π
3,µ (t, T + 1)

e−E
(0)
π (t)e−m

(0)
B

(T+1−t)
+

2CB→π
3,µ (t+ 1, T )

e−E
(0)
π (t+1)e−m

(0)
B

(T−t−1)

+
2CB→π

3,µ (t+ 1, T + 1)

e−E
(0)
π (t+1)e−m

(0)
B

(T−t)
+

CB→π
3,µ (t+ 2, T )

e−E
(0)
π (t+2)e−m

(0)
B

(T−t−2)
+

CB→π
3,µ (t+ 2, T + 1)

e−E
(0)
π (t+2)e−m

(0)
B

(T−t−1)

]

≈ A00
µ e

−E
(0)
π t e−m

(0)
B

(T−t) + (−1)TA11
µ e

−E
(1)
π te−m

(1)
B

(T−t)

(
∆mB

2

)

+ O(∆E2
π, ∆Eπ∆mB , ∆m2

B). (38)

This average reduces the unwanted parity states’ contamination significantly. It eliminates

both the leading O(1) and subleading O(∆Eπ) contributions to the oscillating A10 term, the

two lowest-order O(1,∆mB) contributions to the oscillating A01 term, and the O(1,∆Eπ)

contributions to the non-oscillating A11 term. The size of the remaining A11 term is a factor

of ∼7–20 times smaller than in the unsmeared 3-point correlator.

We can now safely ignore contamination from opposite-parity states and determine the

lattice form factors in a simple manner. We construct the following ratio of the smeared

correlators:

R
B→π

3,µ (t, T ) ≡
C

B→π

3,µ (t, T )
√
C

π

2 (t)C
B

2 (T − t)

√
2Eπ

e−E
(0)
π t e−m

(0)
B

(T−t)
. (39)

The lattice form factors are then:

f lat
‖ = R

B→π

3,0 (t, T ) (40)

f lat
⊥ =

1

pi
π

R
B→π

3,i (t, T ). (41)

We fit f lat
‖ and f lat

⊥ as defined in Eqs. (40)–(41) to a plateau in the region 0 ≪ t≪ T where

ordinary excited state contributions can be neglected. Figure 6 shows the determinations
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FIG. 6: Determination of the form factors f‖ (left plot) and f⊥ (right plot) from plateau fits to

the ratios defined in Eqs. (40) and (41). The statistical errors on the data points are from a single-

elimination jackknife. The statistical errors in the plateau determination are from separate fits of

500 bootstrap ensembles.

of f lat
‖ (left plot) and f lat

⊥ (right plot) for all of the momenta that we use in the chiral

extrapolation on the coarse ensemble with aml/ams = 0.02/0.05. In practice, we fit a range

of four time slices, choosing the interval that results in the best correlated confidence level.

We have cross-checked the determination of the form factors via Eqs. (40)–(41) against

determinations of the form factor that explicitly include excited state dependence in the fit

ansatz and find that the results agree within errors. Our preferred method, however, yields

the smaller statistical uncertainty in the form factors.

C. Continuum and chiral extrapolation

The quark masses in our numerical lattice simulations are heavier than the physical up

and down quark masses. The effects of non-zero lattice spacings in Asqtad simulations are

also too large to be neglected. In order to account for these facts, we calculate the desired

hadronic matrix elements for multiple values of the light quark masses and lattice spacing,

and then extrapolate to the physical quark masses and continuum using functional forms

from heavy-light meson staggered chiral perturbation theory (HMSχPT) [42]. The HMSχPT
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expressions are derived using the symmetries of the staggered lattice theory, and therefore

contain the correct dependence of the form factors on the quark mass and lattice spacing.

In the case of the B → πℓν form factors, the HMSχPT expressions are also functions of the

pion energy (recall that we work in the frame where the B-meson is at rest).

HMSχPT is a systematic expansion in inverse powers of the heavy quark mass. In the

chiral and soft pion limits (ml → 0 and Eπ → 0), the leading-order continuum HMχPT

expressions for f‖ and f⊥ take the following simple forms:

f‖(Eπ) =
φB

fπ

(42)

f⊥(Eπ) =
φB∗

fπ

gB∗Bπ

Eπ + ∆∗
B

, (43)

where φB ≡ fB
√
mB, fB is the B-meson decay constant, and fπ is the pion decay constant.

The coefficient gB∗Bπ parameterizes the size of the B∗-B-π coupling. In the static heavy

quark limit, heavy quark spin symmetry does not distinguish between the pseudoscalar B-

meson and the vector B∗-meson, which implies that the decay constant φB∗ = φB and the

mass difference ∆∗
B ≡ mB∗ −mB → 0. Inclusion of the parameter ∆∗

B, however, ensures the

proper location of the pole at m2
B∗ in the physical form factor f+(q2). At the next order in

the heavy quark expansion, O(1/mb) corrections split the degeneracy between the B- and

B∗-meson masses and decay constants. Furthermore, in the chiral and soft pion limits, all

1/mb corrections can be absorbed into the values of the parameters φB, φB∗ , gB∗Bπ, and

∆∗
B [66]; thus f‖ and f⊥ retain the functional forms in Eqs. (42) and (43) even at NLO in

HMχPT.

At lowest-order in SχPT, discretization effects split the degeneracies among the 16 tastes

of pseudo-Goldstone mesons:

m2
xy,Ξ = µ (mx +my) + a2∆Ξ, (44)

where x and y indicate the quark flavors, µ is a continuum low-energy constant, and ∆Ξ is

the mass-splitting of a meson with taste Ξ. An exact U(1)A symmetry protects the taste

pseudoscalar meson from receiving a mass-shift to all orders in SχPT, implying that ∆P = 0.

In addition, at O(a2), a residual SO(4) taste-symmetry preserves the degeneracies among

mesons that are in the same irreducible representation: P, V, A, T, I [26]. Numerically, the

size of the taste-splittings turn out to be comparable to those of the pion masses for the

a = 0.09 fm and a = 0.12 fm Asqtad staggered lattices used in this work [16].
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We extrapolate our numerical form factor data using HMSχPT expressions derived to

zeroth order in 1/mb. The fit functions therefore depend upon the three remaining expansion

parameters: ml, a, and Eπ. The HMSχPT expressions for the form factors to O(ml, a
2, E2

π)

are given explicitly in Eqs.(65)–(67) of Ref. [42]. Schematically, they read

f‖(ml, Eπ, a) =
c
(0)
‖

fπ

[
1 + logs + c

(1)
‖ ml + c

(2)
‖ (2ml +ms) + c

(3)
‖ Eπ + c

(4)
‖ E2

π + c
(5)
‖ a2

]
(45)

f⊥(ml, Eπ, a) =
c
(0)
⊥

fπ

[
1

Eπ + ∆∗
B + logs

+
1

Eπ + ∆∗
B

× logs

]

+
c
(0)
⊥ /fπ

Eπ + ∆∗
B

[
c
(1)
⊥ ml + c

(2)
⊥ (2ml +ms) + c

(3)
⊥ Eπ + c

(4)
⊥ E2

π + c
(5)
⊥ a2

]
, (46)

where “logs” indicate non-analytic functions of the pseudo-Goldstone meson masses, e.g.,

m2
πln(m2

π/Λ
2
χ). The continuum low-energy constant gB∗Bπ enters these expressions in the

coefficients of the chiral logarithms, which are completely fixed at this order. We use the

phenomenological value of gB∗Bπ = 0.51 [44] for the central value and vary gB∗Bπ by a

reasonable amount (see Sec. IVB) to estimate its contribution to the systematic uncertainty.

Because the size of the mass-splitting ∆∗
B is poorly determined from the lattice data and

is consistent with the physical value within statistical errors, we fix ∆∗
B to the PDG value,

45.78 MeV [13], in our fits. The chiral logarithms also depend upon six extra constants that

parameterize discretization effects due to the light staggered quarks: the four taste splittings

a2∆V , a
2∆A, a

2∆T , a
2∆I and the two flavor-neutral “hairpin” coefficients a2δ′V and a2δ′A [27].

These parameters can be determined separately from fits to light pseudoscalar meson masses

and decay constants; we therefore hold them fixed to the values determined in Ref. [67] while

performing the continuum-chiral extrapolation. The variation of these parameters within

their statistical errors results in a negligible change to the extrapolated form factors. The

five terms analytic in ml, a
2, and Eπ absorb the dependence upon the scale in the chiral

logarithms, Λχ, such that the form factor is scale-independent. We leave the tree-level

coefficients c
(0)
‖,⊥ and the NLO analytic term coefficients c

(1)
‖,⊥–c

(5)
‖,⊥ as free parameters to be

determined via the fit to the lattice form factor data. In practice, we omit the analytic term

proportional to (2ml + ms) from our fits because the strange sea quark mass is tuned to

approximately the same value on each of our ensembles and we have simulated only full QCD

points. This term is therefore largely indistinguishable from the analytic term proportional

to ml. We have checked that omission of the sea quark mass analytic term has a negligible

impact on the form factors in the chiral and continuum limits.
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In both earlier unquenched analyses of the B → πℓν semileptonic form factor [33, 34],

the chiral extrapolation is performed as a two-step procedure: first interpolate the lattice

data to fiducial values of Eπ and then extrapolate the results to the physical quark masses

and continuum independently at each value of Eπ. The function used for the interpolation

(which is different in the two analyses) introduces a systematic uncertainty that is difficult

to estimate. In both cases the chiral-continuum extrapolation makes use of the correct

functional forms derived in HMSχPT, but, by extrapolating the results for each value of Eπ

separately, the constraint that the low-energy constants of the chiral effective Lagrangian

are independent of the pion energy is lost. This omission of valuable information about

the form factor shape introduces a further error that is unnecessary. The new analysis

presented here instead employs a simultaneous fit using HMSχPT to our entire data set

(all values of ml, a, and Eπ) to extrapolate to physical quark masses and the continuum

and interpolate in the pion energy [68]. This improved method eliminates the systematic

uncertainties introduced in the two-step interpolate-then-extrapolate procedure, and exploits

the available information in an optimal way.

We perform our combined chiral and continuum extrapolation using the method of con-

strained curve fitting [69]. Although we know that lattice data generated with sufficiently

small quark masses and fine lattice spacings, and, in the case of the B → πℓν form factor,

sufficiently low pion energies, must be described by lattice χPT, we do not know precisely

the range of validity of the effective theory. Furthermore, the order in χPT to which we must

work and the allowed parameter values depend upon both the quantity of interest and the

size of the statistical errors. We therefore need a fitting procedure that both incorporates

our general theoretical understanding of the suitable chiral effective theory and accounts for

our limited knowledge of the values of the low-energy constants and sizes of the higher-order

terms. Constrained curve fitting provides just such a method.

Next-to-leading order χPT breaks down for pion energies around and above the kaon

mass. Less than half of our numerical form factor data, however, is below this cutoff.

Therefore, although we do not expect NLO HMSχPT to describe our data through momen-

tum p = 2π(1, 1, 0)/L, we cannot remove those points without losing the majority of our

data. Nor can we abandon the NLO HMSχPT expressions for f‖ and f⊥, Eqs. (45) and (46),

which are the only effective field theory guides that we have for extrapolating the numerical

lattice form factor data to the continuum and physical quark masses. We therefore perform
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the continuum-chiral extrapolation using the full NLO HMSχPT expressions for f‖ and f⊥,

including the 1-loop chiral logarithms, plus additional NNLO analytic terms to allow a good

fit to the data through p = 2π(1, 1, 0)/L. The NNLO terms smoothly interpolate between

the region in which χPT is valid and the region in which the pion energies are too large and

the higher-order chiral logarithms in Eπ can be approximated as polynomials.

We express the analytic terms in the formulae for f‖ and f⊥, Eqs. (45) and (46), as

products of dimensionless expansion parameters:

χml
=

2µml

8π2f 2
π

∼ 0.05–0.19 (47)

χa2 =
a2∆

8π2f 2
π

∼ 0.03–0.09 (48)

χEπ
=

√
2Eπ

4πfπ
∼ 0.22–0.78, (49)

where we show the range of values for each of these parameters corresponding to our numer-

ical lattice data. (Note that we omit the ~p = 2π(1, 1, 1)/L data points from our chiral fits

because these would lead to χEπ ∼> 1.) Because each of the above expressions is normalized

by the chiral scale, Λχ ≈ 4πfπ, the undetermined coefficients c
(1)
‖,⊥–c

(5)
‖,⊥ should be of O(1) in

these units. We therefore constrain the values of the low-energy constants c
(0)
‖,⊥–c

(5)
‖,⊥ in our

fits with Gaussian priors of width 2 centered about 0.

The statistical errors in the numerical lattice data come from the 3-point fits described

in the previous subsection. In order to account for the correlations among the various pion

energies on the same sea quark ensemble in the chiral-continuum extrapolation, we preserve

the bootstrap distributions. We perform a separate correlated fit to each of the 500 bootstrap

ensembles in which we remake the full bootstrap covariance matrix for each fit. We average

the 68% upper and lower bounds on the form factor distributions to determine the statistical

and systematic errors in f‖ and f⊥ that are plotted in Fig. 7 and presented in Table II below.

Because we do not know a priori how many terms are necessary to describe the available

lattice data, we begin with strictly NLO fits using the formulae for f‖ and f⊥ in Eqs. (45)

and (46). We fit the lattice data for f‖ and f⊥ separately even though the ratio of leading-

order coefficients, c
(0)
⊥ /c

(0)
‖ , is predicted to equal gB∗Bπ to NLO in χPT; this is because the

value of gB∗Bπ is known to only ∼ 50% from phenomenology. We obtain a good fit of the f⊥

lattice data to the NLO expression without the inclusion of higher-order NNLO terms. This

is probably because the shape of f⊥ is dominated by the 1/(Eπ +∆∗) behavior and therefore
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largely insensitive to the other terms. We cannot, however, obtain a good fit of f‖ to the

strictly NLO expression, and must add higher-order terms in order to obtain a successful

fit. Specifically, NNLO analytic terms proportional to mlEπ and E3
π are both necessary to

achieve a confidence level better than 10%.

Although we could, at this point, choose to truncate the HMSχPT extrapolation formulae

to include only those terms necessary for a good confidence level, we instead include “extra”

NNLO analytic terms to both the f‖ and f⊥ fits, constraining the values of their coefficients

with Gaussian priors of 0 ± 2. The introduction of more free parameters increases the

statistical errors in the extrapolated values of the form factors; these larger errors reflect the

uncertainty in the size of the newly-included higher-order contributions. We continue to add

higher-order analytic terms until the central values of the extrapolated form factors stabilize

and the statistical errors in the form factors reach a maximum. This indicates that any

further terms are of sufficiently high order that they do not affect the fit and can safely be

neglected. We find that this occurs once the extrapolation formulae for f‖ and f⊥ contain all

eight sea-quark mass-independent NNLO analytic terms. The inclusion of NNNLO analytic

terms does not further increase the size of the error bars.

Figure 7 shows the preferred constrained fits of f‖ (upper plot) and f⊥ (lower plot)

versus E2
π, where both the x- and y-axes are in r1 units.2 Each fit is to the NLO HMSχPT

expression, Eqs. (45) and (46), plus all sea-quark mass-independent NNLO analytic terms.

The square symbols indicate fine lattice data, while the circles denote coarse data. The

six colored curves show the fit result projected onto the masses and lattice spacings of the

six sea quark ensembles; the red line should go through the red circles, and so forth. The

thick black curve shows the form factor in the continuum at physical quark masses with

symmetrized bootstrap statistical errors.

We use functions and constraints based on HMSχPT to perform the chiral-continuum

extrapolation because we know that HMSχPT is the correct low-energy effective description

of the lattice theory. Nevertheless, we must compare various properties with theoretical

expectations in order to check for overall consistency. An essential first test is that we

can successfully fit the data with good confidence levels and obtain low-energy coefficients

2 As a cross-check of the constrained fits, we also perform unconstrained fits of f‖ and f⊥ with only the

minimal number of analytic terms needed for a good fit. The results are consistent, but the unconstrained

fit results have smaller statistical errors because they include 6–8 fewer fit parameters.
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FIG. 7: Chiral-continuum extrapolation of f‖ (upper) and f⊥ (lower) using constrained NLO

HMSχPT plus all NNLO analytic terms with gB∗Bπ = 0.51 and r1 = 0.311 fm. The square

symbols indicate a = 0.09 fm lattice data points while the circular symbols indicate a = 0.12

fm coarse data points. The black curve is the chiral-continuum extrapolated form factor with

asymmetric (68% upper and lower bound) bootstrap statistical errors only.
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that are of the predicted size. We can also verify the convergence of the series expansion

by calculating the ratios of the higher-order contributions to the leading-order form factor

contributions:

fNLO
‖

fLO
‖

∣∣∣∣
Eπ=500 MeV

≈ 47%,
fNLO
⊥

fLO
⊥

∣∣∣∣
Eπ=500 MeV

≈ 48%, (50)

fNNLO
‖

fLO
‖

∣∣∣∣
Eπ=500 MeV

≈ 3%,
fNNLO
⊥

fLO
⊥

∣∣∣∣
Eπ=500 MeV

≈ 4%, (51)

where we choose a nominal value of Eπ = 500 MeV for illustration because it is on the high

end of the expected range of validity of χPT. Finally, because the leading-order coefficient,

c
(0)
‖ , is expected to be equal to φB ≡ fB

√
mB in HMχPT, we can compare its value with

that of φB determined from our preliminary decay constant analysis. Although the B-

meson decay constant calculation uses the same staggered gauge configurations, it employs

different heavy-light meson 2-point correlation functions with the axial current, a different

HMSχPT fit function, and different perturbative renormalization factors, and is therefore

largely independent of the B → πℓν semileptonic form factor calculation. For the preferred

f‖ fit shown in Fig. 7, we find c
(0)
‖ = 0.81 ± 0.07, where the errors are statistical only.

This is quite close to our current preliminary result, r
3/2
1 φB = 0.92 ± 0.03 (statistical error

only) [70, 71], especially considering that the HMSχPT extrapolation formula for f‖ neglects

some of the O(1/mb) contributions.

An interesting use of our numerical B → πℓν form factor data is to determine the

approximate value of the B∗-B-π coupling, gB∗Bπ, from lattice QCD. For the preferred fits

shown in Fig. 7, we find that the ratio of leading-order coefficients is

gB∗Bπ ≈ c
(0)
⊥

c
(0)
‖

= 0.22 ± 0.07, (52)

and is independent of the choice for gB∗Bπ in the chiral logarithms within statistical errors.

This determination omits the O(1/mb) corrections to the chiral logarithms in the HMSχPT

extrapolation formulae for f‖ and f⊥, Eqs. (45) and (46), and neglects the difference between

φB and φB∗ ; we do not attempt to estimate the systematic uncertainty introduced by these

or other effects. The value is lower than the determination of Stewart, gB∗Bπ = 0.51, which

comes from a combined analysis of several experimental quantities, including the D∗-meson

decay width, through O(1/mc) in HMχPT [44]. It is consistent, however, with the range of
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values determined by the HPQCD Collaboration, who allowed gB∗Bπ to be a free parameter

in their chiral-continuum extrapolation and found 0 < gB∗Bπ ∼< 0.45 [33].

IV. ESTIMATION OF SYSTEMATIC ERRORS

In this section we discuss all of the sources of systematic uncertainty in our calculation of

the B → πℓν form factor, f+(q2). We present each error in a separate subsection for clarity.

The value of the form factor f+(q2), along with the total error budget, is given in Table II.

A. Chiral-continuum extrapolation fit ansatz

We use the method of constrained curve fitting to estimate the effect of neglected higher-

order terms in the HMSχPT chiral-continuum extrapolation formulae. Our fit procedure is

described in detail in Sec. IIIC. Therefore the errors in f‖ and f⊥ extrapolated to physical

quark masses and zero lattice spacing shown in Fig. 7 reflect both the statistical errors

in the Monte Carlo data and the systematic errors due to our limited knowledge of the

higher-order terms, which we specified with priors. We do not need to include a separate

systematic uncertainty due to the choice of fit function, as would be the case had we used

an unconstrained fit with fewer terms.

B. gB∗Bπ uncertainty

We fix the size of the B∗-B-π coupling to gB∗Bπ = 0.51 in the coefficients of the chiral

logarithms while extrapolating to the physical light quark masses and continuum. Because

the coupling gB∗Bπ is expected to be approximately equal to gD∗Dπ due to heavy-quark

symmetry, we use the value of the D∗-D-π coupling determined by Stewart in Ref. [44],

which comes from a combined analysis of several experimental quantities that includes the

D∗-meson decay width [72]. This value is presented without errors, and is an update of

the earlier phenomenological analysis of Stewart in Ref. [73]. Stewart’s earlier analysis finds

gD∗Dπ = 0.27+0.04+0.05
−0.02−0.02, which is significantly lower than the updated value. We therefore

conclude that, although recent experimental measurements of the D∗ width may constrain

the coupling [72], the size of gB∗Bπ is not well-determined in the literature.
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In order to determine the error in the form factor from the uncertainty gB∗Bπ we vary

the parameter over a generous range. The smallest value of gB∗Bπ that we have seen in the

literature is gD∗Dπ = 0.27 [73]. The largest is gD∗Dπ = 0.67, which comes from a quenched

lattice calculation [74]. (There has not yet been an unquenched “2+1” flavor determination

of gB∗Bπ.) We therefore vary gB∗Bπ over the entire range from 0.27–0.67 and take the largest

difference from the preferred determination of f+(q2) using gB∗Bπ = 0.51 as the systematic

error due to the uncertainty in the B∗-B-π coupling. The lattice data is largely insensitive

to the value of gB∗Bπ in the coefficient of the chiral logarithms; all values of the parameter

yield similar fit confidence levels. The resulting systematic uncertainty in f+(q2) is less than

3% for all q2 bins despite varying gB∗Bπ by almost 50%.

C. Scale (r1) uncertainty

We use the MILC Collaboration’s determination of the scale from their calculation of fπ,

r1 = 0.311 fm, to convert between lattice and physical units [52]. The parameter r1 enters

the form factor calculation in a number of places: we use the PDG values of fπ and ∆∗
B in the

chiral-continuum extrapolation formulae [13], we set mπ to the PDG value in the resulting

fit functions to determine the form factors at the physical point, and we convert f‖ and f⊥ to

physical units via r1 before combining them to extract f+(q2). An alternative determination

using the HPQCD Collaboration’s lattice data for the Υ 2S-1S [75] splitting yields a result

that is ∼ 2% larger, r1 = 0.317 fm. We therefore repeat the chiral-continuum extrapolation

of f‖ and f⊥ using this higher value of r1, combine them into the dimensionless form factor

f+(q2) using this higher value of r1, and take the difference from the preferred form factor

result as the systematic error due to uncertainty in the overall lattice scale. The difference

ranges from 1–1.5% for most q2 values. This is consistent with our naive expectation that

a ∼ 2% difference in r1 will result in a ∼ 1% difference in f+(q2) because f‖ has dimensions

of GeV1/2 and f⊥ has dimensions of GeV−1/2.

D. Light quark mass (m̂, ms) determinations

We obtain the form factors f‖ and f⊥ in continuum QCD by setting the lattice spacing to

zero and the light quark masses to their physical values in the HMSχPT expressions, once
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the coefficients have been determined from fits to the numerical lattice data. We use the

most recent calculations of the bare quark masses by the MILC Collaboration from fits to

light pseudoscalar meson masses:

r1m̂× 103 = 3.78(16) (53)

r1ms × 103 = 102(4), (54)

where m̂ is the average up-down quark mass and the quoted errors include both statistics

and systematics [52]. We vary the bare light quark mass, r1m̂, within its stated uncertainty

and take the maximal difference from the preferred form factor result to be the systematic

error; we find that the error is 0.3% or less for all values of q2. We perform the same

procedure for the bare strange quark mass, and find that the resulting error ranges from ∼
0.5–1.5% over the various q2 bins.

E. Bottom quark mass (mb) determination

The value of the form factor f+(q2) depends upon the b-quark mass, which we fix to its

physical value throughout the calculation. Specifically, we first determine the value of the

hopping parameter, κ, in the SW action for which the lattice kinetic mass agrees with the

experimentally-measured Bs-meson mass. We then use this tuned κb when calculating all

of the 2- and 3-point heavy-light correlators needed for the B → πℓν form factor. With our

current tuning procedure we are able to determine κb to ∼ 6% accuracy. This uncertainty

in κb is conservative; it is primarily due to poor statistics, and will decrease considerably

after the analysis of the larger data set that is currently being generated.

The uncertainty in κb produces an uncertainty in the form factor. We estimate this by

calculating the form factor f+ at one κ above and below the tuned value on the aml/ams =

0.02/0.05 coarse ensemble. This is sufficient because the heavy-quark mass-dependence of

the form factor is largely independent of the sea quark masses and lattice spacing. We find

the largest dependence upon κb at momentum ~p = 2π(1, 1, 0)/L, shown in Fig. 8, for which

a 6% uncertainty in κb produces a 1.2% uncertainty in the form factor. We therefore take

1.2% to be the systematic error in f+(q2) due to uncertainty in the determination of the

b-quark mass.
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FIG. 8: Percentage change in f+ at momentum ~p = 2π(1, 1, 0)/L as a function of κb on the

aml/ams = 0.02/0.05 coarse ensemble. The central data point corresponds to the tuned κb, and

the thick red line shows a linear fit to the three data points. The two dashed vertical lines indicate

the upper and lower bounds on κb.

F. Gluon and light-quark discretization errors

We estimate the size of discretization errors in the form factor f+(q2) with power-counting.

We choose conservative values for the parameters that enter the estimates: Λ = 700 MeV

and αV (q∗) = 1/3, which is a typical value on the fine lattice spacing [58, 63].

We calculate the B → πℓν semileptonic form factor using a one-loop Symanzik-improved

gauge action for the gluons [76–79] and the Asqtad-improved staggered action for the light

up, down, and strange quarks [80]. Because both the gluon and light quark actions are O(a2)-

improved, the leading discretization effects are of O(αs(aΛ)2). We parameterize these errors

in the fit to numerical lattice form factor data by including analytic terms proportional to

a2 in the HMSχPT extrapolation formulae for f‖ and f⊥. Because we only have data at

two lattice spacings, however, we do not include a separate term proportional to αs(aΛ)2 to

account for the fact that αs differs by a few percent between the lattice spacings. We then

remove the majority of light quark and gluon discretization effects from the final result by

taking a → 0. Similarly, we identify and remove higher-order discretization effects in the

chiral-continuum extrapolation through the NNLO analytic terms in the fit functions. The
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remaining gluon and light quark discretization errors are negligible.

The calculation of the B → πℓν form factor requires 2-point and 3-point functions with

nonzero momenta, which introduces momentum-dependent discretization errors. The lead-

ing p-dependent discretization error is of O(αs(ap)
2). We parameterize these errors, up to

variations in αs at the two lattice spacings, with the two NNLO analytic terms proportional

to a2E2
π and a2ml in the extrapolation formulae for f‖ and f⊥ and remove them by taking the

continuum limit of the resulting fit functions. This also largely removes errors of O(α2
s(ap)

2).

The remaining momentum-dependent discretization effects are of O(αs(ap)
4). On the 283

fine lattices, αs(ap)
4 = 0.003 for our highest-momentum data points with ~p = 2π(1, 1, 0)/2.

Therefore the uncertainty in f+(q2) due to momentum-dependent discretization effects is

negligible compared with our other systematic errors.

G. Heavy-quark discretization errors

We use HQET as a theory of cutoff effects to estimate the size of discretization errors

due to use of the Fermilab action for the heavy bottom quark. Because both the lattice

and continuum theories can be described by HQET, heavy-quark discretization effects can

be classified as a short-distance mismatch of higher-dimension operators [37–39]. Each

contribution to the error is given by [81]

errori =
∣∣[Clat

i (mQ, m0a) − Ccont
i (mQ)

]
〈Oi〉

∣∣ , (55)

where Oi is an effective operator, and Clat
i (mQ, m0a) and Ccont

i (mQ) are the corresponding

short-distance coefficients when HQET is used to describe lattice gauge theory or continuum

QCD, respectively. The coefficient mismatch can be written as

Clat
i (mQ, m0a) − Ccont

i (mQ) = adimOi−4fi(m0a), (56)

and the relative error in our matrix elements can be estimated by setting 〈Oi〉 ∼ ΛdimOi−4
QCD .

Then each contribution to the error is

errori = fi(m0a)(aΛQCD)dimOi−4, (57)

recovering the counting in powers of a familiar from Symanzik, while maintaining the full

m0a dependence. The functions fi can be deduced from Refs. [36, 82] and are compiled in
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Appendix A. Adding all contributions of O(αsa) and O(a2) from the action and the current,

we obtain a relative error of 2.84% for f⊥ and 2.87% for f‖. We therefore take 2.9% to be

the error in f+(q2) due to heavy-quark discretization effects.

H. Heavy-light current renormalization

We determine the majority of the heavy-light current renormalization nonperturbatively.

The dependence of Zbb
V on the sea quark masses and on the mass of the light spectator

quark in the 3-point correlator are both negligible; the statistical error in Zbb
V is ∼ 1%. The

dependence of Z ll
V on the sea quark masses is also negligible, and the statistical error in Zbb

V

is ∼ 1%. We therefore include
√

(1%2 + 1%2) ≈ 1.4% as the systematic uncertainty in the

form factor f+(q2) due to the uncertainty in the nonperturbative renormalization factors Zbb
V

and Z ll
V for all values of q2.

We determine the remaining renormalization of the heavy-light current using lattice per-

turbation theory. The 1-loop correction to f⊥ is ∼ 3% on the fine ensembles and ∼ 4%

on the coarse ensembles. Because we calculate ρhl
Vµ

to O(αs), the leading corrections are of

O(α2
s). We might therefore expect the 2-loop corrections to ρhl

Vµ
to be a factor of αs smaller,

or ∼ 1%. In order to be conservative, however, we take the entire size of the 1-loop correc-

tion on the fine lattices, or 3%, as the systematic uncertainty in f+(q2) due to higher-order

perturbative contributions for all q2 bins.

I. Tadpole parameter (u0) tuning

In order to improve the convergence of lattice perturbation theory, we use tadpole-

improved actions for the gluons, light quarks, and heavy quarks [48]. We take u0 from

the average plaquette for the gluon and sea quark action [18]. On the fine lattice, we make

the same choice for the valence quarks. For historical reasons, however, we use u0 deter-

mined from the average link in Landau gauge for the valence quarks on the coarse ensembles.

The difference between u0 from the two methods is 3-4% on the coarse ensembles. We must

therefore estimate the error in the form factor due to this poor choice of tuning.

The tadpole-improvement factor enters the calculation of f+(q2) in several ways. The

factor of u0 that enters the normalization of the heavy Wilson and light staggered quark
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fields cancels exactly between the 〈π|V µ|B〉 lattice matrix element and the nonperturbative

renormalization factor
√
Zbb

V Z
ll
V . The most significant effect of the mixed u0 values is in the

chiral-continuum extrapolation of f‖ and f⊥. The different choices for valence and sea quark

actions imply that the coarse lattice data is partially quenched. We study this effect by

performing the chiral extrapolation in two ways: one assuming that both valence and sea

quarks have the mass of the sea quark and the other assuming that both have the mass of

the valence quark. This leads to a 3% error in the highest q2 bin, and a ∼ 1− 1.5% error in

the bins that affect the determination of |Vub|. Most of the other effects of changing u0 in the

lattice action and current can be absorbed into our estimate of the uncertainty from higher-

order perturbative corrections to ρhl
V , to discretization errors, and to the normalization of

the Naik term. All but the last are already budgeted in Table II. The Naik term in the

Asqtad action ensures that the leading discretization errors in the pion dispersion relation

are O(αsa
2p2). We therefore estimate the error in f+(q2) due to different Naik terms in the

valence and sea sectors to be equal to the largest value of αsa
2p2 on the coarse lattice times

the ratio of the Landau link over plaquette u0 cubed, or ∼ 0.2%.

We add the flat error from the Naik term to the bin-by-bin error due to the light quark

mass used in the chiral extrapolation in quadrature to obtain the total uncertainty. Although

our estimate is of necessity rather rough, we find that the errors due to u0 tuning are much

smaller than the dominant errors in f+(q2). Our error estimate is therefore adequate for the

determinations of the B → πℓν form factor and |Vub| presented in this work.

J. Finite volume effects

We estimate the uncertainty in the form factor f+(q2) due to finite-volume effects using

1-loop finite volume HMSχPT. The finite volume corrections to the HMSχPT expressions

for f‖ and f⊥ are given in Ref. [42] in terms of integrals calculated in Ref. [83]. It is therefore

straightforward to find the relevant corrections for our simulation parameters. We find that

the 1-loop finite volume corrections are well below a percent for all of our lattice data

points. Because finite volume errors increase as the light quark mass decreases, they are

largest on the aml/ams = 0.007/0.05 coarse ensemble. The biggest correction is to f⊥ at

~p = 2π(1, 1, 0)/L, and is 0.5%. We therefore take this to be the uncertainty in f+(q2) due

to finite volume errors for all q2 bins.
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TABLE II: Statistical and systematic error contributions to the B → πℓν form factor. Each source of uncertainty is discussed in Sec. IV.

For each of the 12 q2 bins, the error is shown as a percentage of the total form factor, f+(q2), which is given in the second row from the

top. Because the bootstrap errors in the form factor are asymmetric, the errors shown are the average of the upper and lower bootstrap

errors. In order to facilitate the use of our result, we also present the normalized statistical and systematic bootstrap correlation matrices

in Table B.

q2 (GeV2) 26.5 25.7 25.0 24.3 23.5 22.8 22.1 21.3 20.6 19.8 19.1 18.4

f+(q2) 9.04 6.32 4.75 3.75 3.06 2.56 2.19 1.91 1.69 1.51 1.37 1.27

statistics + χPT (%) 24.4 18.5 13.5 9.6 7.1 6.3 6.5 6.9 7.2 7.5 8.2 9.8

gB∗Bπ uncertainty 1.1 0.3 0.8 1.8 2.4 2.8 2.9 2.8 2.6 2.5 2.6 2.9

r1 0.4 0.7 0.9 1.1 1.2 1.3 1.4 1.4 1.5 1.5 1.4 1.4

m̂ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3

ms 0.6 0.6 0.6 0.7 0.7 0.8 0.8 0.9 1.0 1.1 1.2 1.3

mb 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

heavy quark discretization 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9

nonperturbative ZV 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

perturbative ρ 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

u0 2.9 2.1 1.2 0.5 0.3 0.8 1.1 1.3 1.4 1.3 1.3 1.3

finite volume 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

total systematics (%) 5.6 5.1 5.0 5.1 5.4 5.6 5.8 5.8 5.7 5.7 5.7 5.9
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V. MODEL-INDEPENDENT DETERMINATION OF |Vub|

It is well-established that analyticity, crossing symmetry, and unitarity largely constrain

the possible shapes of semileptonic form factors [84–87]. In this section we apply constraints

based on these general properties to our lattice result for the form factor f+(q2) and thereby

extract a model-independent value for the CKM matrix element |Vub|.

Until now the standard procedure used to extract |Vub| from B → πℓν semileptonic decays

has been to integrate the form factor |f+(q2)|2 over a region of q2, and then combine the

result with the experimentally measured decay rate in this region:

Γ(qmin)

|Vub|2
=

G2
F

192π3m3
B

∫ q2
max

q2
min

dq2
[
(m2

B +m2
π − q2)2 − 4m2

Bm
2
π

]3/2 |f+(q2)|2. (58)

The integration, however, necessitates a continuous parameterization of the form factor over

the full range from q2
min to q2

max.

In our earlier, preliminary unquenched analysis, we determine f+(q2) by fitting the lattice

data points to the Bećirević-Kaidalov (BK) parameterization [88],

f+(q2) =
f+(0)

(1 − q̃2) (1 − α q̃2)
, (59)

f0(q
2) =

f+(0)

(1 − q̃2/β)
, (60)

where q̃2 ≡ q2/m2
B∗ . The BK ansatz contains three free parameters and incorporates many

of the known properties of the form factor such as the kinematic constraint at q2 = 0,

heavy-quark scaling, and the location of the B∗ pole. The HPQCD Collaboration instead

uses the four-parameter Ball-Zwicky (BZ) parameterization [89], which is the same as the

BK function in Eq. (59) plus an additional pole to capture the effects of multiparticle states.

In both cases, however, the choice of fit function introduces a systematic uncertainty that

is difficult to quantify.

It is likely the BK and BZ parameterizations can be safely used to interpolate between

data points, whether they be at high q2 from lattice QCD or at low q2 from experiment.

It is less clear, however, how well these ansatze can be trusted to extrapolate the form

factor shape beyond the reach of the data points. Furthermore, comparisons of lattice and

experimental determinations of BK or BZ fit parameters are not necessarily meaningful.

For example, if the slope parameters α from experiment and lattice QCD were found to
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be inconsistent, we would not know whether theory and experiment disagree, or whether

the parameterization is simply inadequate. A parameterization that circumvents this issue

is therefore desirable. In this work we pursue an analysis based on the model-independent

z-parameterization, which is pedagogically reviewed in Ref. [85].

A. Analyticity, unitarity, and heavy-quark constraints on heavy-light form factors

All form factors are analytic functions of q2 except at physical poles and threshold branch

points. In the case of the B → πlν form factors, f(q2) is analytic below the Bπ production

region except at the location of the B∗ pole. The fact that analytic functions can always be

expressed as convergent power series allows the form factors to be written in a particularly

useful manner.

Consider mapping the variable q2 onto a new variable, z, in the following way:

z(q2, t0) =

√
1 − q2/t+ −

√
1 − t0/t+√

1 − q2/t+ +
√

1 − t0/t+
, (61)

where t+ ≡ (mB + mπ)2, t− ≡ (mB − mπ)2, and t0 is a free parameter. Although this

mapping appears complicated, it actually has a simple interpretation in terms of q2; this

transformation maps q2 > t+ (the production region) onto |z| = 1 and maps q2 < t+ (which

includes the semileptonic region) onto real z ∈ [−1, 1]. In terms of z, the form factors have

a simple form:

f(q2) =
1

P (q2)φ(q2, t0)

∞∑

k=0

ak(t0)z(q
2, t0)

k, (62)

where the Blaschke factor P (q2) is a function that contains subthreshold poles and the outer

function φ(q2, t0) is an arbitrary analytic function (outside the cut from t+ < q2 <∞) whose

choice only affects the particular values of the series coefficients ak.

For the case of the B → πℓν form factor f+(q2), the Blaschke factor P+(q2) = z(q2, m2
B∗)

accounts for the B∗ pole. In this work we use the same outer function as in Ref. [44]:

φ+(q2, t0) =

√
3

96πχ
(0)
J

(√
t+ − q2 +

√
t+ − t0

)(√
t+ − q2 +

√
t+ − t−

)3/2

×
(√

t+ − q2 +
√
t+

)−5 (t+ − q2)

(t+ − t0)1/4
, (63)

where χ
(0)
J is a numerical factor that can be calculated via the operator product expansion

(OPE) [86, 90]. This choice of φ+(q2, t0), when combined with unitarity and crossing-
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symmetry, leads to a particularly simple constraint on the series coefficients in Eq. (62).

Although the t-dependence of Eq. (63) appears complicated, it is designed so that the sum

over the squares of the series coefficients is t-independent:
∞∑

k=0

a2
k =

1

2πi

∮
dz

z
|P (z)φ(z)f(z)|2 ≡ A, (64)

where the value of the constant A depends upon the choice of χ
(0)
J in Eq. (63). Because the

decay process B → πℓν is related to the scattering process ℓν → Bπ by crossing symmetry,

the sum of the series coefficients is bounded by unitarity, i.e. the fact that the production

rate of Bπ states is less than or equal to the production of all final states that couple to the

b → u vector current. In particular, if one chooses the numerical factor χ
(0)
J to be equal to

the appropriate integral of the inclusive rate ℓν → Xb, the sum of the coefficients is bounded

by unity:
N∑

k=0

a2
k ∼< 1, (65)

where this constraint holds for any value of N and the “∼<” symbol indicates higher-order

corrections to χ
(0)
J in αs and the OPE.

Such higher-order corrections turn out to be negligible for the B → πℓν form factor

because the bound in Eq. (65) is far from saturated, i.e., the sizes of the coefficients turn

out to be much less than one. Becher and Hill have pointed out that this is due to the fact

that the b-quark mass is so large. In the heavy-quark limit, the leading contributions to the

integral in Eq. (64) are of O(Λ3/m3
b), where Λ is a typical hadronic scale [91]. Assuming

that the ratio Λ/mb ∼ 0.1, the heavy-quark bound on the ak’s is approximately thirty times

more constraining than the bound from unitarity alone:

N∑

k=0

a2
k ∼

(
Λ

mB

)3

≈ 0.001. (66)

We point out that the authors of Ref. [46] have recently proposed a slightly different

parameterization of the B → πℓν form factor with a simpler choice of outer function, φ = 1:

f+(q2) =
1

1 − q2/m2
B∗

∞∑

k=0

bk(t0)z(q
2, t0)

k. (67)

This choice enforces the correct scaling behavior, f+(q2) ∼ 1/q2 as q2 → ∞. It leads,

however, to a more complicated constraint on the series coefficients:

N∑

j,k=0

Bjkbjbk ∼< 1, (68)

41



where the elements of the symmetric matrix Bjk are calculable functions of t0. Because

B → πℓν semileptonic decay is far from q2 → ∞, and because the unitary bound is so far

from being saturated, the choice of outer function should make a negligible impact on the

resulting determination of |Vub|. We therefore use the more standard outer function given

in Eq. (63) because the constraint in Eq. (65) is independent of the number of terms in the

power series, and is therefore simpler to implement.

The free parameter t0 can be chosen to make the maximum value of |z| as small as possible

in the semileptonic region; we choose t0 = 0.65t− as in Ref. [44]. For B → πlν semileptonic

decays this maps the physical region onto:

0 < t < t− 7→ −0.34 < z < 0.22. (69)

The bound on the coefficients in the z-expansion combined with the small numerical values

of |z| in the physical region ensures that one needs only the first few terms in the z-expansion

to accurately describe the form factor shape. Moreover, as the precision of both the lattice

calculations and experimental measurements improve, one may easily include higher-order

terms as needed.

B. Determination of |Vub| using z-parameterization

In 2007 the BABAR Collaboration published a measurement of the shape of the B → πℓν

semileptonic form factor with results for 12 separate q2 bins between q2
min ≈ 1 GeV2 and

q2
max ≈ 24 GeV2 [43]. This suggests that lattice QCD calculations are now needed primarily

to provide a precise form factor normalization at one value of q2 in order to determine |Vub|.
The minimal error in |Vub| can, of course, still be attained by using all of the available

information on the form factor shape and normalization, provided that one analyzes the

data in a model-independent way.

Because as many terms can be added as are needed to describe the B → πℓν form factor

to the desired accuracy, use of the convergent series expansion allows for a systematically

improvable determination of |Vub|. We fit our lattice numerical Monte Carlo data and the

12-bin BABAR experimental data together to the z-expansion, leaving the relative nor-

malization factor, |Vub|, as a free parameter to be determined by the fit. In this way we

determine |Vub| in an optimal, model-independent way.
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We first fit the lattice numerical Monte Carlo data and the 12-bin BABAR experimental

data separately to the z-expansion in order to check for consistency. We use Gaussian

priors with central value 0 and width 1 on each coefficient in the z-expansion to impose the

unitarity constraint. Although this manner of constraining the coefficients is less stringent

than the strict bound given in Eq. (65), the choice does not matter because the unitary

bound is far from saturated and the individual coefficients all turn out to be much less than

1. We obtain identical fit results even when the coefficients are completely unconstrained.

The left-hand plot in Fig. 9 shows the BABAR measurement of the B → πℓν semileptonic

form factor, f+(q2) [43]. The right-hand plot shows the same data multiplied by the functions

P+(q2) and φ+(q2, t0) and plotted versus the variable z. After remapping from q2 to z

there is almost no curvature in the experimental data. This indicates that most of the

curvature in the data is due to well-understood QCD effects that are parameterized by

the functions P+(q2) and φ+(q2, t0). Consequently the experimental data is well-described

by a normalization (a0) and slope (a1/a0), as shown in Fig. 9. The slope of the BABAR

experimental B → πℓν form factor data is

a1

a0
= −1.60 ± 0.26. (70)

If one includes a curvature term in the z-fit, the coefficient a2 is poorly determined, but is

found to be negative at ∼ 1.5-σ. The value of a1 is consistent with the result of the linear

fit.

Figure 10 shows the lattice determination of the B → πℓν semileptonic form factor, f+

vs. q2 (left plot) and the remapped form factor, P+φ+f+ vs. z (right plot). As is the case

for the experimental data, the shape of the lattice form factor is less striking after taking

out the B∗ pole and other known QCD effects. When the lattice calculation of the form

factor is fit to the z-parameterization, however, it determines both a slope and a curvature.

One cannot, in fact, successfully fit the lattice data without including a curvature term. The

slope and curvature of the lattice determination of the B → πℓν form factor are

a1

a0

= −1.75 ± 0.91, (71)

a2

a0
= −5.21 ± 1.38. (72)

The above uncertainties are the standard errors computed from the inverse of the parameter

Hessian matrix that result from a fit using the full covariance matrix determined from
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FIG. 9: Experimental data for the B → πlν form factor times the CKM element |Vub| from the

BABAR collaboration [43]. The left plot shows |Vub| × f+ versus q2 while the right plot shows

|Vub| × f+ multiplied by the functions P+φ+ and plotted against the new variable z. Both the

2-parameter fit (dashed blue line) and 3-parameter fit (solid red curve) have good χ2/d.o.f.’s.

the bootstrap distributions of chiral-continuum extrapolated values of f‖ and f⊥, including

systematics.

Because the shapes of the lattice calculation and experimental measurement of the form

factor are consistent, we now proceed to fit them simultaneously to the z-expansion and

determine |Vub|. The numerical lattice and measured experimental data are independent, so

we construct a block-diagonal covariance matrix where one block is the total lattice error

matrix and the other is the total experimental error matrix. The combined fit function

includes the series coefficients (ak’s) plus an additional parameter for the relative normal-

ization between the lattice and experimental results (|Vub|). In order to account for the

systematic uncertainty in |Vub| due to poorly-constrained higher-order terms in z, we con-

tinue to add terms in the series until the error in |Vub| reaches a maximum. This occurs once

we include the term proportional to z3. The resulting combined z-fit is shown in Fig. 11,
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FIG. 10: Lattice calculation of the B → πlν form factor. The left plot shows f+ vs. q2 while the

right plot shows P+φ+f+ vs. z. The inner and outer error bars on the data points indicate the

statistical and systematic errors, respectively. A 3-parameter z-fit is needed to describe the lattice

data with a good χ2/d.o.f.

and the corresponding fit parameters are

|Vub| × 103 = 3.38 ± 0.35 , (73)

a0 = 0.0218 ± 0.0020 , (74)

a1 = −0.0302 ± 0.0062 , (75)

a2 = −0.059 ± 0.032 , (76)

a3 = 0.079 ± 0.068 . (77)

The values of the coefficients are all much smaller than one, as expected from heavy-quark

power-counting. The sum of the squares of the coefficients is
∑
a2

k = 0.011 ± 0.012, and is

consistent with the prediction of Becher and Hill within uncertainties in the series coefficients

and in the choice of the hadronic scale in Eq. (66) [91].

By combining all of the available numerical lattice Monte Carlo data and 12-bin BABAR

experimental data for the B → πℓν form factor in a simultaneous fit we are able to determine

|Vub| to ∼ 10% accuracy. This error is independent (within ∼< 0.5%) of the choice of the

parameter t0 used in the change of variables from q2 to z(q2, t0) and in the outer function

φ+(q2, t0). In order to demonstrate the advantage of the combined fit method, we compare
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FIG. 11: Model-independent determination of |Vub| from a simultaneous fit of lattice and exper-

imental B → πℓν semileptonic form factor data to the z-parameterizaton. The left plot shows

P+φ+f+ vs. z while the right plot shows f+ vs. q2. Inclusion of terms in the power-series through

z3 yields the maximum uncertainty in |Vub|; the corresponding 4-parameter z-fit is given by the red

curve in both plots. The circles denote the Fermilab-MILC lattice data, while the stars indicate the

12-bin BABAR experimental data, rescaled by the value of |Vub| determined in the simultaneous

z-fit.

the error in |Vub| given in Eq. (73) with that obtained from separate z-fits of the lattice

and experimental data. A z-fit to the 12-bin BABAR experimental data alone determines

the normalization a0
exp to ∼ 8%, while a z-fit to our numerical lattice data determines

a0
lat to ∼ 14%. Thus separate fits lead to a determination of |Vub| ≡ a0

exp/a0
lat with an

approximately 16% total uncertainty.3 The combined fit yields a significantly smaller error

and is thus preferred.

3 Because the values of the coefficients of the power-series in z depend upon the choice of the parameter t0 in

Eqs. (61)–(63), we could in principle choose a different value of t0 in order to minimize the error in either

a0
exp or a0

lat. For example, use of t0 = 22.8 GeV2 reduces the uncertainty in the lattice normalization

because the error in the lattice form factor is smallest at this q2-value. Use of t0 = 22.8 GeV2 greatly

increases the uncertainty in the experimental normalization, however, because the experimental data is

poorly-determined at large values of q2. Ultimately, this choice of t0 leads to an even worse determination

of |Vub| than from our standard choice of t0 = 0.65t−. Although we did not attempt to determine the

value of t0 that minimizes the total error in |Vub|, the errors resulting from separate fits were greater than

that obtained with the simultaneous fit for all values of t0 that we tried.
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When the numerical lattice data and experimental data are fit simultaneously, utilizing

all of the available data points is of secondary importance for reducing the total uncertainty

in |Vub|. For example, we can evaluate the importance of the low q2 experimental points to

the extraction of |Vub| by removing them from the combined z-fit. Including only the three

experimental data points with q2 > 18 GeV2, we find a consistent value of |Vub| with only

a slightly larger uncertainty (∼ 11%). Similarly, we can evaluate the importance of having

many lattice data points, rather than only a single point, by using only the most precise

lattice point with a total error of ∼ 8%. This allows the form factor shape to be completely

determined by the experimental data. We find a consistent value of |Vub| but with an even

larger error of ∼ 13%. We therefore conclude that combining all of the numerical lattice data

with all of the experimentally-measured BABAR data minimizes the total uncertainty in

|Vub|. Because the small error in our final determination of |Vub| is primarily due to the power

of the combined z-fit method, one could easily use the procedure outlined in this section to

improve the exclusive determination of |Vub| from existing lattice QCD calculations of the

B → πℓν form factor such as that by the HPQCD Collaboration [33].

VI. RESULTS AND CONCLUSIONS

Combining our latest unquenched lattice calculation of the B → πℓν form factor with

the 12-bin BABAR experimental data, we find the following model-independent value for

|Vub|:4

|Vub| × 103 = 3.38 ± 0.35. (78)

The total error is ∼ 10%, and it is nontrivial to separate the error precisely into contributions

from statistical, systematic, and experimental uncertainty because of the combined z-fit

procedure used. If we assume, however, that the error in |Vub| is dominated by the most

precisely determined lattice point (which is not quite true, as shown in the previous section),

we can estimate that the contributions are roughly equally divided as ∼ 6% lattice statistical,

4 At three conferences during Summer 2008 we presented a version of this model-independent analysis with

a numerical value for |Vub| that is 1-σ lower than that given here in Eq. (79). We have since improved

several aspects of the lattice calculation, most notably reducing the statistical errors that enter the chiral

and continuum extrapolations of f⊥ and f‖ and, hence, f+. Equation (78) is our final result for |Vub|
based on the lattice data from the ensembles in Table I and the methodology of Secs. III and V.
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∼ 6% lattice systematic, and ∼ 6% experimental.

Our result is consistent with, although slightly lower than, our earlier, preliminary de-

termination of |Vub|. The reduction in central value is primarily due to a change in the

lattice determination of the form factor, not the procedure used to determine |Vub|. Be-

cause our new analysis uses a second lattice spacing, we are able to take the continuum

limit of the form factor. We find that the continuum extrapolation increases the overall

normalization of f+(q2), and hence decreases the value of |Vub|. Our errors are smaller than

those of previous exclusive determinations primarily because we have reduced the size of the

discretization errors, which are significantly smaller than in the previous Fermilab-MILC

calculation (∼ 7% → 3%) because of the additional finer lattice spacing.

Our new result is ∼ 1–2-σ lower than most inclusive determinations of |Vub|, which

typically range from 4.0− 4.5× 10−3 [32]. Much of the variation among the inclusive values

is due to the choice of input parameters – in particular that of the b-quark mass [92]. The

recent determination of mb by Kühn, Steinhauser, and Sturm using experimental data for

the cross section for e+e− → hadrons in the bottom threshold region yields the value of mb

to percent-level accuracy [93], and is consistent with the PDG average [13]. Neubert has

shown, however, that an updated extraction of mb from fits to B → Xcℓν moments using

only the theoretically cleanest channels (excluding b→ Xsγ) results in a larger b-quark mass

and hence smaller inclusive value of |Vub|, thereby reducing the tension between inclusive

and exclusive determinations [94].

Our result is consistent with the currently preferred values for |Vub| determined by the

global CKM unitarity triangle analyses of the CKMfitter Collaboration, |Vub| × 103 =

3.44+0.22
−0.17 [95], and UTFit Collaboration, |Vub| × 103 = 3.48 ± 0.16, [96]. Further reduc-

tion in the errors is therefore essential for a more stringent test of the CKM framework and

a more sensitive probe of physics beyond the Standard Model.

The dominant uncertainty in our lattice calculation of the B → πℓν form factor comes

from the statistical errors in the 2-point and 3-point correlations. This error can be reduced

in a straightforward manner with use of an improved source for the pion and/or additional

gauge configurations. The statistical errors in the nonperturbative renormalization factors

Zbb
V and Z ll

V can be brought to below a percent in the same way. The chiral-continuum

extrapolation error, which is inextricably linked to the statistical errors in the correlation

functions, can also be improved by simulating at more light quark masses and an additional
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finer lattice spacing of a ∼ 0.06 fm. Presumably a better constrained chiral and continuum

extrapolation will reduce the size of other q2-dependent errors such as those from gB∗Bπ, r1,

and the light quark masses by some unknown amount as well. Use of a finer lattice with

a ∼ 0.06 fm will further decrease the momentum-dependent and heavy-quark discretization

errors, which we now estimate with power-counting. The extraction of |Vub| can also be

improved by including more experimental measurements of the B → πℓν branching fraction.

This, however, will require understanding the correlations among the various systematic

uncertainties. Given these refinements of the current calculation, an even more precise,

model-independent value of |Vub| can be obtained in the near future.
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APPENDIX A: ESTIMATE OF HEAVY QUARK DISCRETIZATION ERRORS

In this Appendix we collect the short-distance functions fi used to estimate the heavy-

quark discretization effects. For more background, see Refs. [36–39, 81, 82].
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1. O(a2) errors

We start with these because explicit expressions for the functions fi(m0a) are available.

a. O(a2) errors from the Lagrangian

There are two bilinears, h ~D · ~Eh and hi~Σ · [ ~D× ~E]h, and many four-quark operators. At

tree level the coefficients of all four-quark operators vanish and the coefficients of the two

bilinears are the same. The mismatch function is given by

fE(m0a) =
1

8m2
Ea

2
− 1

2(2m2a)2
. (A1)

Using explicit expressions for 1/m2 [36] and 1/m2
E [82], one finds

fE(m0a) =
1

2

[
cE(1 +m0a) − 1

m0a(2 +m0a)(1 +m0a)
− 1

4(1 +m0a)2

]
. (A2)

We use cE = 1 in our numerical simulations.

b. O(a2) errors from the current

There are three terms with non-zero coefficients, qΓ ~D2h, qΓi~Σ · ~Bh, and qΓ~α · ~Eh, which

can be deduced from Eq. (A17) of Ref. [36]. Their coefficients can be read off from Eqs. (A19).

When cB = rs the first two share the same coefficient:

fX(m0a) =
1

8m2
Xa

2
− ζd1(1 +m0a)

m0a(2 +m0a)
− 1

2(2m2a)2
,

=
1

2

[
1

(2 +m0a)(1 +m0a)
+

1

2(1 +m0a)
− 1

4(1 +m0a)2
− 1

(2 +m0a)2

]
,

=
1

2

[
1

2(1 +m0a)
−

(
m0a

2(2 +m0a)(1 +m0a)

)2
]
, (A3)

where the last term on the second line comes from using the tree-level d1. For the third

operator, qΓ~α · ~Eh,

fY (m0a) =
1

2

[
d1

m2a
− ζ(1 − cE)(1 +m0a)

m0a(2 +m0a)

]
,

=
2 + 4m0a+ (m0a)

2

4(1 +m0a)2(2 +m0a)2
, (A4)

where the last line reflects the choices made for cE and d1.
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2. O(αsa) errors

Because we improve both the action and current, the mismatch functions fi(m0a) start

at order αs, and we do not have explicit expressions for them. (The calculation of these

functions would be needed to match at the one-loop level.) So we shall take unimproved tree-

level coefficients as a guide to the combinatoric factors and consider asymptotic behavior in

the limits m0a→ 0,∞.

a. O(αsa) errors from the Lagrangian

There are two bilinears, the kinetic energy h ~D2h and the chromomagnetic moment hi~Σ ·
~Bh. There is no mismatch in the coefficient of the kinetic energy, by assumption, since

we identify the kinetic mass with the heavy-quark mass. This tuning is imperfect, but the

associated error is budgeted in Sec. IVE.

At the tree level the chromomagnetic mismatch is

f
[0]
B (m0a) =

cB − 1

2(1 +m0a)
. (A5)

This has the right asymptotic behavior in both limits, so our ansatz for the one-loop mis-

match function is simply

f
[0]
B (m0a) =

αs

2(1 +m0a)
, (A6)

and errorB is this function multiplied by aΛ.

b. O(αsa) errors from the current

There is only one correction at tree level, but more generally there are two for the temporal

current and four for the spatial current. (See Eqs. (2.27)–(2.32) of Ref. [38].)

The tree-level mismatch function ends up being the same as d1:

f
[0]
3 (m0a) =

m0a

2(2 +m0a)(1 +m0a)
. (A7)

It is, however, an accident that it vanishes as m0a→ 0. Therefore, we instead take

f3(m0a) =
αs

2(2 +m0a)
, (A8)

which has the right asymptotic behavior.
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TABLE III: Relative error from mismatches in the heavy quark Lagrangian and current for the

bottom quark with Λ = 700 MeV. To obtain the totals given in the text E and X are counted

twice, and 3 is counted twice for f‖ and four times for f⊥. Entries are in per cent.

a (fm) αV (q∗) m0a B 3 E X Y

0.09 0.33 2.018 1.76 1.32 0.28 0.80 0.24

0.12 0.41 2.617 2.48 1.94 0.39 1.26 0.33

3. Numerical estimates

The relative errors due to mismatches in the heavy quark Lagrangian and current on the

MILC coarse and fine ensembles are tabulated in Table III. At the fine lattice spacing we

take the typical αV (q∗) to be 1
3
, and we use one-loop running to obtain αV (q∗) at the coarse

lattice spacing. The contribution errorY from the ~α · ~E error in the current is so small

both because cE = 1 in our simulation and because d1 is small. Adding the individual errors

given in Table III in quadrature, and taking into account multiple contributions of the same

size, we find the total error to be 2.84% (4.16%) for f‖ and 2.87% (4.19%) for f⊥ on the fine

(coarse) lattices.
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APPENDIX B: STATISTICAL AND SYSTEMATIC ERROR MATRICES

In this Appendix we present the normalized statistical and systematic bootstrap correla-

tion matrices for the B → πℓν form factor, f+(q2), that were used in our model-independent

determination of |Vub|.
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TABLE IV: Normalized statistical (upper) and systematic (lower) bootstrap correlation matrices

for the B → πℓν form factor, f+(q2). These should be combined with the values of f+(q2) presented

in Table II to reconstruct the full correlation matrices.

q2 (GeV2) 26.5 25.7 25.0 24.3 23.5 22.8 22.1 21.3 20.6 19.8 19.1 18.4

26.5 1.00 0.99 0.97 0.88 0.66 0.29 -0.01 -0.16 -0.19 -0.14 -0.04 0.05

25.7 0.99 1.00 0.99 0.92 0.73 0.38 0.07 -0.09 -0.13 -0.09 0.00 0.08

25.0 0.97 0.99 1.00 0.97 0.82 0.51 0.21 0.04 -0.02 0.01 0.07 0.13

24.3 0.88 0.92 0.97 1.00 0.93 0.69 0.42 0.25 0.18 0.17 0.20 0.21

23.5 0.66 0.73 0.82 0.93 1.00 0.91 0.72 0.56 0.48 0.43 0.39 0.32

22.8 0.29 0.38 0.51 0.69 0.91 1.00 0.94 0.85 0.77 0.69 0.58 0.42

22.1 -0.01 0.07 0.21 0.42 0.72 0.94 1.00 0.98 0.92 0.84 0.69 0.48

21.3 -0.16 -0.09 0.04 0.25 0.56 0.85 0.98 1.00 0.98 0.92 0.78 0.55

20.6 -0.19 -0.13 -0.02 0.18 0.48 0.77 0.92 0.98 1.00 0.97 0.86 0.66

19.8 -0.14 -0.09 0.01 0.17 0.43 0.69 0.84 0.92 0.97 1.00 0.95 0.80

19.1 -0.04 0.00 0.07 0.20 0.39 0.58 0.69 0.78 0.86 0.95 1.00 0.94

18.4 0.05 0.08 0.13 0.21 0.32 0.42 0.48 0.55 0.66 0.8 0.94 1.00

q2 (GeV2) 26.5 25.7 25.0 24.3 23.5 22.8 22.1 21.3 20.6 19.8 19.1 18.4

26.5 1.00 0.98 0.95 0.88 0.84 0.87 0.89 0.90 0.91 0.91 0.90 0.89

25.7 0.98 1.00 0.98 0.91 0.85 0.86 0.87 0.88 0.89 0.90 0.89 0.87

25.0 0.95 0.98 1.00 0.97 0.93 0.93 0.93 0.94 0.95 0.95 0.95 0.93

24.3 0.88 0.91 0.97 1.00 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.97

23.5 0.84 0.85 0.93 0.99 1.00 0.99 0.99 0.98 0.98 0.98 0.98 0.98

22.8 0.87 0.86 0.93 0.98 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.99

22.1 0.89 0.87 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

21.3 0.90 0.88 0.94 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

20.6 0.91 0.89 0.95 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

19.8 0.91 0.90 0.95 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

19.1 0.90 0.89 0.95 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

18.4 0.89 0.87 0.93 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

54



[1] S.-W. Lin et al. (Belle), Nature 452, 332 (2008).

[2] E. Lunghi and A. Soni (2008), arXiv:0803.4340.

[3] M. Bona et al. (UTfit) (2008), arXiv:0803.0659.

[4] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 100, 161802 (2008), arXiv:0712.2397.

[5] V. M. Abazov et al. (D0) (2008), arXiv:0802.2255.

[6] B. A. Dobrescu and A. S. Kronfeld, Phys. Rev. Lett. 100, 241802 (2008), arXiv:0803.0512.

[7] E. Follana, C. T. H. Davies, G. P. Lepage, and J. Shigemitsu (HPQCD), Phys. Rev. Lett.

100, 062002 (2008), arXiv:0706.1726.

[8] K. Abe et al. (Belle) (2007), arXiv:0709.1340.

[9] B. Aubert et al. (BABAR), Phys. Rev. Lett. 98, 141801 (2007), hep-ex/0607094.

[10] T. K. Pedlar et al. (CLEO), Phys. Rev. D76, 072002 (2007), arXiv:0704.0437.

[11] K. M. Ecklund et al. (CLEO), Phys. Rev. Lett. 100, 161801 (2008), arXiv:0712.1175.

[12] S. Stone (2008), arXiv:0806.3921.

[13] C. Amsler et al. (Particle Data Group), Phys. Lett. B667, 1 (2008).

[14] B. I. Eisenstein et al. (CLEO) (2008), arXiv:0806.2112.

[15] C. T. H. Davies et al. (HPQCD, MILC, and Fermilab Lattice), Phys. Rev. Lett. 92, 022001

(2004), hep-lat/0304004.

[16] C. Aubin et al. (MILC), Phys. Rev. D70, 114501 (2004), hep-lat/0407028.

[17] I. F. Allison et al. (HPQCD, MILC, and Fermilab Lattice), Phys. Rev. Lett. 94, 172001 (2005),

hep-lat/0411027.

[18] C. W. Bernard et al. (MILC), Phys. Rev. D64, 054506 (2001), hep-lat/0104002.

[19] Y. Shamir, Phys. Rev. D71, 034509 (2005), hep-lat/0412014.

[20] Y. Shamir, Phys. Rev. D75, 054503 (2007), hep-lat/0607007.

[21] C. Bernard, Phys. Rev. D73, 114503 (2006), hep-lat/0603011.

[22] C. Bernard, M. Golterman, and Y. Shamir, Phys. Rev. D77, 074505 (2008), arXiv:0712.2560.

[23] S. Prelovsek, Phys. Rev. D73, 014506 (2006), hep-lat/0510080.

[24] C. Bernard, C. E. Detar, Z. Fu, and S. Prelovsek, Phys. Rev. D76, 094504 (2007),

arXiv:0707.2402.

[25] C. Aubin, J. Laiho, and R. S. Van de Water, Phys. Rev. D77, 114501 (2008), arXiv:0803.0129.

55



[26] W.-J. Lee and S. R. Sharpe, Phys. Rev. D60, 114503 (1999), hep-lat/9905023.

[27] C. Aubin and C. Bernard, Phys. Rev. D68, 034014 (2003), hep-lat/0304014.

[28] S. R. Sharpe and R. S. Van de Water, Phys. Rev. D71, 114505 (2005), hep-lat/0409018.
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