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Abstract

Transverse beam stability is strongly affected by the
beam space charge. Usually it is analyzed with the rigid-
beam model. However this model is only valid when a
bare (not affected by the space charge) tune spread is
small compared to the space charge tune shift. This
condition specifies a relatively small area of parameters
which, however, is the most interesting for practical
applications. The Landau damping rate and the beam
Schottky spectra are computed assuming that validity
condition is satisfied. The results are applied to a round
Gaussian beam. The stability thresholds are described by
simple fits for the cases of chromatic and octupole tune
spreads.

INTRODUCTION

Particle interaction via the walls of the vacuum
chamber is conventionally described by the wake
functions and impedances. In absence of damping, this
interaction leads to beam coherent instabilities. However,
if there are particles in resonance with coherent motion,
they effectively exchange their incoherent energy with the
energy of coherent oscillations. If the phase space density
of the resonant particles is sufficiently large, the
instability is stabilized by this mechanism, called the
Landau damping. Contrary to the wake fields, Coulomb
interaction does not drive the instability by itself, since it
preserves the total energy and momentum. However, the
collective Coulomb field can strongly affect the beam
stability because it separates coherent and incoherent
frequencies. Indeed, when the beam oscillates as a whole,
its collective motion does not see the space charge, while
an individual particle does. Thus, if the coherent and
incoherent frequencies are separated, there are no resonant
particles, and no Landau damping.

To analyze the beam stability with space charge, an
effective method was suggested by D. Mohl and H.
Schonauer in 1974 [1]. To describe transverse oscillations
of a coasting beam, they introduced a linearized equation
of motion:

d’x
dt’
Here x; is the offset of i-th particle, Q) ,Q, ,AQ,, are its

revolution frequency, the tune and the direct space charge
tune shift, O ,Q, are the average revolution frequency

+0.2Q. 7% +29,°Q, (AQ, x+ AQ, (x, — x))=0.(1)
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and tune, X is the offset of beam center and AQ, is the

impedance-driven  coherent tune shift.  Although
perturbation of a particle motion depends on its
amplitudes, this equation assumes that the beam oscillates
as a rigid body when the coherent beam fields are
computed. Consequently, the beam coherent motion is
completely described by the dipole offset X. This
assumption is correct if all lattice frequencies () Q are

identical. In this case, all particles respond identically to
the coherent field, &, =X, consequently, the beam

oscillates as a rigid body, and the spread of the space
charge tune shifts does not matter. However, a spread of
the lattice frequencies generally makes the rigid-body
model of Eq. (1) incorrect. Indeed, an individual response
to the coherent field is determined by the separation of the
individual lattice frequency from the coherent frequency,
which varies from particle to particle. Since individual
responses are not identical, the beam shape is not
preserved in the dipole oscillations, so the rigid-body
model of Eq. (1) is not self-consistent and generally
cannot be justified.

In 2001, M. Blaskiewicz showed a way to analyze the
problem, avoiding the rigid-beam assumption [2]. Within
a one-dimensional model, he developed an integral
equation on the phase space density perturbation. He
found two cases when his equation gives the same result
as the rigid-beam approach. The first case was the Lorentz
momentum distribution, and the second one was the
water-bag distribution over the transverse actions. With
some additional model simplifications, he plotted several
stability diagrams for distributions close to Gaussian. The
same problem of self-consistent beam stability analysis
was recently examined by D. Pestrikov [3]. Considering a
two-dimensional model, he came to a general integral
equation and found it “too complicated even for a
numerical solving.” To proceed, he considered a single-
dimensional problem, came to the same integral equation
as M. Blaskiewicz, and reproduced his Lorentz and water-
bag results. For a Gaussian distribution, he plotted
additional stability diagrams, and found no anti-damping,
found earlier in his rigid-beam model studies [4]. Indeed,
Landau anti-damping cannot exist at all if the distribution
is close to Gaussian: this is a mere consequence of the
second law of thermodynamics. A Hamiltonian system in
thermal equilibrium is always stable. Appearance of
Landau anti-damping in the rigid-beam model is a striking
example of how wrong the results of this model can be.
Rigid-beam stability diagrams were presented in several



papers [4-6]; however, the range of their applicability was
not clarified.

MODEL JUSTIFICATION

As mentioned above, the rigid-beam model is correct if
all the lattice frequencies are identical, Q, Q =Q, Q,-

This case is simple, but not so interesting, since there is
no Landau damping, and any impedance with non-zero
real part makes the beam unstable. Now let us assume that
the lattice frequency spread is sufficiently small so that
the rigid-beam model would still be a good
approximation. That requires the rms spread of the lattice
frequencies o((), Q) to be small compared with the

separation frequency, which is a difference of the
coherent frequency from an average incoherent one:

o(; Q)<< ‘Agzsep EQO‘RG(AQc)_<AQSC> > @)
where (AQ,) is the average space charge tune shift. In

this case, the rigid-beam model is still a good
approximation; but there is small amount of the resonant
particles in tails of the distribution, yielding small Landau
damping. If the impedance-driven instability rate
Q, Im(AQ,) is also small, even this tiny amount of Landau

damping can be sufficient for the beam stabilization.
Thus, when the instability rate is much smaller than the
separation frequency, or

ImAQ,) <<[Re(AQ,)—(AQ, )| - 3)

a relatively small frequency spread is sufficient to
stabilize the beam. Near the threshold, the small
frequency spread is not significant for a bulk of the beam,
which oscillates almost the same way as for zero tune
spread. The tiny amount of the resonant particles has
almost no influence on the coherent motion, except a slow
transfer of the coherent energy into incoherent one, and
thus, a slow collective mode damping. In other words,
when Eq. (3) is satisfied, the rigid-beam model is
applicable for calculation of Landau damping required for
beam stabilization. This energy-based calculation of
Landau damping leads to the same result as a formal
solution of the dispersion equation [8].

In this paper, we limit ourselves to a case of thin tail, or
small frequency spread approximation of Eq. (2), where
the rigid-beam model is applicable. This allows us to
calculate the Landau damping and the threshold
parameters of the beam for a relatively small growth rate
(3). Our primary interest is the threshold calculation. This
is additionally simplified due to exponentially small phase
space density of resonant particles, and consequently the
Landau damping. When the damping rate is a steep
function of the dimensionless frequency separation
AQ /o(€y Q) >>1, the threshold condition mostly

determines this big ratio, being only slightly dependent on
the coherent growth rate.

In practice, the far tails of the distributions are not well-
measured or well-reproducible, so that even exact

formulas cannot produce reliable results for the instability
growth rates. On the contrary, the stability threshold
depends only logarithmically on specific behavior of the
distribution tails, and therefore can be predicted much
better. Note also that the condition of small growth rate of
Eq. (3) is typically well-satisfied for low and medium
energy hadron machines, mainly addressed by this paper.

DISPERSION EQUATION

After validity limits of the rigid-beam model are
specified, a solution of Eq. (1) can be considered in more
details. Assuming X; (t) o exp(—iwt) and

o=0Q,(n+Q, +v), one obtains the dispersion relation for
the eigenvalue v [1]:
s{v)z1_j (AQc(aJ)—AAQSC(JX,Jy)) foxdr- _
AQ(,.3,, P+AQ.(J,,d,)—v—i0
drr=dJ,dJ, dp; @
V=09, ~(1+Q).

]

R _of .
f=f(,.3,.0; f*:aTx’ IfdJXdJydp—l.
Here, all the notations are rather conventional: J, and J y

are the transverse actions; is a relative

p=Ap/p
momentum offset; AQ,(J,,J,,p) is the total lattice-

related tune shift; AQ, (J,,J,) is the direct space charge

tune shift as a function of the amplitudes; and
n=1/ 75—1/ y* is the slippage factor. The transverse

actions are normalized by the beam rms emittances
X =42¢,J B, cosy, and similarly for y. That results in
that

[f,,ddydp=1.

In this paper we will only consider the first two terms
contributing to the total lattice-related tune shift: the
chromatic contribution and the contribution due to
octupole non-linearity so that:

A3, D=+ Qn)P+AQ I, )5 N=0.£L42.. .
The coherent shift AQ,(w) describes the beam interaction

with the wall. This interaction produces both the dipole
and quadrupole forces, or, in other words, driving and
detuning wakes [9]. Thus, the entire force acting on i-th
particle can be expressed as F, =WX + Dx,, with W as

the conventional dipole (or driving) wake function, and D
as the quadrupole (or detuning) wake function. By
definition, only the driving wake term contributes into the
coherent shift AQ,(w)ocW . For the coasting beam, the

detuning wake simply shifts all tunes by the same amount.
It makes no change for stability analysis and therefore is
omitted below.

A conventional method of analysis of the dispersion
equation results in a stability diagram in the complex
plane of the coherent shift AQ,(w). However, if the rigid

beam model is used, only computations of tails of the



diagram result in a reliable answer because inequalities of
Egs. (2) and (3) are not fulfilled for the diagram’s main
part. In the area of tails, however, another significant step
can be done: the rate of Landau damping can be
calculated and expressed in terms of a regular integral of
the distribution function f.

LANDAU DAMPING

When the condition (2) is satisfied, the rate of Landau
damping can be found from Eq. (4). Note that this
dispersion equation formally defines the dielectric
function g(v) for values of v located on the real axis and
the upper half-plane, Im()>0. To obtain it in the lower
half-plane, where roots of the dispersion equation are
located, the direct use of Eq. (4) is invalid; instead, a
complex extension of the analytical function £(v) has to
be used. This can be done in the following way. First, let
the eigenvalue v be real, Imv=0, and solve the
dispersion equation for the coherent shift as a function of
the eigenvalue. Then the imaginary part of the found
coherent shift ImAQ, is equal to the Landau damping A,

since at the threshold, Tmv =0, they exactly compensate
each other. After expansion of the integral denominators
over a small relative tune spread AQ,/AQ,,, for ReAQ,,

the result for the eigenvalue =y, and the damping rate

sep

A follows (see the Appendix):
v, =ReAQ, +RN" + RN,
A=-7{AQy, ) [ AQ,, T, 3, 5(AQ, +AQ, —v, )T,

-1
fJ, dr
AQSED E{J. AQsep ] ,

(6))

AQSEP = ReAQC _AQSC (‘] X ‘] y) s

1 AQ| fXJX dr
a?( ) :—<AQSEP>J.T5@|J .
&?(2) :—<AQseP>J.% .

sep

Note that the sign of the damping rate A is always
determined by the sign of the derivative of the distribution
function f =0f /8], for the resonance particles, similar to

the classical Landau result for the plasma oscillations (no
antidamping for monotonic distributions). Note also that
corrections Q" and QP to the real part of the

eigenvalue play a role when the distribution function
drops exponentially; in this case even a small correction
to the tune of the resonant particles significantly affects
the damping rate A.

Let us first assume that the tune spread is purely
chromatic. In this case the first-order correction is equal
to zero, Q™ =0, and only the second-order correction
remains, JQ? . For the Gaussian momentum distribution,
f ocexp(—f)z / 25’2)), and constant transverse density,
AQ,, =const, the second-order correction is determined

= ofp /AQ where

sep ’

by the following equation: SQ?

= ‘é‘ -(n+Q) 77‘0- . That yields the damping rate:

AW o

Note that this result is e tlmes smaller than a simple-
minded formula neglecting the second-order term Q@ .

Another possibility to stabilize the beam is an
introduction of octupole non-linearity. Contrary to the
chromatic spread, the first-order correction to the
eigenvalue §Q" is non-zero here. For the Gaussian

transverse  distribution, including this  first-order
correction reduces the rate A by a constant factor ~2-3,
similar to the role of the second-order term for the
chromatic tune spread. For the octupole tune spread the
second-order term makes only a small correction to the
damping rate and can be neglected.

As was pointed out above, the rigid-beam model is
valid only if the frequency spread is small compared with

the separation frequency, 5Q-? /< AQsep> <<1. Accounting

the tune corrections QP ,Q? within the rigid-beam

approximation assumes that the inaccuracy of the model
is smaller than these corrections. The correctness of this
assumption is a subject of separate study. Presently, we
can only refer to a specific example of chromatic tune
spread for a Gaussian beam, considered in Ref. [3] within
a framework of one-dimensional self-consistent model,
compared with the rigid-beam result. As it is clearly seen
from a presented stability diagram, the discrepancy
between the two results is rather small, ~ 10-20% in the
area of rigid-beam model validity. This suggests that
accounting the eigenvalue corrections QU , QP is

within the model accuracy, and thus it is legitimate.
Finally, it should be noted that although the corrections
RNV, QP change the damping rate A by 2-3 times,
their influence on the threshold space charge over the tune
spread value is relatively small, since the Landau damping
exponentially depends on beam parameters (like in Eq.
(6)), and an error in the pre-exponential factor (~2-3) only
slightly modifies the threshold.

THRESHOLD LINES

As it was stated above, rigid-beam stability diagrams
are mostly invalid if the space charge is present. A small
correct part of them lies typically so close to zero that it is
hard to resolve details on the pictures usually presented in
the literature (Ref. [4-6]). Therefore we do not draw these
diagrams here and present the stability threshold in a
different way. Indeed, Eq. (6) shows that the stability
condition depends on two dimensionless parameters. The
first parameter determines to what extent the coherent and
incoherent frequencies are separated; obviously, it is
defined by the ratio of the separation frequency over the
lattice frequency spread. The second parameter shows
how strong is the instability to be suppressed by the
Landau damping; it can be described by the coherent
growth rate Q ImAQ, in units of the separation



frequency. A dependence of the threshold dimensionless
separation over dimensionless coherent growth can be
called the threshold line. In this section we present it for
round Gaussian beams. The problem is solved both for a
pure chromatic tune spread,

AQ =(¢-(+Q)n)p=0,,p/ 0,
and for an axially-symmetric octupole-induced spread,
AQ =Ac, (I, +3,)/2.

The results are presented in Figures 1, 2. Here we
additionally assume that ‘ Re AQC‘ << ‘< AQsc> .
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Figure 1: Threshold line for the chromatic tune spread.
The dimensionless maximal space charge tune shift
AQ,.(0)/ o, is plotted versus dimensionless growth time

AQ,.(0)/ImAQ, . The dots are numerical results, and the
line is a fit with the formula highlighted in yellow.

Above we used a conventional formula:

{ [szj [szﬂ (JyZJ
Y R Sl
2 2 2
dZ B (7)
exliz(\]X +Jy)/2)
to compute the space charge tune shift for a round
o,=0,=48B, -
AQ.(0)=r, AC/(4rf3*y’¢) is the maximal space charge

tune shift, and A is the linear density. For numerical
calculations, we approximated the exact result (7) by the
following fit:

AQsc (‘] X2 J y ) = _AQsc (O)J.
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Figure 2: Threshold line for the octupole tune spread.

As it is seen from the plots, the suggested fits for the
threshold lines

AQ.(0) _ 1.711{ AQ,.(0) J ©)

o, ImAQ,

for the chromatic spread, and

AQw (D) _ ¢ 51 AQ:(0)
o T 7ImAQ,

w
for the symmetric octupole spread are accurate within
10% or better.

Note that the stabilizing rms tune spread is 3-4 times
smaller for the octupoles than for the chromatic case. The
reason is that the octupole-driven tune shift goes
quadratically with amplitudes, while the chromatic tune
shift is a linear function of the momentum offset.

(10)

SCHOTTKY NOISE

Particle interaction affects the spectrum of beam
Schottky noise. In the application to the beam with
significant space charge, this problem was solved in Ref.
[4] in a framework of the rigid-beam model. Comparison
of this analytic solution with a particle tracking code and
with real beam measurements was considered in Ref. [7].
In this section we apply the results obtained above to the
problem of beam Schottky noise.

In the rigid-beam approximation, the spectral power of
the transverse Schottky noise X*(v/)is [4]:

&y PO

X*(v) =

AQ,(a,,a,)=-AQ.(0)

»(8)

which is accurate within a few percent for a,,a, < 6; it

has the right Tailor expansion at small amplitudes and the
right asymptotic behavior at large amplitudes.

192-11a, -18 /a,a, +3a; +36a; +24a;

N ‘5(1/)‘2 )
P(v)=x[ fJ, 5(AQ +AQ, —v)dr
where S , N are the beta-function at the pickup and the

(11)

number of particles. Note that this result assumes the
validity of the rigid-beam model,
lv—AQ, >>0, =0(Q; Q)/Q,. As above, it is true in
vicinity of the coherent peak due to the high value of the
tune separation. Since the model is not generally correct
at the incoherent frequency range, |v—AQ,. |z o,, the



above result is not justified there. However, the noise
power (11) reaches its maximum at the coherent peak,
where the model is valid, and, consequently, Eq. (11) can
be used. Expansion of the denominator at v =v_+ Av,

Av << AQ,,,, leads to

20 B KA(V,) . (12)
) N (v-v,) +(A(v,)-ImAQ,)

The form-factor

2
(AQu,) P(V.)
AW,
introduced here, appears to be scarcely sensitive to the
beam features, being always x = 1. Indeed, let the tune
spread be chromatic, with arbitrary momentum
distribution. For KV distribution, x = 1. For a Gaussian
transverse distribution, a fit
kK =0.9+0.02AQ.(0)/ 0o, is valid with accuracy of a

few percent for any AQ_ (0)/ o, <20. Integrating the

K=

noise power (12) over frequencies for the given Schottky
band yields:

S\ _ o200 AV _ &b 1 13
<X >_IX (V) T K N I—ImAQC/A(Vc) ( )

Note that the integrated power (13) contains the coherent
growth rate Im AQ_multiplied by a factor, extremely

sensitive to the beam temperature, A(v,)"'. When the

beam is being cooled, its total Schottky noise (13) almost
does not change, being equal to its zero-impedance limit,
until the very threshold of the instability, where it
immediately jumps to infinity. That is why measuring the
Schottky noise can hardly help to see a real part of
impedance responsible for the coherent rate Im AQ, : the

rate is either invisible or fatal.

SUMMARY

The applicability of the rigid-beam model is considered
for the case when the space charge plays significant role
in beam dynamics. The results prove that the stability
diagrams obtained with this model are not valid for most
of the complex plane of the coherent shift. However, the
small area of its validity typically covers the entire area of
practical interest. Based on the rigid-beam model, rather
simple formulas for the Landau damping were calculated.
These formulas are used for computation of the threshold
space charge tune shift versus coherent growth time.
Convenient analytical fits for the threshold lines are
presented for round Gaussian beams. At the end, the
results are applied for the Schottky noise analysis.
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APPENDIX

Here the solution (5) of the dispersion equation (4) is
derived. The problem can be formulated as follows: for a
given real eigenvalue v, the real and imaginary parts of
the corresponding coherent tune shift have to be found.
The solution can be sought as AQ, =v -6Q +iA. A
correction to the real part 5Q is found by expansion of

the dispersion integral in (4) by the small lattice tune
spread AQ / AQ,, Indeed, the real part of the dispersion

equation results in
@j f J.dr :I AQ, f,J,dI"
A(DI + A(?sc -V A(?I + A(Dsc -V
To first order in the small parameter AQ/ AQsep it leads to

5 =0 = _<AQSEP>J'M .
AQsep

This first-order result is sufficient for the octupole-related
lattice tune shift, where Q" #0, and the second-order
term gives only a small correction to the Landau damping.
For the chromatic tune spread though, the first-order
correction vanishes, &Q" =0, and the second-order term

. (AD)

(A2)

has to be taken into account. The only non-zero second-
order term comes from expansion of the denominator in
the right-hand side of Eq. (A1) over the small parameter,
resulting in

3 (A3)

a-‘) - éQ(Z) - _<AQSGP >I AQsep

If both octupole and chromatic tune spreads have to be
taken into account, the former gives the first-order
correction (A2), while the latter results in the second-
order term (A3). Note also, that in the denominators of
(A2, A3), the eigenvalue v is to be substituted by the
coherent shift AQ, . Thus, the real part of the dispersion

AQ’f J dr

equation leads to
with 5Q as a sum of the two contributions (A2), (A3). An



imaginary part of the dispersion integral is conventionally
calculated using  Im(1/(x-i0))=z5(x), and
immediately results in the damping rate A in Eq. (5).
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