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 TRANSVERSE STING BEAMS   INSTABILITIES OF COA
WITH SPACE CHARGE* 

bstract 
Transverse beam stability is strongly affected by the 

beam space charge. Usually it is analyzed with the rigid-
beam model. However this model is only valid when a 
bare (not affected by the space charge) tune spread is 
small compared to the space charge tune shift. This 
condition specifies a relatively small area of parameters 
which, however, is the most interesting for practical 
applications. The Landau damping rate and the beam 
Schottky spectra are computed assuming that validity 
condition is satisfied. The results are applied to a round 
Gaussian beam. The stability thresholds are described by 
simple fit

INTRODUCTION 
Particle interaction via the walls of the vacuum 

chamber is conventionally described by the wake 
functions and impedances. In absence of damping, this 
interaction leads to beam coherent instabilities. However, 
if there are particles in resonance with coherent motion, 
they effectively exchange their incoherent energy with the 
energy of coherent oscillations. If the phase space density 
of the resonant particles is sufficiently large, the 
instability is stabilized by this mechanism, called the 
Landau damping. Contrary to the wake fields, Coulomb 
interaction does not drive the instability by itself, since it 
preserves the total energy and momentum. However, the 
collective Coulomb field can strongly affect the beam 
stability because it separates coherent and incoherent 
frequencies. Indeed, when the beam oscillates as a whole, 
its collective motion does not see the space charge, while 
an individual particle does. Thus, if the coherent and 
incoherent frequencies are separated

rticles, and no Landau damping.  
To analyze the beam stability with space charge, an 

effective method was suggested by D. Möhl and H. 
Schönauer in 1974 [1]. To describe transverse oscillations 
of a coasting
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tune shift, 00 , QΩ  are the average revolution frequency 
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Here ix  is the offset of i-th particle, scii QQ ΔΩ ,,  are its 
revolution fr cy, the tune and the direct space charge 

and tune, x  is the offset of beam center and cQΔ  is the 
impedance-driven coherent tune shift. Although 
perturbation of a particle motion depends on its 
amplitudes, this equation assumes that the beam oscillates 
as a rigid body when the coherent beam fields are 
computed. Consequently, the beam coherent m tion is 
completely described by the dipole offset 

o
x . This 

assumption is correct if all lattice frequencies ii QΩ  are 
identical. In this case, ticles respond identically to 
the coherent field, 

 all par
xxi =δ , consequently, the beam 

oscillates as a rigid body, and the spread of the space 
charge tune shifts does not matter. However, a spread of 
the lattice frequencies generally makes the rigid-body 
model of Eq. (1) incorrect. Indeed, an individual response 
to the coherent field is determined by the separation of the 
individual lattice frequency from the coherent frequency, 
which varies from particle to particle. Since individual 
responses are not identical, the beam shape is not 
preserved in the dipole oscillations, so the rigid-body 
model of Eq. (1) is not self-consistent and generally 
cannot be justified.  

In 2001, M. Blaskiewicz showed a way to analyze the 
problem, avoiding the rigid-beam assumption [2]. Within 
a one-dimensional model, he developed an integral 
equation on the phase space density perturbation. He 
found two cases when his equation gives the same result 
as the rigid-beam approach. The first case was the Lorentz 
momentum distribution, and the second one was the 
water-bag distribution over the transverse actions. With 
some additional model simplifications, he plotted several 
stability diagrams for distributions close to Gaussian. The 
same problem of self-consistent beam stability analysis 
was recently examined by D. Pestrikov [3]. Considering a 
two-dimensional model, he came to a general integral 
equation and found it “too complicated even for a 
numerical solving.” To proceed, he considered a single-
dimensional problem, came to the same integral equation 
as M. Blaskiewicz, and reproduced his Lorentz and water-
bag results. For a Gaussian distribution, he plotted 
additional stability diagrams, and found no anti-damping, 
found earlier in his rigid-beam model studies [4]. Indeed, 
Landau anti-damping cannot exist at all if the distribution 
is close to Gaussian: this is a mere consequence of the 
second law of thermodynamics. A Hamiltonian system in 
thermal equilibrium is always stable. Appearance of 
Landau anti-damping in the rigid-beam model is a striking 
example of how wrong the results of this model can be. 
Rigid-beam stability diagrams were presented in several 
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papers [4-6 bility was 
no

]; however, the range of their applica
t clarified. 

MODEL JUSTIFICATION 
As mentioned above, the rigid-beam model is correct if 

all the lattice frequencies are identical, 00 QQii Ω=Ω . 
This case is simple, but not so interesting, since there is 
no Landau damping, and any impedance with non-zero 
real part makes the beam unstable. Now let us assume that 
the lattice fr spread is sufficiently small so that 
the rigid-beam model would still be a good 
approximation. That requires the rms spread of the lattice 
frequencies )(

equency 

ii QΩσ  to be small compare
ion frequency, which is a diffe

d with the 
separat rence of the 
coherent uency from an average incoherent one:   freq

sccsepii QQQ Δ−ΔΩ≡ΔΩ<<Ω )Re()( 0σ  ,            (2) 

where scQΔ  is the average space charge tune shift. In 
this case, the rigid-beam model is still a good 

ion; but there is small amount of the resonant 
particles in tails of the distribution, yielding small Landau 
damping. If the impedance-driven instability rate 

)Im(0 cQΔΩ  is also small, even this tiny amount of Landau 

approximat

damping can be sufficient for the beam stabilization. 
Thus, when the instability rate is much smaller than the 
separation frequency, or  

sccc QQQ Δ−Δ<<Δ )Re()Im(  ,                       (3) 

a relatively small frequency spread is sufficient to 
stabilize the beam. Near the threshold, the small 
frequency spread is not significant for a bulk of the beam, 
which oscillates almost the same way as for zero tune 
spread. The tiny amount of the resonant particles has 
almost no influence on the coherent motion, except a slow 
transfer of the coherent energy into incoherent one, and 
thus, a slow collective mode damping.  In other words, 
when Eq. (3) is satisfied, the rigid-beam model is 
applicable for calculation of Landau damping required for 

sep ii

beam stabilization. This energy-based calculation of 
Landau damping leads to the same result as a formal 
solution of the dispersion equation [8].  
  In this paper, we limit ourselves to a case of thin tail, or 
small frequency spread approximation of Eq. (2), where 
the rigid-beam model is applicable. This allows us to 
calculate the Landau damping and the threshold 
parameters of the beam for a relatively small growth rate 
(3). Our primary interest is the threshold calculation. This 
is additionally simplified due to exponentially small phase 

onant particles, and consequently the 
Landau damping.  When the damping rate is a steep 
function of the dimensionless frequency separation 

1)(/ >>Ω Q

space density of res

ΔΩ σ , the threshold condition mostly 

better. Note also that the condition of small growth rate of 
Eq. (3) is  medium 
en

 Q
After dity 

u
 exp()( itxi

determines this big ratio, being only slightly dependent on 
the coherent growth rate.  
 
In practice, the far tails of the distributions are not well-
measured or well-reproducible, so that even exact 

formulas cannot produce reliable results for the instability 
growth rates. On the contrary, the stability threshold 
depends only logarithmically on specific behavior of the 
distribution tails, and therefore can be predicted much 

typically well-satisfied for low and
ergy hadron machines, mainly addressed by this paper.  

DISPERSION E UATION 
limits of the rigid-beam model are 

specified, a sol tion of Eq. (1) can be considered in more 
details. Assuming

vali

)tω−∝  and 
)( 00ω Ω ν++≡ Q

nvalue 
n , one obtains the dispersion lation for 

the eige
re

ν  [1]: 
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Here, all the notations nventional: xJ  and yJ  
are the transvers ppp /ˆ Δ=  is a relative 
momentum offset; )ˆ,,( pJJQ yxlΔ  is the total lattice-

ft; ),( yxsc JJQrelated tune shi Δ  is the direct space charge 
tune shift as a function of the amplitudes; and 

22 1/1 γγη −= t  is t
s are normalized by the beam rms  

he slippage factor. The transverse 
action  emittances

xxxx

that  
1ˆ, =

Jx ψβε cos2=  and sim arly for yil . That results in 

∫ pddJdJfJ yxyx . 

In this paper we will only consider the first two terms 
contributing to the total lattice-related tune shi t: the 

tion a
   

f
chromatic contribu nd the contribution due to 
octupole non-linearity so that:  

( ) .,...2,1,0;),(ˆ)()ˆ,,( ±±=Δ++−=Δ nJJQpQnpJJQ yxoyxl ηξ  
The coherent shift )(ωcQΔ  describes the beam interaction 
with the wall. This interaction pr h the dipole 
and quadrupole forces, or, in other words, driving and 
detuning wakes [9]. Thus, the entire force acting on i-th 
particle can be expressed as 

oduces bot

ii DxxWF += , with W as 
the conventiona driving) wake function, and D 
as the quadrupole (or detuning) wake function. By 
definition, only the driving wake term contributes into the 
coherent shift WQ

l dipole (or 

c ∝Δ )(ω . For the coasting beam, the 
detuning wake simply shifts all tunes by the same amount. 
It makes no change for stability analysis and therefore is 
omitted below. 

A conventional method of analysis of the dispersion 
equation results in a stability diagram in the complex 
plane of the coherent shift )(ωcQΔ . However, if the rigid 
beam model is used, only computations of tails of the 



 

diagram result in a reliable answer because inequalities of 
Eqs. (2) and (3) are not fulfilled for the diagram’s main 
part. In the area of tails, however, another significant step 
can be done: the rate of Landau damping can be 
calculated and expressed in terms of a regular integral of 
the distribution function f.  

LANDAU DAMPING 
When the condition (2) is satisfied, the rate of Landau 

damping  be found from Eq. (4). Note that this 
dispersion equation y defines the dielectric 
function )(

can
formall

νε  for values of ν located on the real axis and 
the upper half-plane, 0)Im( ≥ν . To obtain it in the lower 
half-plane, where roots of the dispersion eq ion are 
located, the direct use of Eq. (4) is invalid; instead, a 
complex extension of the analytical function )(

uat

νε  has to 
be used. This can be done in the following way. First, let 
the eigenvalue ν  be real, 0Im =ν , and solve the 
dispersion equa r the coherent shift as a function f 
the eigenvalue. Then t ginary part of the found 
coherent shift cQΔIm is equal to the Landau damping 

tion f oo
he ima

Λ , 
since at the threshold, 0Im =ν , they exactly com e 
each other. After expansion of the integral denominators 
over a small relative tune sprea QQ Δ  for Q

pensat

sep cd lΔ / ΔRe , 
ult for the eigenvalue the res

cνν =  and the damping rate 
Λ  follows (see the Appendix): 
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Note that the sign of the damping rate Λ  is always 
determined by the sign of the derivative of the distribution 
function 

xx Jff ∂∂= /  for the resonance particles, similar to 
the classical Landau result for the plasma oscillations (no 
antidamping for monotonic distributions). Note also that 
corrections )1(Qδ and )2(Qδ  to the real part of the 
eigenvalue play a role when the distribution function 
drops exponential y; 
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l in this case even a small correction 
to

)1(Qδ
remains, )2(Qδ

sc rrection is de
by the following e seppν

 the tune of the resonant particles significantly affects 
the damping rate Λ . 

Let us sume that the tune spread is purely 
chromatic. In this case the first-order correction is equal 
to zero, 0= , and only the second-order correction 

. For the Gaussian momentum distribution, 
)2/ˆexp( 22

ppf σ−∝ , and constant transverse density, 

const=ΔQ , the second-order co termined 
quation: QQ Δ= /2)2( σδ , where 

first as

pp Qn σηξσν )( +−≡ . That yields the damping rate:       
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exp
2 2

pp νν σσ
 .                          (6) 

Note that this result is e times smaller than a ple

⎞⎛ ΔΔ 22
sepsep QQπ

sim -
minded formula neglecting the second-order term )2(Qδ .  

Another possibility to stabilize the beam is an 
introduction of octupole non-linearity. Contrary to the 
chromatic spread, the first-order correction to the 
eigenvalue )1(Qδ  is non-zero here. For the Gaussian 
transverse distribution, including this first-order 
correction reduces the rate Λ  by a constant factor ~2-3, 
similar to the role of the second-order term for the 
chromatic tune spread. For the octupole tune spread the 
second-order term makes only a small correction to the 
damping rate and can be neglected.  

As was pointed out above, the rigid-beam model is 
valid only if the frequency mpared with 
the separation frequenc

 spread is small co
y, 1<<Δ sepQ . Accounting 

the tune corrections )2()1( , QQ δδ  within the rigid-beam 
approximation assumes that the inaccuracy of the model 
is smaller than these corrections. The correctness of this 
assumption is a subject of separate study. Presently, we 
can only refer to a specific example of chromatic tune 
spread for a Gaussian beam, considered in Ref. [3] within 
a framework of one-dimensional self-consistent model, 
compared with the rigid-beam result. As it is clearly seen 
from a presented stability diagram, the discrepancy 
between the two results is rather small, ~ 10-20% in the 
area of rigid-beam model validity. This suggests that 
accounting the eigenvalue corrections )2()1( , QQ δδ  is 
within the model accuracy, and thus it is legitimate. 
Finally, it should be noted that although the corrections 

)2()1( , QQ δδ  change the damping rate Λ  by 2-3 times, 
their influence on the threshold space charge over the tune 
spread value is relatively small, since the Landau damping 
exponentially depends on beam parameters (like in Eq. 
(6)), and an error in the pre-expo

/)2,1(Qδ

nential factor (~2-3) only 
slightly modifies the threshold.  

THRESHOLD LINES 
As it was stated above, rigid-beam stability diagrams 

are mostly invalid if the space charge is present. A small 
correct part of them lies typically so close to zero that it is 
hard to resolve details on the pictures usually presented in 
the literature (Ref. [4-6]). Therefore we do not draw these 
diagrams here and present the stability threshold in a 
different way. Indeed, Eq. (6) shows that the stability 
condition depends on two dimensionless parameters.  The 
first parameter determines to what extent the coherent and 
incoherent frequencies are separated; obviously, it is 
defined by the ratio of the separation frequency over the 
lattice frequency spread. The second parameter shows 
how strong is the instability to be suppressed by the 
Landau damping; it can be described by the coherent 
growth rate cQΔΩ Im0  in units of the separation 

 



 

frequency. A dependence of the threshold dimensionless 
separation over dimensionless coherent growth can be 
called the threshold line. In this section we present it for 
round Gaussian beams. The problem is solved both for a 
pure chromatic tune spread, 

( ) ppl ppQnQ σσηξ ν /ˆˆ)( ≡+−=Δ ,  
and for an axia le-induced spread,  lly-symmetric octupo

2/)( yxol JJQ +Δ=Δ νσ .  
The results are present , ed in Figures 1 2. Here we 
additionally assume that 

scc
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Figure 1: Threshold line for the chromatic tune spread. 

ionless maximal space charge tune shift The dimens
pscQ νσ/)0(Δ  is 

d t
lin ellow.  

Above we used a conventional formula:  

plotted versus dimensionless growth time 

csc QQ ΔΔ Im/)0( . The dots are numerical results, an he 
e is a fit with the formula highlighted in y
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calculations, we appr
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which is accurate within a few percent for 6, ≤yx aa ; it 
has the right Tailor expansion at small amplitudes and the 

havior 
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Figure 2: Threshold line for the octupole tune spread.  

As it is seen from the plots, the suggested fits for the 
threshold lines 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ

c

sc

Q
Q

Im
)0(ln7.1=Δ

p

scQ )0(

νσ
                       (9) 

for the chromatic spread, and  
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for the symmetric octupole spread are accurate within 
10% or better.  

Note that the stabilizing rms tune spread is 3-4 times 
smaller for the octupoles than for the chromatic case. The 
reason is that the octupole-driven tune shift goes 
quadratically with amplitudes, while the chromatic tune 
shift is a linear function of the momentum offset.  

SCHOTTKY NOISE 
Particle interaction affects the spectrum of beam 

Schottky noise. In the application to the beam with 
significant space charge, this problem was solved in Ref. 
[4] in a framework of the rigid-beam model. Comparison 
of this analytic solution with a particle tracking code and 
with real beam measurements was considered in Ref. [7]. 
In this section we apply the results obtained above to the 
problem of beam Schottky noise.  

In the rigid-beam approximation, the spectral power of 
the transverse Schottky noise is [4]: )(2 νx
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dQQJfP
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where β  are the beta-function at the pickup and the 
number of particles. Note that this result assumes the 
validity of the rigid-beam model, 

0/)(|| ΩΩ≡>>Δ iisc QQ−ν σ σν

ν

. As above, it is true in 
vicinity of the coherent peak due to the high value of the 
tune separation. Since the model is not generally correct 
at the incoherent frequency range, ν σ≅Δ− |scQ| , the 

 



 

above result is not justified there. However, the noise 
power (11) reaches its maximum at the coherent peak, 
where the model is valid, and, consequently, Eq. (11) can 
be used. Expansion of the denominator at ννν Δ+= c

sepQΔ<<Δ

,  
ν , leads to  
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introduced here, appears to be scarcely sensitive to the 
beam features, being always κ . Indeed, let the tune 
spread be chromatic, with arbitrary momentum 
distribution. For KV distribution, 1=κ . For a Gaussian 
transverse distribution, a fit 

pscQ νσκ /)0(02.09.0 Δ+=

20/)0( ≤Δ pscQ ν

is valid with accuracy of a 
few percent for any σ .  Integrating the 
noise power (12) over frequencies for the given Schottky 
band yields: 
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     (13) 

 
Note that the integrated power (13) contains the coherent 
growth rate multiplied by a factor, extremely 
sensitive to the beam temperature, . When the 
beam is being cooled, its total Schottky noise (13) almost 
does not change, being equal to its zero-impedance limit, 
until the very threshold of the instability, where it 
immediately jumps to infinity. That is why measuring the 
Schottky noise can hardly help to see a real part of 
impedance responsible for the coherent rate cQΔIm : the 
rate is either invisible or fatal. 

SUMMARY 
The applicability of the rigid-beam model is considered 

for the case when the space charge plays significant role 
in beam dynamics. The results prove that the stability 
diagrams obtained with this model are not valid for most 
of the complex plane of the coherent shift. However, the 
small area of its validity typically covers the entire area of 
practical interest. Based on the rigid-beam model, rather 
simple formulas for the Landau damping were calculated. 
These formulas are used for computation of the threshold 
space charge tune shift versus coherent growth time. 
Convenient analytical fits for the threshold lines are 
presented for round Gaussian beams. At the end, the 
results are applied for the Schottky noise analysis.  
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APPENDIX 
Here the solution (5) of the dispersion equation (4) is 

derived. The problem can be formulated as follows: for a 
given real eigenvalue ν, the real and imaginary parts of 
the corresponding coherent tune shift have to be found. 
The solution can be sought as =ΔQc +− iQ Λν δ . A 
correction to the real part Qδ is found by expansion of 
the dispersion integral in (4) by the small lattice tune 
spread  ./ sepl QQ ΔΔ  Indeed, the real part of the dispersion 
equation results in  

∫∫ −Δ+Δ
Δ

=
−Δ+Δ

Γ Γ
νν

δ
scl

xxl

scl

xx

QQ
dJfQ

QQ
dJfQ  .  (A1) 

To first order in the small parameter sepl QQ Δ/Δ  it leads to 

∫ Δ
Δ
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xxl
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dJfQQQQ )1(δδ

0)1( ≠Qδ

0)1( =Qδ

Γ
.     (A2) 

This first-order result is sufficient for the octupole-related 
lattice tune shift, where , and the second-order 
term gives only a small correction to the Landau damping. 
For the chromatic tune spread though, the first-order 
correction vanishes, , and the second-order term 
has to be taken into account. The only non-zero second-
order term comes from expansion of the denominator in 
the right-hand side of Eq. (A1) over the small parameter, 
resulting in  

∫ Δ
ΓΔ

Δ−== 2

2
)2(

sep

xxl
sep Q

dJfQQQQ δδ .    (A3) 

If both octupole and chromatic tune spreads have to be 
taken into account, the former gives the first-order 
correction (A2), while the latter results in the second-
order term (A3). Note also, that in the denominators of 
(A2, A3), the eigenvalue ν is to be substituted by the 
coherent shift cQΔ . Thus, the real part of the dispersion 
equation leads to  

QQc δν +Δ= ,                                (A4) 
with Qδ as a sum of the two contributions (A2), (A3). An 

 



 

 

)())0/(1Im( xix
imaginary part of the dispersion integral is conventionally 
calculated using πδ=− , and 
immediately results in the damping rate Λ in Eq. (5).   
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