
Search for High-Mass e
+

e
− Resonances in pp̄ Collisions at

√

s =1.96 TeV

T. Aaltonen,24 J. Adelman,14 T. Akimoto,56 M.G. Albrow,18 B. Álvarez González,12 S. Ameriox,44 D. Amidei,35
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The charged lepton-antilepton pair signature, in par-
ticular e+e− and µ+µ−, has been a leading discov-
ery channel for new particles such as the J/ψ and Υ
mesons and the Z boson. Even though leptonic de-
cay channels generally have lower branching ratios than
hadronic channels, these channels are preferred for par-
ticle searches since they have lower backgrounds than
hadronic channels. Furthermore, leptons have cleaner ex-
perimental signatures, and their energies and momenta
can be measured with better resolution than those of
hadrons.

Many models beyond the standard model (SM) pre-
dict the existence of new particles decaying to lepton-
antilepton pairs. The E6 Z ′s [1] and the Randall-
Sundrum (RS) graviton [2] are an example of specific
new particles decaying to a lepton-antilepton final state.
The E6 model unifies the interactions of the SM into the
E6 gauge group with two additional neutral massive spin
1 gauge bosons that can mix with an arbitrary mixing
angle. The Z ′

ψ, Z ′
χ, Z

′
η, Z

′
I , Z

′
sec, and Z ′

N correspond to
specific values of the mixing angle if there is just one Z ′

at low energy. The RS model predicts a series of neutral
spin 2 resonances, the lightest of which is the RS gravi-
ton. We test this model assuming one extra dimension,
in the k/MPl range between 0.01 and 0.1 [3], where k
is the curvature of the extra dimension and MPl is the
reduced effective Planck scale.

In a recent publication, the CDF Collaboration set lim-
its on these models by analyzing the e+e− invariant mass
distribution with 1.3 fb−1 of integrated luminosity [4].
Using a data set twice as large (2.5 fb−1), this Letter
describes a search for e+e− resonances in the invariant
mass range of 150–1,000 GeV/c2, and we set upper limits
on σ(pp̄→ X) ·B(X → e+e−) at the 95% credibility level
(C.L.) where X is a spin 1 or spin 2 particle. We also set
lower mass bounds on the Z ′ with SM coupling, the Z ′s
in the E6 model, and the RS graviton.

This analysis is based on data collected with the CDF
II detector, for which a full description can be found
elsewhere [5]. The relevant components of the detec-
tor for this analysis are the tracking system and the
calorimeters. The tracking system consists of a 96 layer
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burgh/Scottish Executive Support Research Fellow, lUniversity of
Edinburgh, Edinburgh EH9 3JZ, United Kingdom, mUniversidad
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Universitat de Valencia), 46071 Valencia, Spain, vUniversity of
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drift chamber, called the central outer tracker (COT),
surrounding an eight-layer silicon tracker. Both are in-
side a 1.4 T solenoidal magnet. The COT covers the
range of pseudorapidity |η| <1.1 [6], and the silicon
tracker covers |η| up to 2.0. The electromagnetic (EM)
and hadronic calorimeters, which are sandwiches of lead
(EM) or iron (hadronic) absorber and plastic scintilla-
tor. They are outside the magnet, and are divided into
a central calorimeter (|η| <1.1) and two plug calorime-
ters (1.1< |η| <3.6). Both the central and the plug EM
calorimeters have fine-grained shower profile detectors at
EM shower maximum.

Three parallel on-line event selection criteria (triggers)
are used to select the data. The first trigger requires any
two EM clusters with ET [6] greater than 18 GeV in
the calorimeter, the second one requires a central EM
cluster with ET greater than 70 GeV, and the last one
requires one central EM cluster that has ET greater than
18 GeV and passes “loose electron” [7] selection criteria.
For the last two triggers, a well-measured track based on
the COT pointing to an energy deposit in the calorime-
ter is required. With these three triggers, the combined
efficiency to collect events that pass the off-line selections
is 100%.

Off-line events are required to have two isolated elec-
trons, one in the central EM calorimeter and the other
one in either the central (CC) or the plug (CP) EM
calorimeters. Only electrons with ET greater than 25
GeV and |η| < 2 are used in order to ensure 100% trig-
ger efficiency and coverage by the the silicon tracker.
Electrons in the central EM calorimeter are required to
have a well-measured track in the COT system point-
ing at an energy deposit in the calorimeter. For elec-
trons in the plug EM calorimeter, the track association
uses a calorimeter-seeded silicon-tracking algorithm [8].
An opposite-charge requirement is applied to electron-
objects pairs detected in the central EM calorimeter. No
such requirement is applied when one electron is detected
in the plug, where η-dependent charge misidentification
occurs. The 28 cm radial range of silicon at |η| >1.1,
where the COT coverage is incomplete, is insufficient to
determine accurately the curvature for high pT tracks, as
predicted by simulation. Events with both electrons in
the plug EM calorimeter are not considered in this Letter
since adding them gains little sensitivity.

There are three sources of background. One is Drell-
Yan production of e+e− pairs (DY), which is the dom-
inant source of background and is irreducible. Another
is dijets and W+jets production (referred to as “QCD”
background) where one or more jets is misidentified as
electron. Other contributions include Z/γ∗ → τ+τ−,
tt̄, and diboson (Wγ,WW,WZ,ZZ, γγ) production that
collectively are referred to as “other SM” backgrounds.

The Monte Carlo (MC) event generator pythia [9]
Tune A [10] that performs a leading-order calculation
is used to model the DY background. The DY MC
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event generator is normalized to the data after subtract-
ing other SM and QCD backgrounds in an invariant
mass window from 76 to 106 GeV/c2 for CC events and
from 81 to 101 GeV/c2 for CP events. Different mass
windows are used because the QCD background in the
CP events is higher than in the CC events. We assign
a 3.6% systematic uncertainty in the DY prediction to
take into account the invariant-mass dependence of the
k-factor [11] that is the difference between the leading
and the next-to-next-to-leading order DY cross sections.
The uncertainty in the DY prediction due to the choice
of the parton distribution function set CTEQ6M [12] is
evaluated using the Hessian method [13] and is found to
be 3.7−6.4−13% (200−600−1,000 GeV/c2) depending on
the invariant mass.

The QCD background estimation is determined from
the experimental data. The estimate is obtained using
the probability for a jet to be misidentified as an electron.
We measure this probability with a jet-triggered data
sample. We then apply the misidentification probability
to each jet in events with one good electron candidate
and one or more jets. To estimate the dijet background
contribution, events with W or Z candidates are removed
from the sample before applying the jet misidentification
probability (MP). The events with W candidate are iden-
tified with one good electron and a large missing trans-
verse energy 6ET [14] and the events with Z candidate
are identified with two “loose electrons”. To estimate
the W+jet background, events with Z candidate are re-
moved and events with W candidate are retained. The
dominant systematic uncertainty in the predicted QCD
background is due to the 20% uncertainty in the jet MP.

Other SM contributions to the background are esti-
mated with simulation samples generated with pythia

Tune A, except for the W+γ process. The W+γ pro-
cess is generated with the matrix element generator
wgamma [15]. These simulated samples are normalized
to the product of the theoretical cross sections and the
integrated luminosity. The systematic uncertainty for
these other SM backgrounds is dominated by the 6% un-
certainty in the integrated luminosity measurement [16]
and 8% uncertainty in the theoretical cross sections [17].

The QCD and other SM backgrounds are small com-
pared to the DY rate. Fig. 1 shows the observed e+e−

invariant mass spectrum from 2.5 fb−1 of data together
with the expected backgrounds.

The dominant sources of systematic uncertainty in this
analysis are the DY prediction, the luminosity, and the
theoretical cross sections of other SM processes discussed
above. Other systematic sources are the uncertainty on
the scale factor of electron identification efficiency that
comes from the difference between data and simulated
events (1.3% for CC and 2.3% for CP events), the energy
scale (1.0%), and the energy resolution (0.6% for CC and
0.3% for CP events), which affects the shape of the e+e−

invariant mass distribution. The uncertainty on the ac-
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FIG. 1: Invariant mass distribution of e+e− events compared
to the expected backgrounds. Dots with error bars are data.
The dark shaded region represents “other SM” background,
the light shaded region shows “QCD” background, and the
white region corresponds to Z/γ∗ → e+e− background. The
inset shows the same for the 240 GeV/c2 region. The hatched
histogram shows the shape of the expected signal from a 240
GeV/c2 spin 1 particle (of negligible intrinsic width) on top
of the total background. The hatched region is normalized to
the number of excess events seen in the data.

ceptance due to parton-distribution-function uncertain-
ties is evaluated using the same method that was used
for the DY prediction, and found to be 1.9% for CC and
0.6% for CP events.

The search for e+e− resonances in the high-mass range
of 150–1,000 GeV/c2 uses an unbinned likelihood ratio
statistic, λ, defined in Eqs. 1−3 [18]:

λ =

max.
nb≥0

Lb

max.
nb≥0,ns≥0

Ls+b
, 0 ≤ λ ≤ 1, 0 ≤ −2 lnλ ≤ ∞ (1)

Ls+b =
(ns + nb)

Ne−(ns+nb)

N !

N∏

i

nsS(xi|µ) + nbB(xi)

ns + nb

(2)

Lb =
nNb e

−nb

N !

N∏

i

B(xi). (3)

where Lb is the likelihood for a null hypothesis that is de-
scribed by the SM only, Ls+b is the likelihood for a test
hypothesis that is described by physics beyond the SM
together with the SM. The quantities ns and nb are the
number of signal and background candidates which are
determined by the fit and N is the number of candidates
observed in data, each represented by a vector {xi} of ob-
servables. The signal probability density function (PDF),
S(x|µ), is a Gaussian with a floating mean µ and a fixed
width, and B(x) is a background PDF obtained from
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the total background template. The widths of the sig-
nal PDF are determined from simulation (σMee

= 0.8565
GeV/c2 +0.0192·Mee forMee > 150 GeV/c2). The quan-
tities Ls+b and the Lb are maximized separately without
external background constraints. The function −2 lnλ is
calculated over the search range of 150–1,000 GeV/c2 and
the most prominent local maxima are listed in Table I.
The most significant deviation between data and the SM
prediction occurs at an invariant mass of 241.3 GeV/c2

where −2 lnλ is 14.4. The (data − background)/σB [19]
corresponding to the region of maximum −2 lnλ is cal-
culated by counting the number of observed events and
estimated backgrounds within ±2 σMee

of the maximum,
and it is 3.8.

To estimate the probability of observing an excess
equal to or greater than the maximum observed ex-
cess anywhere in the search range of 150–1,000 GeV/c2,
we simulated 100,000 experiments assuming background
only (null hypothesis). The distribution of maximum
−2 lnλ on these simulated experiments is shown in Fig. 2.
Assuming only SM physics, the probability of observing
a number of events equal to or greater than the observed
excess is defined as the fraction of simulated experiments
with maximum −2 lnλ equal to or greater than 14.4, and
is 0.6% which corresponds to the 2.5 σ level of excess over
the background.

TABLE I: The prominent local maxima in the search range
of 150–1,000 GeV/c2.

MX (GeV/c2) 241.3 272.7 478.9 725.2
−2 lnλ 14.4 3.7 2.6 4.1
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FIG. 2: Distribution of maximum −2 ln λ in simulated experi-
ments that assume only background. The arrow indicates the
value observed in data: −2 ln λ=14.4.

Upper limits on σ(pp̄ → X) ·B(X → e+e−) at the 95%
C.L. are calculated as a function of mass using a Bayesian

binned likelihood method [20]. The likelihood is a func-
tion of the signal cross section and is given by a Poisson
distribution. The likelihood is marginalized with gamma
priors to allow for the uncertainty on the signal cross sec-
tion due to uncertainty on the total signal efficiency and
the background estimation. Then the posterior probabil-
ity density function is formed with a constant prior for
the signal cross section together with the likelihood. The
limits are obtained by integrating the posterior probabil-
ity density function for the signal cross section until we
achieve the required fraction (95% for this analysis) of the
total integral from zero to infinity. Fig. 3 (a) shows the
observed upper limits from data and the expected limits
from background-only simulated events for spin 1 parti-
cles as a function of the e+e− invariant mass, together
with the expected cross sections for Z ′s [21]. Fig. 3 (b)
shows the same but for spin 2 particles, together with
the expected cross sections for RS gravitons. The cross
section lines for Z ′s and RS gravitons are calculated at
leading order with pythia and then multiplied by a fac-
tor of 1.3 in order to approximate a next-to-leading-order
prediction as done in reports of earlier results.

Table II shows the lower mass limits of the SM coupling
and E6 Z

′s and Fig. 4 shows the excluded RS graviton
mass region with respect to k/MPl.

TABLE II: Expected and observed 95% C.L. lower limits on
Z′s masses.

Z′ Model Z′
SM Z′

ψ Z′
χ Z′

η Z′
I Z′

sec Z′
N

Expected Limit (GeV/c2) 961 846 857 928 755 788 831
Observed Limit (GeV/c2) 963 851 862 930 735 792 837

To conclude, we have searched for e+e− resonances
with 2.5 fb−1 of data collected by the CDF II detector.
The largest excess over the standard model prediction is
at an e+e− invariant mass of 240 GeV/c2. The proba-
bility of observing such an excess arising from fluctua-
tion in the standard model anywhere in the mass range
of 150–1,000 GeV/c2 is 0.6%. We also set upper lim-
its on σ(pp̄ → X) · B at the 95% C.L. for spin 1 and
spin 2 particles. The SM coupling Z ′ with mass below
963 GeV/c2 and the E6 Z

′s with masses below 735/930
(lightest/heaviest) GeV/c2 are excluded at the 95% C.L.
RS gravitons with masses below 848 GeV/c2 are excluded
at the 95% C.L. for k/MPl = 0.1.
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