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We report a measurement of the top quark mass Mt in the dilepton decay channel tt̄ →
b`′+ν′`b`

−ν`. Events are selected with a neural network which has been directly optimized for statis-
tical precision in top quark mass using neuroevolution, a technique modeled on biological evolution.
The top quark mass is extracted from per-event probability densities that are formed by the convolu-
tion of leading order matrix elements and detector resolution functions. The joint probability is the
product of the probability densities from 344 candidate events in 2.0 fb−1 of pp̄ collisions collected
with the CDF II detector, yielding a measurement of Mt = 171.2± 2.7(stat.)± 2.9(syst.) GeV/c2.
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The most recently discovered charged fermion, the top
quark, is the most massive known fundamental parti-
cle. Over ten years after the discovery of the top quark,
its mass, Mt, remains a quantity of great interest. Mt-
dependent terms contribute to radiative corrections to
precision electroweak observables, thus helping to con-
strain contributions by the unobserved Higgs boson [1]
and by other particles in possible extensions to the stan-
dard model [2]. At present, top quarks can be directly
studied only at the Fermilab Tevatron, where they are
primarily produced in pairs and decay ≈ 100% to a W
boson and a b quark, tt̄ → W+bW−b̄, in the standard
model. The dilepton channel, where both W bosons
decay to charged leptons (electrons and muons, includ-
ing leptonic decays of τ leptons) and neutrinos, has the
smallest branching fraction, but also has the least num-
ber of hadronic jets in the final state and hence a smaller
sensitivity to their energy calibration. Significant differ-
ences in the measurements of Mt in different decay chan-
nels could indicate contributions from sources beyond the
standard model [3].

Reconstruction of Mt in the dilepton channel presents
unique challenges as the presence of the two neutrinos
in the final state results in a kinematically undercon-
strained system. We utilize a likelihood-based estimator
that convolutes leading order matrix elements and detec-
tor resolution functions and integrates over unmeasured
quantities. Prior applications of this method to dilep-
ton events have yielded the most precise measurements
of Mt in this channel [4–6]. These prior measurements
utilize event selection criteria that were designed to max-
imize signal purity for a measurement of the tt̄ produc-
tion cross section [7]. Optimization of an event selection
is typically hampered by the difficulty of searching the
space of arbitrary multivariate selections. Well estab-
lished multivariate algorithms such as neural networks
are typically limited to minimization of a specific metric,
such as misclassification error. In contrast with these al-
gorithms, the technique of neuroevolution [8] combines
the parametrization of an abitrary multivariate selection

California Santa Cruz, Santa Cruz, CA 95064, fCornell Univer-
sity, Ithaca, NY 14853, gUniversity of Cyprus, Nicosia CY-1678,
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described by a neural network with an evolutionary min-
imization approach to search for the network weights
and topology which optimizes an arbitrary metric. In
this Letter we present a measurement using an improved
matrix element analysis technique and an event selec-
tion that uses neuroevolution to optimize for minimal
expected statistical uncertainty in the top quark mass
measurement. This novel application of neuroevolution
yields an event selection with markedly poorer signal pu-
rity, yet significantly smaller expected uncertainty in top
quark mass. We utilize data collected between March
2002 and May 2007 with the CDF II detector correspond-
ing to an integrated luminosity of 2.0 fb−1.

CDF II [9–11] is a general-purpose detector designed to
study pp̄ collisions at the Fermilab Tevatron. A charged
particle tracking system consisting of a silicon microstrip
tracker and a drift chamber is immersed in a 1.4 T mag-
netic field. Electromagnetic and hadronic calorimeters
surround the tracking system and measure particle en-
ergies. Drift chambers and scintillators, located outside
the calorimeters, detect muons.

The data used in this measurement are collected with
lepton triggers that require an electron or muon with
pT > 18 GeV/c where the electron pT = ET is mea-
sured in the calorimeters and the muon pT is measured
in the |η| < 1.2 region by the tracker. Following this
trigger requirement, we define a preselection which sat-
isfies the basic signature of top dilepton decay and pro-
vides a starting point for the optimization of selection
used in the mass measurement. The pre-selection re-
quires events with two oppositely charged leptons (elec-
trons or muons) with pT > 20 GeV/c, two or more jets
with ET > 15 GeV [12] within the region |η| < 2.5,
6ET > 20 GeV [13], and Mll > 10 GeV/c2, where Mll is
the invariant mass of the two leptons. Suppression of the
Z → ll background is left to the neural network selection.

We search for a selection criterion represented by a
threshold on the output of an artificial neural network
which will yield the most statistically precise measure-
ment of Mt. In high energy physics neural networks are
traditionally trained to separate signal and background
events in a way that minimizes the mis-classification of
signal events as background and vice-versa. This is ap-
propriate for optimizing the sensitivity of counting ex-
periments, but not necessarily for a mass measurement in
which some forms of background may be very disruptive
and others relatively harmless. The statistical precision
is not a trivial function of the signal fraction of the se-
lected sample, because the mass measurement technique
includes tools which suppress the effects of some back-
ground processes.

We use neuroevolution, an approach modeled on bio-
logical evolution, to directly search for the optimal neural
network. Beginning with a population of networks with
random weights, the statistical precision of Mt is eval-
uated for each network by performing simulated experi-
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TABLE I: Expected sample composition after neural network
selection for events with and without secondary vertex tags.
The prediction for tt̄ is shown for a production cross-section
of 6.7 pb and Mt = 175 GeV/c2.

Source N(0-tag) N(≥ 1-tag)
Z → ll 116.5± 18.6 4.1± 1.8
Z → ll + cc̄/bb̄ 9.3± 1.4 10.1± 4.0
WW, WZ, ZZ, Wγ 17.3± 5.9 0.7± 0.7
Misidentified leptons 29.0± 8.7 4.5± 1.1
tt̄ (σ = 6.7 pb) 43.8± 4.4 78.0± 6.2
Total 215.8± 21.9 97.5± 7.2
Observed (2.0 fb−1) 246 98

ments using the simulated signal and background events
for which the network output is greater than 0.5. The
events used are generated using the pythia [14] and alp-
gen [15] generators and are evaluated with a full detector
simulation [16]. Poor performers are culled and strong
performers are bred together and mutated in successive
generations until performance reaches a plateau. Because
we have optimized directly on the final statistical preci-
sion rather than some intermediate or approximate figure
of merit, the best-performing network is the one which
gives the most precise measurement. This approach has
been shown to significantly outperform traditional meth-
ods in event selection [17]. In particular, we use neu-
roevolution of augmenting topologies (NEAT) [18], a neu-
roevolutionary method capable of evolving a network’s
topology in addition to its weights.

We separate events passing this selection into events
with and events without displaced tracks, or secondary
vertex tags [19], which enhance b-quark fraction and thus
signal purity. The predicted number of signal events and
background events with real or misidentified (“fake”) lep-
tons in 2.0 fb−1 is shown in Table I for events with and
without secondary vertex tags. Using the optimized se-
lection improves the a priori statistical uncertainty on
Mt over the selection used in previous versions [6] of this
analysis by 20%. This neural network selection yields 344
candidate events in the sample reported in this Letter as
illustrated in Fig. 1. Strikingly, the sample selected by
the neural network is expected to be dominated by back-
ground events; the resulting measurement is expected to
be more precise than previous measurements due to the
increase in tt acceptance and the suppression of problem-
atic background effects as described below.

We express the probability density for the vector of
observed lepton and jet energy measurements, xi, as a
function of the top quark mass Mt as Ps(xi|Mt). We

calculate Ps(xi|Mt) using the theoretical description of
the tt̄ production and decay process with respect to xi,
Ps(xi|Mt) = [1/σ(Mt)][dσ(Mt)/dxi], where dσ

dxi
is the

differential cross section and σ is the total cross section.
We evaluate Ps(xi|Mt) by integrating over quantities

that are not directly measured by the detector, such as
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FIG. 1: The output of the final network evaluated on the
collected data (black triangles), with expected signal and
background contributions (stacked solid histograms). The
data show events passing the pre-selection. The evolution
of the optimum selection network is performed with an a pri-
ori threshold set at 0.5 for candidate selection. Of the 642
pre-selected events shown, 344 events pass this threshold and
constitute the final candidate sample for mass-fitting.

neutrino momenta and quark energies. We assume that
lepton energies and quark angles are perfectly measured,
that incoming partons are massless and have no trans-
verse momentum, and that the two most energetic jets
in the event correspond to the b quarks (with a mass
of 4.7 GeV/c2) from tt̄ decay. The effect of these as-
sumptions on the final measurement is estimated using
simulated experiments. While quark energies cannot be
directly measured, they can be estimated from measured
jet energies. We integrate over quark energies using a
parameterized transfer function [5] that describes detec-
tor effects. This transfer function W (p, j) is defined to
be the probability of measuring jet energy j, given quark
energy p. The expression for the probability density at a
given mass for a specific event can be written as

Ps(xi|Mt) =
1

σ(Mt)

∫
dΦ|Mtt(qk, pk;Mt)|2fPDF (q1)fPDF (q2)

∏
jets

W (pk, jk), (1)
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where the integral
∫

dΦ is over the momenta of the initial
and final state particles, q1 and q2 are the incoming par-
ton momenta, pk are the outgoing momenta, fPDF (qk)
are the parton distribution functions (PDFs) [20], and
Mtt(qk, pk;Mt) is the leading-order tt production and
decay matrix element as defined in [21, 22] for the pro-
cess qq → tt → b`+ν`b`

′−ν`′ [23]. The term 1/σ(Mt)
ensures that the probability density satisfies the normal-
ization condition,

∫
dxi Ps(xi|Mt) = 1.

The probability Ps(xi|Mt) is sufficient to extract the
top quark mass in a pure tt̄ sample. However, the event
selection we use maximizes signal acceptance at the ex-
pense of accepting a significant number of background
events. To reduce the effect of background on the mea-
surement, we calculate the probability densities Pbgk

(xi)
of observing an event xi given a background process. We
form the full per-event probability as

Pn−tag(xi|Mt) = Ps(xi|Mt)pn−tag
s +

∑
k

Pbgk
(xi)p

n−tag
bgk

,

(2)
which is a sum of the probability densities for each pro-
cess, weighted by their respective a priori proportions.
The functions Pbgk

(xi) are formed by calculating a dif-
ferential cross-section for each background process in a
manner similar to tt. The proportions for each process,
pn−tag

s and pn−tag
bgk

depend on whether the event has a
secondary vertex tag, and are fixed to the expected frac-
tions of signal and background events in each category,
listed in Table I.

The background processes for which we evaluate prob-
ability densities are: Z/γ∗ → ee, µµ plus associated jets,
W plus three or more associated jets where one jet is
incorrectly identified as a lepton, and WW plus associ-
ated jets. probability densities for smaller backgrounds
(WZ, ZZ, Wγ, and Z → ττ) provide negligible gain in
sensitivity and are not modeled.

The posterior joint probability for the sample is the
product of the per-event probability densities,

P (x|Mt) =
[ ∏

i0

P 0−tag(xi0 |Mt)
]
×

[ ∏
i1

P≥1−tag(xi1 |Mt)
]
,

(3)
where the products are over all untagged events i0 and
all tagged events i1. The measured mass Mt is taken as
the mean of the posterior probability, and the measured
statistical uncertainty ∆Mt is taken as the standard de-
viation.

The response of our method for simulated experi-
ments is shown in Fig. 2a. While the response is con-
sistent with a linear dependence on the true top mass,
its slope is less than unity due to the presence of unmod-
eled background in our sample. We derive corrections,
Mt → 171.0 GeV/c2 + (Mt − 175.0 GeV/c2)/0.86 and
∆Mt → ∆Mt/0.86, from this response and apply them
to the measured quantities in data.
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FIG. 2: (a) Mean measured Mt in simulated experiments
versus top quark masses. The solid line is a linear fit to the
points. (b) Pull widths from simulated experiments versus top
quark masses. The solid line is the average over all points.

TABLE II: Summary of systematic uncertainties on the mea-
sured top quark mass.

Source Size (GeV/c2)
Generic jet energy scale 2.5
b-Jet Energy Scale 0.4
In-time pileup 0.2
Generator 0.9
PDFs 0.6
Background statistics 0.5
Radiation 0.5
Response correction 0.4
Sample composition uncertainty 0.3
Background modeling 0.2
Lepton energy scale 0.1
Total 2.9

From the pull distribution of our simulated experi-
ments, we find that the statistical uncertainty is under-
estimated, as shown in Fig. 2b. This is due to simpli-
fying assumptions made in the probability calculations
in the interest of computational tractability [5]. These
assumptions are violated in small, well-understood ways
in realistic events. To account for this underestimation,
we scale the statistical uncertainty by an additional fac-
tor, S = 1.16, derived from the results of our simu-
lated experiments. Correcting by this factor, we estimate
the expected statistical uncertainty to be 2.7 GeV/c2 if
Mt = 175 GeV/c2.

Applying the method and corrections described above
to the 344 candidate events passing our selection, we
measure Mt = 171.2 ± 2.7(stat.) GeV/c2. The negative
of the logarithm of the joint probability density for all
344 events is shown in Fig. 3.

There are several sources of systematic uncertainty in
our measurement, which are summarized in Table II.
The single largest source of systematic error comes from
the uncertainty in the jet energy scale, which we esti-
mate to be 2.5 GeV/c2 by varying the scale within its
uncertainty [24]. An uncertainty specific to jets result-
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FIG. 3: Negative of the logarithm of the joint probability
density as a function of top quark mass for the 344 candidate
events after all corrections. Systematic uncertainties are not
shown.

ing from b partons contributes 0.4 GeV/c2 while in-time
pileup contributes 0.2 GeV/c2. Uncertainty due to the
Monte Carlo generator used for tt̄ events is estimated
as the difference in the extracted top quark mass from
pythia events and herwig [25] events and amounts to
0.9 GeV/c2. Uncertainties due to PDFs are estimated
using different PDF sets (cteq5l [20] vs. mrst72 [26])
and values of ΛQCD and varying the eigenvectors of the
cteq6m [20] set; the quadrature sum of these uncertain-
ties is 0.6 GeV/c2. The limited number of background
events available for simulated experiments results in an
uncertainty on the shape of the background distributions,
which yields an uncertainty on Mt of 0.5 GeV/c2. Uncer-
tainty due to imperfect modeling of initial and final state
QCD radiation (ISR and FSR, respectively) is estimated
by varying the amounts of ISR and FSR in simulated
events [27] and is estimated to be 0.5 GeV/c2. The un-
certainty in the mass due to uncertainties in the response
correction is evaluated by varying the response within the
uncertainties shown in Fig. 2a and is 0.4 GeV/c2. The
contribution from uncertainties in background composi-
tion is estimated by varying the background normaliza-
tions from Table I within their uncertainties and amounts
to 0.3 GeV/c2. We estimate the uncertainty coming from
modeling of the missing tranverse energy in Z/γ∗ events
and the uncertainty in the data-derived model of misin-
dentified leptons to be 0.2 GeV/c2. The uncertainty
in the lepton energy scale contributes an uncertainty of
0.1 GeV/c2 to our measurement. Adding all of these
contributions together in quadrature yields a total sys-
tematic uncertainty of 2.9 GeV/c2.

In summary, we have presented a new measurement
of the top quark mass in the dilepton channel. We

have applied the technique of neuroevolution, for the
first time in particle physics, to devise an event selec-
tion criterion which optimizes the statistical precision of
this measurement. We measure Mt = 171.2±2.7(stat.)±
2.9(syst.) GeV/c2. This is the single most precise mea-
surement of Mt in this channel to date, is in good agree-
ment with measurements in other channels [28, 29], and
represents a ∼30% improvement in statistical precision
over the previously published measurements in this chan-
nel [6, 30, 31].
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