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A combined mass and particle identification fit is used to make the first observation of the decay
B0

s → D±
s K∓ and measure the branching fraction of B0

s → D±
s K∓ relative to B0

s → D+
s π−. This

analysis uses 1.2 fb−1 integrated luminosity of pp collisions at
√

s = 1.96 TeV collected with the CDF
II detector at the Fermilab Tevatron collider. We observe a B0

s → D±
s K∓ signal with a statistical sig-

nificance of 8.1σ and measure B(B0
s → D±

s K∓)/B(B0
s → D+

s π−) = 0.097± 0.018(stat)± 0.009(sys).
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the precise value of the angle γ = arg (−VudV

∗
ub/VcdV

∗
cb)

of the unitarity triangle. Current measurements use the
interference between b → uc̄s and b → cūs diagrams
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in B− → D(∗)0K(∗)− and B− → D(∗)0K(∗)− decays
when D0 and D0 are observed in common final states
[1, 2, 3, 4, 5, 6], but suffer from the large difference
between the amplitudes of these decays. With a large
sample of hadronic B0

s decays, it may be possible to de-
termine γ from the interference, through B0

s–B0
s mixing,

of the same diagrams in the decay modes B0
s → D+

s K
−

and B0
s → D−

s K
+ [7, 8], which are expected to have

a more favorable amplitude ratio; the two decays pro-
ceed through color-allowed tree amplitudes whose ratio
is suppressed by only a factor ∼ 0.4 [9]. To determine
γ, a time-dependent measurement of the decay rates
of B0

s → D+
s K

−, B0
s → D−

s K
+, B0

s → D−
s K

+, and
B0

s → D+
s K

− is required. The first steps in this effort
are to observe these decay modes (which we will collec-
tively refer to as B0

s → D±
s K

∓) and to measure the CP -
averaged branching ratio B(B0

s → D±
s K

∓) ≡ 1
2 [B(B0

s →
D+

s K
−)+B(B0

s → D−
s K

+)+B(B0
s → D−

s K
+)+B(B0

s →
D+

s K
−)]. In this Letter we report the first observation

of the B0
s → D±

s K
∓ decay modes and the first measure-

ment of B(B0
s → D±

s K
∓)/B(B0

s → D+
s π

−). We measure
this branching fraction ratio since many of the systematic
uncertainties cancel in the ratio and B(B0

s → D+
s π

−) is
precisely measured elsewhere [10, 11].

We analyze pp collisions at
√
s = 1.96 TeV recorded

by the CDF II detector at the Fermilab Tevatron collider
with an integrated luminosity of 1.2 fb−1. A detailed
description of the detector can be found elsewhere [12].
This analysis uses charged particle tracks reconstructed
in the pseudorapidity [13] range |η| . 1 from hits in a sili-
con microstrip vertex detector [14] and a cylindrical drift
chamber [15] immersed in a 1.4 T axial magnetic field.
The specific ionization energy loss (dE/dx) of charged
particles in the drift chamber is used for particle identifi-
cation (PID). A sample rich in bottom hadrons is selected
by triggering on events that have at least two tracks,
each with pT > 2 GeV/c and large impact parameter;
the trigger further requires that these tracks originate
from a secondary vertex well displaced from the primary
interaction point [16].

We reconstruct B0
s → D±

s h
∓ candidates (where h =

π or K) as follows. First, we identify D+
s → φ(→

K−K+)π+ candidates [17] using the invariant mass re-
quirements 1013 < m(K−K+) < 1028 MeV/c2 and
1948.3 < m(K−K+π+) < 1988.3 MeV/c2. The D+

s de-
cay tracks must satisfy a three-dimensional vertex fit.
No PID requirements are made on the D+

s decay tracks.
We then pair the D+

s candidates with h− tracks to de-
fine the B0

s → D±
s h

∓ candidate sample, and require the
D+

s –h− pair to satisfy a three-dimensional fit to the B0
s

decay vertex. No mass constraint is used either on the
φ or on the D+

s candidate. Finally, we define a mass
variable m(Dsπ) for the Dsπ hypothesis (i.e., assigning
the daughter track h as a pion); m(Dsπ) is used to pro-
vide kinematic separation between the B0

s → D±
s K

∓ and
B0

s → D+
s π

− signals.

Further selection requirements are made to reduce
combinatorial background. The discriminating variables

are the transverse (|d0| < 60 µm) and longitudinal
(|z0/σz0

| < 3, where σz0
is the uncertainty on z0) impact

parameter of the B0
s candidate with respect to the pri-

mary event vertex; the transverse momentum (pT > 5.5
GeV/c) of the B0

s candidate; the isolation of the B0
s can-

didate

I =
pT

(

B0
s

)

pT

(

B0
s

)

+
∑

tracks

pT (track)
> 0.5,

where the sum runs over tracks within ∆R =
√

∆φ2 + ∆η2 < 1 around the B0
s direction originat-

ing from the same primary vertex; the opening angle
[∆R(D+

s , h
−) < 1.5] between the D+

s candidate and the
track originating from the B0

s decay vertex (the “B0
s

daughter track”); and the projection of the B0
s and D+

s

decay length along the transverse momentum of the B0
s

candidate [Lxy

(

B0
s

)

> 300 µm, Lxy

(

B0
s

)

/σLxy

(

B0
s

)

> 8
(where σLxy

is the uncertainty on Lxy), and Lxy(D
+
s ) >

Lxy

(

B0
s

)

]. The dE/dx calibrations are based on large

samples of D0 → K−π+ decays taken with the displaced
track trigger. To avoid bias, the B0

s daughter tracks are
required to pass the same pT > 2 GeV/c trigger require-
ment as the D0 → K−π+ calibration tracks.

Monte Carlo simulation is used to model signal and
background and to determine trigger and reconstruction
efficiencies. We generate single B0

s hadrons with bgen-

erator [18, 19] and simulate their decays with evtgen

[20]. A detailed detector and trigger simulation is then
performed.

The greatest challenge in this analysis is to disentangle
the various components contributing to the data sample.
Apart from the B0

s → D±
s K

∓ and B0
s → D+

s π
− signals,

the sample contains partially reconstructed B0
s decays,

reflections from decays of other bottom hadron species,
and combinatorial background. To separate the compo-
nents and determine the number of candidates of each
component type, we perform a maximum-likelihood fit.
The fit variables are the invariant mass m(Dsπ) of the
candidate in the Dsπ mass hypothesis and the PID vari-
able Z, which is the logarithm of the ratio between the
measured dE/dx and the expected dE/dx for a pion with
the momentum of the B0

s daughter track. The likelihood
function is

L(f1, . . . , fM−1) =
N
∏

i=1

M
∑

j=1

fj pj(mi) qj(Zi), (1)

where fM = 1 −
∑M−1

j=1 fj . The index i runs over the
N candidates, and j runs over the M components; fj is
the fraction of candidates in the jth component, to be
determined by the fit.

We group B0
s candidates into three categories by

source. Combinations where the D+
s candidate and the

track come from a single bottom hadron (B0, B−, B0
s,

Λ0
b) are called single-B contributions. Non-bottom con-

tributions where the D+
s candidate does not come from
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a real D+
s are called fake-D+

s combinatorial background.
Combinations of a real D+

s with a track coming from
fragmentation, the underlying event, or the other bot-
tom hadron in the event are called real-D+

s combinatorial
background.

Mass probability density functions (pdf’s) pj(m) for

the single-B0
s components are extracted from large sim-

ulated samples of B0
s → D+

s X decays, where the D+
s is

forced to decay to φπ+. Separate mass templates are
extracted for B0

s → D+
s π

− and B0
s → D±

s K
∓ fully re-

constructed decays and for the partially reconstructed
modes that overlap in mass with the B0

s → D±
s K

∓:
B0

s → D+
s ρ

− and B0
s → D∗+

s π−. Partially recon-
structed modes missing more than one decay product
are collected in one template. Contributions from the
B0 → D+(K−π+π+)X , B− → D+(K−π+π+)X and
Λ0

b → Λ+
c (pK−π+)X reflections are included. Likewise,

we include B0 → D
(∗)±
s h∓ decays (where h = π,K)

whose branching fractions are known [21]; the yields
of these B0 modes relative to each other are fixed to
the values reported in [21]. Rather than parameteriz-
ing the mass shapes, which are complicated for most
of the single-B components, we use histograms as mass
pdf’s. Sufficiently large Monte Carlo samples [approxi-
mately 50 000 candidates after cuts of B0

s → D+
s π

− and
B0

s → D±
s K

∓] are generated to make the statistical fluc-
tuations in the pdf’s small.

Special care has to be taken in the treatment of the low-
mass tail of the decay mode B0

s → D+
s π

−(nγ), which is
dominated by the radiative tail, and which overlaps with
the B0

s → D±
s K

∓ mass pdf. Improper accounting of the
tail can bias both the measurement of the B0

s → D+
s π

−

yield and the B0
s → D±

s K
∓ yield by misidentifying a

fraction of the B0
s → D+

s π
− contribution as part of the

(much smaller) B0
s → D±

s K
∓ contribution. The radia-

tive tail is modeled in evtgen by using the photos al-
gorithm for radiative corrections [22] with a cut-off for
photon emission at 10 MeV. We allow the normaliza-
tion to float in the fit to account for uncertainties in
the photos prediction of the size of the radiative tail.
(The radiative tail of B0

s → D±
s K

∓ does not require
special treatment. The kaon radiates less, and any re-
sulting misidentified B0

s → D±
s K

∓ contribution is easily
absorbed by the other fit components, which dominate
at m(D+

s π
−) below the B0

s → D±
s K

∓ peak.)
The mass distribution of the fake-D+

s background is
parameterized with a function of the form pbg(m) ∝
exp(−αm)+β. The shape parameters α and β are deter-
mined in an ancillary mass-only fit of B0

s candidates pop-
ulating the sidebands of the D+

s mass distribution. To
model the real-D+

s background, we use a sample of same-
sign D+

s π
+ candidates. A fit analogous to the fake-D+

s

case is performed on the D+
s π

+ mass distribution. Given
to the limited statistics of the signal sample, we cannot
separately resolve the real-D+

s and fake-D+
s combinato-

rial backgrounds; in the default fit we therefore combine
the two types of background. We assess a systematic
uncertainty by allowing the relative size of the two back-

ground types to vary.
We determine the Z pdf’s qj(Z) for pions and kaons

from D∗+ → D0(K−π+)π+ decays. The flavor of
the daughter tracks of the D0 in the decay D∗+ →
D0(K−π+)π+ is tagged by the charge of the soft pion
from the D∗+ decay. Taken together with the large
signal-to-background ratio of the ∆m = m(K−π+π+) −
m(K−π+) peak, this charge tagging yields a very clean
sample of pions and kaons. We further reduce back-
ground contamination by sideband-subtracting in ∆m.
The mean values of Z for kaons and pions are separated
by approximately 1.4 standard deviations. The Z distri-
butions for both species (shown in Figure 1) have sim-
ilar widths. Because the data sample contains semilep-

Z
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Figure 1: Z distributions for pions and kaons derived from
prompt D∗+ decays.

tonic decays, we need to model the dE/dx distributions
of muons and electrons as well. For muons, which are
a small contribution in the mass region of interest, the
pion template can be used without introducing a signif-
icant systematic uncertainty. For electrons, we derive a
template from a J/ψ → e+e− sample. The Z pdf for the
fake-D+

s combinatorial background is determined from
data by selecting candidates from the sidebands of the
D+

s mass distribution. All Z pdf’s are represented as
histograms.

Figures 2 and 3 show the fit projections in mass and
Z. The yields determined by the fit are 1125 ± 87
B0

s → D+
s π

− and 102 ± 18 B0
s → D±

s K
∓ candidates.

The branching fraction of B0
s → D±

s K
∓ relative to B0

s →
D+

s π
−, corrected for the relative reconstruction efficiency

ǫπ/ǫK = 1.071 ± 0.028, is B(B0
s → D±

s K
∓)/B(B0

s →
D+

s π
−) = 0.097 ± 0.018. A fit performed with the

B0
s → D±

s K
∓ yield set to zero is worse than the default

fit by ∆ logL = −32.52; the corresponding statistical
significance of the B0

s → D±
s K

∓ signal is 8.1 standard
deviations.

Systematic uncertainties on B(B0
s → D±

s K
∓)/B(B0

s →
D+

s π
−) are studied by incorporating each effect in the

generation of simulated experiments which are then fit-
ted using the default configuration. The bias on B(B0

s →
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Table I: Systematic uncertainties on B(B0
s →

D±
s K∓)/B(B0

s → D+
s π−).

Source Systematic uncertainty
dE/dx pdf modeling 0.007
Mass pdf modeling 0.004
Combinatorial-background model 0.002
Fitter bias due to finite statistics 0.001
Sum in quadrature 0.009

D±
s K

∓)/B(B0
s → D+

s π
−), averaged over 10000 simulated

experiments, is used as the systematic uncertainty asso-
ciated with the effect under study. Table I summarizes
the systematic uncertainties. The systematic uncertain-
ties are dominated by the modeling of the dE/dx (0.007),
specifically by the differences between the Z distributions
of D∗+ daughter tracks (from which the kaon and pion Z
pdf’s are derived) and B0

s daughter tracks; these differ-
ences arise from effects such as the greater particle abun-
dance in the vicinity of a prompt D∗+ compared to a B0

s,
and hence a higher probability forD∗+ daughter tracks to
contain extraneous hits. Modeling of the mass distribu-
tions of the single-B components (0.004), which includes
statistical fluctuations in the mass pdf’s, and modeling
of the combinatorial-background mass shape (0.002) are
comparatively minor contributions. The total systematic
uncertainty is obtained by adding the individual system-
atic uncertainties in quadrature; at 0.009, it is about half
as large as the statistical uncertainty.

The analysis procedure was crosschecked in several
ways. Most importantly, before performing the mea-
surement on the B0

s → D±
s K

∓ signal sample, we veri-
fied our method using two control samples, B0 → D+X
and B0 → D∗+X . In both cases, our results are statis-
tically consistent with world-average values. We mea-
sure B(B0 → D+K−)/B(B0 → D+π−) = 0.086 ±
0.005(stat), 1.0 standard deviations from the world aver-
age; and B(B0 → D∗+K−)/B(B0 → D∗+π−) = 0.080 ±
0.008(stat), 0.3 standard deviations from the world av-
erage [23]. The relative branching fractions B(B0 →
D+ρ−)/B(B0 → D+π−), B(B0 → D∗+π−)/B(B0 →
D+π−), and B(B0 → D∗+ρ−)/B(B0 → D∗+π−) were
also found to be consistent with world averages. Finally,
the fractional size of the radiative tails of B0 → D+π−,
B0 → D∗+π−, and B0

s → D+
s π

− are found to be in
agreement with each other (and about twice as large as
the photos prediction).

In conclusion, we have presented the first observation
of the B0

s → D±
s K

∓ decay mode with a statistical sig-
nificance of 8.1 standard deviations. The B0

s → D±
s K

∓

event yield is 102± 18 (statistical uncertainty only). We
use this sample to measure B(B0

s → D±
s K

∓)/B(B0
s →

D+
s π

−) = 0.097± 0.018(stat)± 0.009(sys). This result is
consistent with naive expectations based on the branch-
ing fraction ratio for the analogous B0 and B− decays,
taking into account also the expected contribution from
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Figure 2: Mass projection of the likelihood fit. Fit com-
ponents are stacked. B → DX denotes all single-B con-
tributions except B0

s → D+
s π− and B0

s → D±
s K∓, namely

B0
s → D+

s ρ−, B0
s → D∗+

s π−, partially reconstructed
B0

s → D+
s X modes missing more than one decay prod-

uct, B0 → D+(K−π+π+)X, B− → D+(K−π+π+)X and

Λ0
b → Λ+

c (pK−π+)X reflections, and B0 → D
(∗)+
s π− and

B0 → D
(∗)−
s K+; the small peak in the B → DX template

is due to the B0 → D+(K−π+π+)π− reflection. The resid-
ual plot at the bottom shows the discrepancy (data minus
fit) in units of standard deviation (σ); for the bins with low
statistics, neighboring bins are combined until the predicted
number of events is greater than five. The χ2 of the projection
is 79.0 for 72 degrees of freedom.

B0
s → D−

s K
+ decays [9].
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