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We present the results of searches for large extra dimensions in samples of events with large missing
transverse energy E/T and either a photon or a jet produced in pp collisions at

√
s = 1.96 TeV collected

with the CDF II detector. For γ + E/T and jet + E/T candidate samples corresponding to 2.0 fb−1

and 1.1 fb−1 of integrated luminosity respectively, we observe good agreement with standard model
expectations and obtain a combined lower limit on the fundamental parameter of the large extra
dimensions model, MD, as a function of the number of extra dimensions in the model.
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The mass of the Higgs particle in the standard model
(SM) is subject to large quantum corrections. This is
attributed to the existence of two equally fundamental
energy scales in nature: the scale of the electroweak in-
teraction (O(100 GeV)) and the scale of the gravitational
interaction (O(1019 GeV)). One class of solutions to this
hierarchy problem introduces new symmetries which pro-
tect physical parameters, such as the Higgs mass, from
large quantum corrections. However, these models intro-
duce an additional complication in that the new symme-
tries are required to be broken at some unknown scale and
in some unknown way. An alternate approach is to rec-
oncile the hierarchy between the electroweak and gravity
(Planck) scales by introducing extra spatial dimensions.

In the large extra dimensions (LED) scenario of
Arkani-Hamed, Dimopoulos, and Dvali (ADD) [1], grav-
ity propagates in the 4 + n-dimensional “bulk” of space-
time, while the other SM fields are confined to our usual
four dimensions. The observed discrepancy between the
size of Newton’s constant and the strength of the elec-
troweak couplings is understood as an artifact of the four-
dimensional bias of the observer. The four-dimensional
Planck scale, MPl, is related to the fundamental 4 + n-
dimensional Planck scale, MD, by M2

Pl ∼ RnMn+2
D

where n and R are the number and size of the extra
dimensions respectively. An appropriate choice of R for
a given n leads to a value of MD of the same order as
that of the electroweak scale.

Although models incorporating extra dimensions do
not completely solve the hierarchy problem (R has to
be tuned to provide a match between the fundamental
electroweak and Planck scales), their realization would
provide an extraordinary and unique opportunity for di-
rect studies of gravity at the Tevatron. In these models
the graviton (G is used to denote all possible integer spin
states from 0 to 2) is produced in the final states of the
following interactions: qq̄ → γG, qq̄ → gG, qg → qG,
and gg → gG. The cross section for direct graviton pro-
duction depends solely on the fundamental Planck scale
MD due to cancellation of terms proportional to MPl (the
relevant graviton-parton couplings suppress the cross sec-
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tion by M−2
Pl while the increased phase space volume due

to the presence of the extra dimensions is proportional
to Rn ∼ M2

Pl/M
n+2
D ). Conversely, the interaction of the

produced graviton with material in the detector does not
benefit from the increased phase space volume effect [2].
The final state graviton will therefore pass through the
detector undetected, resulting in a signature of a single
jet [3] or photon accompanied by large missing transverse
energy E/T [4]. A previous search using single high-ET

jet + E/T data corresponding to 368 pb−1 of integrated
luminosity collected with the Collider Detector at Fermi-
lab (CDF II) [5] observed no significant event excess with
respect to SM expectations and placed the world’s best
lower limits on MD for the cases of five or more extra
dimensions (MD > 0.83 TeV for n = 6).

In this Letter we describe an improved search for LED
based on independent analyzes of single jet + E/T and
γ + E/T data samples corresponding to 1.1 and 2.0 fb−1

of integrated luminosity respectively. Both analyzes fo-
cused on a specific event signature and were sensitive
to a broad range of new physics models. Subsequent
optimization of kinematic selection criteria was done to
maximize sensitivity to the LED model. The combined
analysis presented here has significantly better sensitivity
to LED model parameters than previous measurements.
Analysis of the γ + E/T data sample relies heavily on the
electromagnetic shower timing system [6], which is criti-
cal in minimizing substantial cosmic ray backgrounds.

A full description of the CDF II detector can be found
elsewhere [7]. Events in the γ + E/T sample must satisfy
the criteria at all three levels of the CDF II trigger system
for a high energy electromagnetic cluster (ET > 25 GeV)
in the region |η| < 1.1 and E/T > 25 GeV. The trigger is
found to be ∼ 100% efficient for the final γ and E/T kine-
matic selection requirements. The highest-ET photon
candidate in the fiducial region of the calorimeter is re-
quired to pass standard photon identification cuts [8, 9].
Candidate events are required to have E/T > 50 GeV
and contain at least one central photon with |η| < 1.1
and ET > 50 GeV. To reduce W + jet, where the jet is
misidentified as a photon, and W + γ backgrounds events
containing tracks with pT > 10 GeV/c are vetoed. We
also reject events containing jets with ET > 15 GeV to
reduce the background from γ + jet events with large E/T

originating from jet energy mismeasurements. In order
to reduce non-collision backgrounds we require a mini-
mum of three good quality COT tracks in each candi-
date event. The reconstructed photon is also required
to be consistent in time with the pp collision and satisfy
a discriminant [10] that separates photons produced in
collisions from those originating from cosmic rays.

Table I shows a breakdown of the estimated SM back-
grounds in the γ + E/T event sample using two photon ET

requirements. Collision-produced backgrounds include
the irreducible contribution from Zγ → νν̄γ, W → �ν
production where the lepton is reconstructed as a photon,



Background Eγ
T > 50 GeV Eγ

T > 90 GeV
W → e → γ 47.3 ± 5.1 2.6 ± 0.4

W → μ/τ → γ 19.1 ± 4.2 1.0 ± 0.2
Wγ → μγ → γ 33.1 ± 10.2 1.7 ± 1.2
Wγ → eγ → γ 8.0 ± 3.0 0.8 ± 0.7
Wγ → τγ → γ 17.6 ± 1.6 2.5 ± 0.2

γγ → γ 18.9 ± 2.3 2.3 ± 0.6
Cosmic ray 36.4 ± 2.5 9.8 ± 1.3
Zγ → ννγ 100.1 ± 9.5 25.6 ± 2.0

Total predicted 280.5 ± 15.7 46.3 ± 3.0
Data observed 280 40

TABLE I: Number of observed events and expected SM back-
grounds in the γ + E/T candidate sample based on minimum
photon ET requirements of 50 and 90 GeV.

as well as Wγ and γγ production where the W decay lep-
ton or second photon is undetected. The processes con-
taining misidentified or undetected leptons are important
at low energies but less so at higher energies since a small
fraction of the leptons from W decays are produced with
ET > 90 GeV. The Zγ, W → μν, and W → τν contribu-
tions are estimated from Monte Carlo simulation, while
data-driven methods are used to estimate backgrounds
for which the simulation is less reliable.

In the case of W → eν we rely on Monte Carlo simula-
tion to determine the ET dependence of the probability
for an electron to be reconstructed as a photon. A data
sample of eγ events with small E/T and electron-photon
invariant mass consistent with the Z boson is used to nor-
malize the modeled ET dependence. A similar approach
is used to estimate Wγ and γγ backgrounds. The rela-
tive rate for observing only a single photon is determined
from simulation, while the absolute normalization comes
from the observed number of fully reconstructed events
in data. For example, we estimate the γγ background by
determining the ratio of di-photon events with one and
two reconstructed photons from simulation and multi-
plying by the number of observed two photon events in
data. Note that this approach also accounts for the ad-
ditional contribution from γ + jet events in cases where
the original photon is lost and the jet is misidentified as a
photon since the corresponding two photon events will be
included in the event sample used for the normalization.

For photons with higher energies, the Zγ → ννγ back-
ground becomes increasingly dominant. To estimate this
background we use a leading-order (LO) Monte Carlo
simulation [11]. We determine that the LO description is
adequate in the presence of our jet veto based on studies
of the next-to-leading-order (NLO) version of the simu-
lation, which indicate that the increase in the total cross
section originating from the inclusion of NLO diagrams
in the calculation is canceled by an equivalent decrease
in acceptance due to the jet veto requirement.

Non-collision backgrounds which mimic the γ + E/T

signature originate from cosmic rays and particle inter-

actions upstream of the detector. Beam-produced muons
traverse the calorimeter parallel to the beam line and de-
posit energy in multiple calorimeter towers covering the
same azimuthal range. Events with this topology are re-
moved using cuts that minimally effect signal acceptance.

We use the calorimeter timing system to reduce back-
ground from cosmic rays. Photon candidates originating
from cosmic rays are uncorrelated in time with collisions
and therefore produce roughly flat timing distributions.
The timing distribution of photons produced in collisions
has a Gaussian shape with a mean of zero and standard
deviation of 1.6 ns [6]. We select photon candidates at
least 20 ns out-of-time with the collision to predict the
level of the background in the timing window around the
collision. We also select a sample of pure cosmic photons
to train a discriminant which separates collision photons
from those produced by cosmic rays. The net effect of the
discriminant is to reduce the cosmic ray background by a
factor of ∼ 600. However, even with this large reduction
factor, cosmic rays account for roughly 20% of the total
background in the high photon-ET region where we are
most sensitive to new physics.
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FIG. 1: Predicted (solid) and observed (crosses) photon ET

distributions for the γ + E/T candidate sample. The last bin
shows all events containing a photon with ET > 180 GeV. The
expected LED signal for the case of n = 4 and MD = 0.8 TeV
is also shown. The kinematic region above 90 GeV is used for
constraining the ADD model. The hatched region indicates
the total uncertainty on the combined background prediction.

Figure 1 and Table I illustrate the agreement between
the CDF II γ + E/T event sample and the SM background
expectation. We observe good agreement for both the low
and high regions of the photon ET spectrum.

The procedure used to analyze the jet + E/T sam-
ple has been described in a previous publication [5].
The kinematic requirements, determined a priori, used
to optimize sensitivity to LED are a single jet with
ET > 150 GeV and E/T > 120 GeV (a second jet with
ET < 60 GeV is allowed to increase signal acceptance).
The analysis reported here is simply an update to the
previously published analysis. The SM background esti-



Background Events
Z → νν 388 ± 30
W → τν 187 ± 14
W → μν 117 ± 9
W → eν 58 ± 4
Z → �� 8 ± 1

Multi-jet 23 ± 20
γ+jet 17 ± 5

Non-collision 10 ± 10
Total predicted 808 ± 62
Data observed 809

TABLE II: Number of observed events and expected SM back-
grounds in the jet + E/T candidate sample.

mates and the number of observed events are shown in
Table II, and a comparison of the expected and observed
leading jet ET distributions is shown in Fig. 2.
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FIG. 2: Predicted and observed leading jet ET distributions
for the jet + E/T candidate sample. The expected LED signal
contribution for the case of n = 2 and MD = 1.0 TeV is also
shown.

Based on the observed agreement with the SM expecta-
tion in both the γ + E/T and jet + E/T candidate samples,
we proceed to set lower limits on MD for the LED model.
The limits are obtained solely from the total number of
observed events in each of the samples (no kinematic
shape information is incorporated). In order to estimate
our sensitivity to the ADD model we simulate expected
signals in both final states using the pythia [12] event
generator in conjunction with a geant [13] based de-
tector simulation. For each extra dimension scenario we
simulate event samples for MD ranging between 0.7 and
2 TeV. In the case of the γ + E/T analysis, the final kine-
matic selection requirements for the candidate sample
are determined by optimizing the expected cross section
limit without looking at the data. The jet + E/T anal-
ysis was done as a generic search for new physics using
three sets of kinematic cuts, the most sensitive of which is
used here. To compute the expected 95% C.L. cross sec-
tion upper limits we combine the predicted ADD signal

γ + E/T Jet + E/T Combined
n α Mobs

D α Mobs
D Mobs

D

2 7.2 1080 9.9 1310 1400
3 7.2 1000 11.1 1080 1150
4 7.6 970 12.6 980 1040
5 7.3 930 12.1 910 980
6 7.2 900 12.3 880 940

TABLE III: Percentage of signal events passing the candidate
sample selection criteria (α) and observed 95% C.L. lower
limits on the effective Planck scale in the ADD model (Mobs

D )
in GeV/c2 as a function of the number of extra dimensions in
the model (n) for both individual and the combined analysis.
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FIG. 3: 95 % C.L. lower limits on MD in the ADD model as
a function of the number of extra dimensions in the model.

and background estimates with systematic uncertainties
on the acceptance using a Bayesian method with a flat
prior [14]. The acceptance is found to be almost indepen-
dent (within 2%) of the mass MD. The total systematic
uncertainties on the number of expected signal events are
5.7% and 12.4% for the γ + E/T and jet + E/T candidate
samples respectively. The largest systematic uncertain-
ties arise from modeling of initial/final state radiation
convoluted with jet veto requirements, choice of renor-
malization and factorization scales, modeling of parton
distribution functions, modeling of the jet energy scale
(jet + E/T sample only), and the luminosity measurement.

Since the underlying graviton production mechanism
is equivalent for both final states, the combination of the
independent limits obtained from the two candidate sam-
ples is based on the predicted relative contributions of
the four graviton production processes. Systematic un-
certainties on the signal acceptances are treated as 100%
correlated, while uncertainties on background estimates,
obtained in most cases from data, are considered to be
uncorrelated. The 95% C.L. lower limits on MD from
each candidate sample and the combined limits are given
in Table III and plotted with LEP limits [15] in Fig. 3.

In conclusion, the CDF experiment has recently com-
pleted searches for new physics in the γ + E/T and jet +
E/T final states using data corresponding to 2.0 fb−1 and



1.1 fb−1 of integrated luminosity respectively. The ob-
served number of events is consistent with the expected
background in both channels, and we place limits on the
ADD model of LED that are the world’s best for the
cases of four or more extra dimensions.
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