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ABSTRACT
Thanks to the availability of high-resolution high-sensitivity telescopes such as the Very Large
Array, theHubble Space Telescope, and theChandra X-ray Observatory, there is now a wealth
of observational data on relativistic jets from active galactic nuclei (AGN) as well as galactic
sources such as Black-Hole X-ray Binaries. Since the jet speeds cannot be constrained well
from observations, but are generally believed to be relativistic, physical quantities inferred
from observables are commonly expressed in terms of the unknown beaming parameters: the
bulk Lorentz factor and the line-of-sight angle, usually in their combination as relativistic
Doppler factor. This paper aims to resolve the discrepancies existing in the literature about
such “de-beaming” of derived quantities, in particular regarding the minimum-energy mag-
netic field estimate. The discrepancies arise because the distinction is not normally made
between the case of a fixed source observed with different beaming parameters and the case
where the source projection on the sky is held fixed. The former is usually considered, but it
is the latter that corresponds to interpreting actual jet observations. Furthermore, attention is
drawn to the fact that apparent superluminal motion has a spatial corollary, here called “re-
tardation magnification”, which implies that most parts of a relativistic jet that are actually
present in the observer’s frame (a “world map” in relativity terminology) are in fact hidden on
the observer’s image (the “world picture” in general, or “supersnapshot” in the special case of
astronomy).
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1 INTRODUCTION

For over 50 years from the appearance of the seminalZur Elektro-
dynamik bewegter K̈orper (Einstein 1905), only the Lorentz trans-
formations of the 4-coordinates of “events” were considered in the
literature, but not how relativistically moving bodies wouldap-
pear when looked at or photographed. This was first done inde-
pendently and (relatively) simultaneously by Penrose (1959) and
Terrell (1959); the former showed that the projected outline of a
relativistically moving sphere is always a circle, while the latter
provided a more extensive discussion of the appearance of moving
bodies and pointed out the key features of observing relativistically
moving bodies: they appear bothrotatedandscaled(more details
will be given below).

The motivation for writing the present paper is work on in-
terpreting observations of relativistic jets (Jester et al. 2006, e.g.,),
where the need arises to infer physical properties of the jet fluid
in its own rest frame from observations, subject to corrections due
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to relativistic beaming, whose magnitude is, however, not known
from observations. A particular quantity of interest is the rest-frame
minimum-energy magnetic-field estimate for a synchrotron source
(Burbidge 1959), and there are different opinions in the literature
about how the true rest-frame minimum-energy field scales with
the relativistic Doppler factor compared to that inferred assuming
a non-relativistic source (compare eqn. A3 of Stawarz et al. 2003
to eqn. A7 of Harris & Krawczynski 2002). Some of the argument
revolves around whether the observed morphological features of
jets are “blobs” or “jets”, and their (apparently) different beaming
properties.

Given these differences of opinion on how to “de-beam” prop-
erly, it is perhaps surprising that NASA’s Astrophysics Data Sys-
tem lists only three papers on interpreting jet observations as cit-
ing Terrell (1959), and his results do not seem to be part of the
common knowledge of jet researchers. One of the citing papers is
Lind & Blandford (1985), who consider the implications of rela-
tivistic beaming on the difference between observed and intrinsic
source counts and give detailed formulae for relating observed and
jet-frame fluxes and emissivities. Some of these formulae had al-
ready been presented in the seminal paper by Blandford & Königl
(1979).

It appears that the difficulties in interpreting jet observations
arise because the problem under consideration is ill-posed. As will
be argued in detail below, what matters for interpreting jet obser-

c© 0000 RAS

FERMILAB-PUB-08-206-CD



2 S. Jester

vations subject to unknown beaming paramters is that we have ob-
served the 2-dimensional projection of a source’s appearance onto
the plane of the sky and try to infer the source’s rest-frame prop-
erties from this projection. Confusion arises because most formu-
lae in the literature consider what happens to the observed quanti-
ties when afixed sourcemoves with different Lorentz factors and
at different line-of-sight angles to the observer, while in obser-
vations, it is theprojectionof the source which is held constant.
Furthermore, the effects of light-travel time delays along the line
of sight are typically only mentioned explicitly in work compar-
ing jet simulations to observations, e.g., in Aloy et al. (2003) and
Swift & Hughes (2008), but not in the observational literature. This
and the preference for adopting the fixed-source view may be re-
lated to the fact that Lorentz transformations are usually covered
in great detail in a typical course on special relativity, but Penrose
(1959) and Terrell (1959) are hardly mentioned in relativity text-
books.

This leads to the present paper with the following outline: the
remainder of the introduction summarizes the results by Penrose
(1959) and Terrell (1959) and sets out some basic definitions and
terminology. The appearance of relativistic objects, and in particu-
lar of astrophysical jets, is discussed in§2, both from a theoretical
point of view and using a simple ray-tracer. Ready-to-use formu-
lae for relating jet-frame quantities to observables are given in§3,
including the minimum-energy field. The discussion and summary
are given in§4, while Appendix A describes someGedankenexper-
imenteon non-conventional world-map measurements that lead to
length expansion and time acceleration.

1.1 World Pictures and Supersnapshots

As first noted by Terrell (1959), there is a fundamental difference in
relativity between thelocations(4-coordinates) of events as judged
by observers that are local to the events and equipped with sets of
clocks that are synchronized in their rest frame, and theappearance
of relativistically moving bodies as judged by distant observers by
means of photons that are received simultaneously; a little earlier,
Penrose (1959) had considered the special case of the observed out-
line of a relativistically moving sphere. The set of event locations
is a world map, while the picture that is taken of the events is a
world picture. In the special case of photons arriving at right angles
to the detector taking the world picture, it is called asupersnap-
shot (Rindler 1977). Astronomical observations clearly fall under
the definition of a supersnapshot.

The appearance of relativistically moving objects in a super-
snapshot is governed by two aspects of photon paths in special rel-
ativity (Terrell 1959; Rindler 1977; Lind & Blandford 1985):

(i) Two photons traveling abreast with a separation∆s in one
frame (i.e., photons traveling “alongside each other” with∆s mea-
sured perpendicular to their direction of motion) do so inall frames.
This is the case because|∆s|2 is invariant under Lorentz transfor-
mations and∆s is a space-like interval.

(ii) If a photon is traveling at an angleθ′ to the direction of mo-
tion of some frame that is moving with speedβc and Lorentz factor
Γ = (1−β2)1/2 with respect to an observer, the angle between the
direction of motion and the photon direction in that frame is re-
lated to the angleθ between the direction of motion and the photon
direction in the observer’s frame by

µ′ =
µ − β

1 − βµ
, (1)

whereµ = cos θ etc., or, equivalently,

sin θ′ = δ sin θ, (2)

whereδ is the relativistic Doppler factor

δ = [Γ(1 − βµ)]−1 . (3)

The latter phenomenon is the well-known angle aberration; the for-
mer is perhaps less well-known, but essential for the analysis of
images of relativistically moving objects, and implies that the su-
persnapshot is ascaledversion of the rest-frame image. Taken to-
gether, they yield Terrell’s result that the appearance of such an
object in a supersnapshot is simply the object’s appearance as seen
from the aberrated angleθ′ in its rest frame, with its apparent size
along the direction of motion scaled by the Doppler factorδ.

As a consequence of eq. (1), even approaching objects appear
to be seen “from behind” unlessµ < β, i.e.,δ > Γ; in the limiting
caseµ = β ⇔ δ = Γ ⇔ sin θ = 1/Γ, a relativistic object is
seen exactly side-on in its rest frame and with exactly its rest-frame
length as its “projected” length.

1.2 Terminology: “Blobs” versus “jets” versus “shocks” – at
rest in different frames

It is useful clearly to set out the terminology for the remainder of
the paper, because the brightness pattern observed in astrophysi-
cal jets can be at rest in frames that are different from both the
observer frame, and the fluid rest frame, as discussed in detail by
Lind & Blandford (1985). Their discussion and notation is adopted
here. It distinguishes between “blob”, “jet” and “shock” features,
which are defined by being at rest in one of three frames relevant to
the problem. Thus, it is useful to give the definitions of the relevant
frames together with those of the morphological terms:

(i) The “observer frame” is that in which the astronomer is at
rest. Once appropriate cosmological corrections are applied, the ob-
server frame is conceptually identical to the frame in which the jet
source and its host are at rest.

A “jet” feature is then aresolvedbrightness pattern whose out-
line is at rest in the observer frame. Observer-frame quantities have
no primes, e.g.j for volume emissivity.

(ii) The “fluid frame” is the rest frame of the emitting fluid,
which is taken to be moving through the observer frame at rela-
tivistic speed. The term “rest frame” is used interchangeably with
“fluid frame”.1

A “blob” or “plasmoid” is a brightness pattern whose outline is
at rest in the fluid frame. Fluid-frame quantities will be designated
by double primes, e.g.j′′.

(iii) A “pattern” or “shock” feature is a brightness pattern whose
outline is at rest neither in the fluid nor in the observer frame, e.g.,
a shock traveling through the jet fluid. It defines the third frame, the
frame in which this pattern is at rest. Pattern-frame quantities have
single primes, e.g.j′. The emissivity of the fluid traveling through
such a “shock” transforms according to the fluid’s Doppler factor
δ′′, while its projected appearance and morphology are governed
by the shock’s Doppler factorδ′.

1 The emitting fluid is not necessarily identical with that carrying the bulk
of the jet’s kinetic energy, nor are those two fluids necessarily moving at the
same speed (Harris & Krawczynski 2007). However, this distinction does
not affect the relation between observables and physical quantities in the
rest frame of the emitting fluid, which is the subject of this paper. Neverthe-
less, it needs to be kept in mind when interpreting fluid-frame quantities.
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How relativistic jets look 3

These are fairly intuitive definitions. Nevertheless, the differ-
ence between the “blob” and “jet” formulae in eqn. C7 of
Begelman et al. (1984) is just one ofchoice of integration bound-
aries, and in particular whether the integration boundaries are held
fixed in the observer frame whenδ is changed (jet case) or are al-
lowed to vary according to the different projected morphology of
a “blob” under changes ofδ. Thus, it is possible to apply a “jet”
formula to a small segment of a blob as long as the integration
boundaries are held fixed in the observer frame. In§§3.1.3 and
3.2.3 below, I will present detailed formulae for converting ob-
served to fluid-frame properties in each case, with expressions for
the minimum-energy field in§3.3.2.

1.3 Basic definitions and beaming formulae

This section summarizes the basic definitions of surface bright-
ness/intensity, flux density and luminosity of astronomical sources,
as well as the beaming properties of blobs, jets, and shocks. I will
give explicit formulae for observed surface brightness and total flux
in terms of source parameters for simple geometries, as well as
ray-tracing images showing the appearance of such sources in su-
persnapshots.

For the computation of surface brightness and flux, I use
the notation and formulae as given by Blandford & Königl (1979)
and Lind & Blandford (1985), assuming an optically thin, isotropic
emission with a power-law emissivityjν ∝ να that is constant
within the emitting region. All observables will be expressed in
terms of the emissivityj′′ in the fluid rest frame and the source size
in the pattern frameΣ′, which is identical to the fluid and observer
frame for a “blob” and “jet”, respectively. Cosmological transfor-
mations, however, are not always given explicitly in order to sim-
plify the notation; they can be re-incorporated in the usual way by
inserting appropriate powers of(1 + z) for cosmological redshifts,
and using the appropriate cosmological distance measures.

The surface brightness or intensityI, flux densitySν and lu-
minosityL of a source are given by

Iν =

∫ s

0

jνdx, (4)

Sν =

∫
A

IνdA (5)

= d−2
L

∫
V

jνdV, (6)

Lν = 4πd2
LSν

= 4π

∫
V

jνdV, (7)

wheredL is the luminosity distance to the source, which has spe-
cific emissivityj, volume V and projected surface area A.

The transformation properties of these quantities then follow
from the relativistic invariance ofIν/ν3 and the volume transfor-
mation (taken from Appendix C of Begelman et al. 1984):

ν = δ′′ ν′′ (8)

dΩ = δ′′−2 dΩ′′ (9)

Iν(ν) = δ′′3 I ′′

ν′′(ν′′) (10)

jν(ν) = δ′′2 j′′ν′′(ν′′) (11)

Assuming optically thin emission makes the discussion appropri-
ate for arcsecond-scale jets, where sources are not compact enough
for self-absorption to become important. The difficulties of in-

terpreting observations of optically thick sources, such as com-
pact cores and milli-arcsecond scale jets, have been highlighted by
Blandford & Königl (1979) and Lind & Blandford (1985). The es-
sential point here is that the appearance of optically thick sources
varies as function of viewing direction, and the relativistic angle
aberration implies that the beamed appearance is governed by this
intrinsic viewing angle dependence in addition to the flux and sur-
face brigthness beaming. The volume transformation deserves sep-
arate consideration.

1.4 Volume transformation of relativistic objects in
astronomical images

The fact that the outline of the different kinds of brightness pattern
is at rest in different frames has led some authors to write down
different volume transformation formulae for astronomical obser-
vations of “jets” and “blobs” (see Sikora et al. 1997, Appendix A,
and Stawarz et al. 2003, Appendix A, e.g.). However, what matters
for the volume transformation of a feature identified in an astro-
nomical image or radio map is only that the image is a supersnap-
shot. What matters for the interpretation of the supersnapshot is the
volume of fluid whose photons arrive simultaneously on thesuper-
snapshot, not the volume of fluid that is located within the jet vol-
ume in theworld map. Hence, the correct volume transformation
for any fluid volumeV ′′ observed by means of a supersnapshot is

V = δ′′V ′′, (12)

whereδ′′ is the Doppler factor of the fluid in the observer frame.
If the decisive criterion was not the fact that astronomical ob-

servations are supersnapshots, one could argue with equal justifica-
tion that the correct volume transformation formula for the fluid in a
jet section isV ′′ = V/Γ because the jet volume is at rest in the ob-
server frame and hence appears contracted in the rest frame of the
fluid, or alternatively that the correct transformation isV ′′ = V ×Γ
because the fluid is moving through the observer frame, and there-
fore it is contracted. Both can of course be correct, depending on
whether one is judging the jet volume with the help of events that
are simultaneous in the fluid or the observer frame. However, a
supersnapshot corresponds to neither world-map case — the su-
persnapshot criterion is photonsarriving simultaneously at the ob-
server, which nearly always does not correspond to photonsbeing
emittedsimultaneously in any frame.

That eq. (12) is correct for both the “jet” and “blob” case can
be seen also by considering a section of a “jet” as a collection of
infinitesimal blobs that are each at rest in the fluid frame. Alter-
natively, a “jet” can be considered as a section of a “blob” that is
moving through a transparent gap in obscuring material that is at
rest in the observer frame — if 90% of a blob’s volume is covered
in the observer frame, the rest-frame volume of the visible part is
10% of the blobs’s total observer-frame volume, and hence must
also be 10% of the blob’s rest-frame volume.

As an alternative derivation of eq. (12), consider that the
observer-frame volume of a “jet” or “blob” (or an infinitesimal el-
ement of it) is given by

V = s × l × h,

wheres is its extent transverse to the line of sight in the plane of its
motion,h is the extent perpendicular to both the line of sight and
the direction of motion, andl is along the line of sight. The indi-
vidual factors ofV transform into the fluid rest frame as follows.

First, sinceh is perpendicular to the direction of motion, it
is not affected by relativity in any way, andh′′ = h. Next, recall
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from §1.1 above that the transverse separation∆s of two photon
paths, i.e., light rays, is Lorentz-invariant. The transverse extents
is defined by two such parallel light rays and therefore it is also
Lorentz-invariant, hences′′ = s. Finally, to determine the transfor-
mation properties ofl, consider the following argument. The opti-
cal depthτ alongl has to be Lorentz-invariant since it encodes the
fractione−τ of photons that are absorbed by the jet material, which
is independent of the motion of any observer (Rybicki & Lightman
1979, p. 147). By definition, the optical depth is

τ = l κν ,

where κν the absorption coefficient of the material. The
Lorentz invariance ofτ therefore implies thatl transforms in-
versely toκν . From the Lorentz invariance ofνκν (again see
Rybicki & Lightman 1979), it follows thatl transforms asν, i.e.,
l = δ′′l′′. HenceV = s lh = s δ′′l′′ h = δ′′ s′′ l′′ h′′ = δ′′ V ′′,
again yielding eq. (12).

Thus, the relation between rest-frame and observer-frame vol-
ume for supersnapshots is always given by eq. (12), no matter
whether we are considering a “jet”, “blob” or even “shock” fea-
ture. As noted at the end of the preceding section, the well-known
apparent difference between the beaming formulae for a blob and a
jet (δ2−α versusδ3, such as in App. C7 of Begelman et al. 1984) is
in fact just a difference ofintegrands; since theintegration bound-
aries differ depending on whether an object is considered as blob
or jet, the final answer is independent of the assumed geometry. In
other words,jets and blobs have the same beaming properties
if identical source volumes are considered. The equivalence of
jet and blob formulae will be shown explicitly in§3.2.3 and 3.3.2
below.

While eq. (12) appears straightforward to interpret, the super-
snapshot is merely a projection of the observer-frame volume onto
the plane of the sky, so thatthe observer-frame volumeV is not
a direct observable(see Fig. 4 below). Therefore, the volume for-
mula can only be used for interpreting astronomical images if an
assumption is made about the geometry of the source. However, its
use in determining observables from known rest-frame quantities is
straightforward.

2 THE APPEARANCE OF RELATIVISTIC OBJECTS

This section attempts to give an intuitive pictorial representation of
how relativistic jets appear in supersnapshots. The first part con-
siders jet observations as supersnapshots of infinitesimally thin
relativistic rods. This approach is appropriate for demonstrating
how the scale change in a supersnapshot, referred to below as
retardation magnification, arises as spatial corollary to the well-
known temporal phenomenon of apparent superluminal motion
(Rees 1966). The second part presents results from a ray-tracer that
demonstrate the differences between world maps and world pic-
tures. Those effects are particularly important which arise from the
extent of actual jets perpendicular to the direction of motion, as they
results in extra light-travel delays between the near and far side of
the jet that are not present in the case of an idealized, thin rod.

2.1 Retardation magnification and hiding

2.1.1 Retardation magnification as corollary to apparent
superluminal motion

Consider a relativistically moving rod, i.e., an object for which the
light-travel timeacross its extent is negligible compared to that

along its extent. The rod is subject to Lorentz contraction, so that
its rest-frame lengthΛ′′ is related to its length in the observer frame
by

Λ = Λ′′/Γ, (13)

whereΛ is inferred from a world-map analysis. For the interpreta-
tion of observations, where the observer is sufficiently distant from
the moving rod to be able to take asupersnapshot, we want to re-
late the apparent size of the object on the supersnapshot to its actual
length in the world map. To clarify terminology, the term “projected
size” (symbolΛproj) will be used to mean the size that corresponds
to the projected extent as measured on the supersnapshot, while the
term “apparent size” (Λapp) is the size that is inferred from the
projected size by deprojecting with the line-of-sight angleθ, i.e.,
Λproj = Λapp sin θ. From the constancy and finite value of the
speed of light,

Λapp =
Λ

1 − βµ
(14)

= MΛ, (15)

where I have defined a magnification

M = (1 − βµ)−1. (16)

Substituting eq. (13) recovers the well-known relation

Λapp = δΛ′′. (17)

(e.g., Ghisellini 2000, eqn. [12]). Equivalently,

Λproj = δΛ′′ sin θ (18)

=
Λ sin θ

1 − βµ
(19)

= MΛ sin θ (20)

Not by coincidence, the projected velocityvproj (usually called
“apparent transverse velocity”) in apparent superluminal motion is
related to the actual velocityv by exactly the same magnification
factor that relates the projected length to the actual length:

vproj =
v sin θ

1 − βµ

= M v sin θ.

From eqs. (14), (18) and (19), we can read off all the relevant im-
plications for the interpretation of supersnapshots:

(i) For an approaching rod withµ > 0, 1−βµ < 1 and therefore
M > 1 for any value ofβ. Thus, theapparent, deprojected length
Λapp of a relativistic approaching object is always greater than its
observer-frame lengthΛ as inferred from a world map. In other
words,in a supersnapshot, any approaching relativistic object
appears magnified compared to its actual observer-frame size.
Only for θ = 90◦, µ = 1 andΛproj = Λ′′/γ = Λ, and the Lorentz
contraction of a thin rod becomes observable.

(ii) The projected lengthΛproj is always less than or equal to
the rest-frame lengthΛ′′. The limiting caseΛproj = Λ′′ occurs for
µ = β, which impliesδ = γ andsin θ = 1/Γ. In this case, the
“projected” appearance of the rod in a supersnapshot is identical
to the view of an observer looking at the rod from 90◦ in its own
rest frame, without any Lorentz contraction. This fact was already
derived at the end of§1.1, there based on eq. (2).

The second point implies that it is possible to constrain the orienta-
tion and speed of a moving relativistic object if its rest-frame size
is known. In the case of jets, this may be possible if jet features are
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Figure 1. Illustration of retardation magnification and hiding, showing a sequence of events in which a relativistically moving “blob” is emitted by some source
(e.g., an accretion disk around a black hole), and the picture recorded by a distant observer at the corresponding time. The upper frames give theworld map
in the(x, y) plane with the true locations of all events; for an infinite speed of light, the world map corresponds to the “top view” of theevents as seen by an
observer at 90◦ to the blob’s direction of motion. The lower frames give thesupersnapshot, the image projected onto the(x, z) plane as recorded by a distant
observer looking along the+y axis by means of simultaneously arriving photons, i.e., photons that are crossing the dashed “screen” line simultaneously. Panel
(0) shows the setup, with the black dot marking the location of thesource (“black hole”) ejecting the relativistic blob.(1) The front end “A” of the blob is
ejected.(2) The rear end “B” of the blob is ejected, and at the same locationas “A” was in frame (1). “A” itself has travelled some distance from the black
hole. The curved line illustrates the current location of the wavefront by which the observer will later imply that “A” hasbeen ejected.(3) The wavefront from
the ejection of the front end “A” reaches the “screen” location and appears on the observer’s picture. The second wavefront carrying the information about the
ejection of “B” is lagging behind.(4) The light from the ejection of the rear end “B” reaches the screen location. At the same time, the front end “A” crosses
the screen location. Therefore “B” and “A” appear at the shown locations on the supersnapshot. The separation B–A on the supersnapshot is greater than it is
in the world map, and the observer records a magnified image of theblob. If any further material is ejected after “B” (and hence occupied the region indicated
by the dotted line), it will not yet be visible to the observer. Hence, the apparent magnification of the blob’s extent implies that any further ejections will be
unobservable until the light emitted by them has had time to reach the observer, thus (temporarily) being hidden from view.

known to have a certain ratio of length to width, since the width is
not affected by the beaming.

Figure 1 gives a more intuitive illustration of why distant rel-
ativistic objects appear magnified in a supersnapshot compared to
their true observer-frame extent. As in apparent superluminal mo-
tion, the cause of this effect is the time delay between light signals
reaching the observer from the end of the object that is closest to
the observer and those from the end of the object furthest from the
observer. Therefore, I call this effectretardation magnification. In
analogy to the first point above, any relativistic object’s apparent
velocity isalways magnifiedcompared to its true velocity, without
necessarily appearing to be superluminal.

2.1.2 Retardation hiding in astrophysical jets

For astrophysical jets, however, there is a catch: jets are produced
by accretion disks around a compact object (“core”; for active
galactic nuclei, the compact object is a black hole, and similar jets
are launched from accretion disks around black holes [Liebovitch
1974, e.g.], neutron stars and white dwarfs in X-ray binaries and
novae [see Fender, Belloni & Gallo 2004, e.g.]), and they terminate
in a “hot spot” (this can be a shock terminating an FR II jet, or a
flaring point at which an FR I jet decelerates substantially). Both
are moving through the observer frame much more slowly than the
jet material itself. Hence, the apparent size of any jet feature cannot
be larger than the separation between the core and the hot spot.

Thus, if jet features appear magnified, it means that not all of
the features that are actuallypresentin the observer frame can be
visible simultaneouslyto the observer, as the total apparent length
would then need to be larger than the actual separation between
core and hot spot. Hence, the magnification implies that parts of
the jet are hidden from the observer’s view. This retardationhiding
occurs because light signals from the further end of the jet have not

yet had time to reach the distant observer, even though they have
already emerged from the core. As the object appears magnified by
a factorM, it follows that only a fraction1/M = 1 − βµ of the
object is visible; since time delays are greater for the parts of the
object that are further from the observer, the visible part of the jet
is that closest to the observer, and the hidden part is that furthest
from the observer. Figure 2 shows the visible fraction as function
of Lorentz factor and line-of-sight angle. Figure 3 illustrates which
parts of a relativistic rod are visible to a distant observer.

The relativity-textbook analogue would be a relativistic train
emerging from one tunnel and disappearing into a second one. If
the distance between the end of one tunnel and the beginning of the
second one is sufficiently short, a distant observer looking at the
train from a small angle to the train’s direction of motion will ob-
serve fewer railway carriages between the two tunnels than actually
fit between them as judged by observers creating a world map.

The magnification obviously applies to blobs, as their outlines
are at rest in thefluid frame. However, it also applies to individual
fluid elements that make up a “jet” feature whose outline is at rest
in theobserverframe. Hence, a given section of an approaching jet
actuallycontainsmore fluid elements than arevisible simultane-
ously to an observer. This is another way of deriving that eq. (12) is
always the correct volume transformation for supersnapshots, even
in the jet case.

The discussion so far has dealt exclusively with 1-dimensional
rods, with negligible light travel time in the direction transverse to
the direction of motion compared to the light travel time along the
direction of motion. This situation does not apply to features of real
astrophysical jets, which have comparable extent along and across
the direction of motion. The next section illustrates the effect of
light-travel delays across a relativistically moving object.
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6 S. Jester

Figure 3. Visual appearance of a relativistic rod with features that are fixed in the object’s rest frame (i.e., 1-dimensional blobs), for different line-of-sight
anglesθ and Lorentz factors. As in Fig. 1, the upper panel in each plotshows a “top view world map”, while the lower panel shows the appearance of the jet
in a supersnapshot taken by an observer aty = −∞. The solid bars above and below the jet in the upper panels indicate the fraction1 − βµ of the jet that
is visible to the pole-on observer, above the jet forΓ = 2 (longer bar) and below the jet forΓ = 10. Those photons arriving at a projected position just next
to the core were emitted by jet material adjacent to the inner end of the bar at the time when it was just next to the core. All parts of the jet that are closer to
the core are not yet visible because the photons from those parts of the jet have not yet had time to reach the observer. The sectors at the ends of the solid bars
indicate the relativistic beaming cone of half-opening angleΓ/2; for the angles and Lorentz factors shown here, only the jetswith Γ = 2 at anglesθ ≤ 15 deg

have their fluxes enhanced by beaming, while the remainder havetheir fluxes significantly suppressed by beaming.

2.2 Ray-tracing simulations of supersnapshots

To give a visual illustration of the difference between a world map
and a supersnapshot, this section contains images of the same emit-
ting regions, once in the world map view, identical to what would be
seen if the speed of light was infinite, and once in a supersnapshot
view, appropriate for astronomical observations. As just noted, the
discussion in the preceding section applies directly to “blob” fea-
tures, whose outline is at rest in the fluid frame, but also to individ-
ual fluid elements making up a “jet” feature, whose outline is at rest
in the observer frame. The main difference between a blob and a jet
for the ray-tracing images is that theoutline of blobs experiences
the magnification effects. By contrast, the outline of stationary jet
features does not get magnified and behaves according to our in-
tuition, which is formed by observing bodies moving at velocities
much less than the speed of light. Hence, this section concentrates
on the aspect of how the observed (projected) and true geometry of

objects in supersnapshots are related, including the question how to
infer the volume of a relativistic object from a supersnapshot.

The discussion here and in the entire the paper is restricted to
optically thin objects. The effects of relativistic beaming on flux
measurements and quantities derived from them will be examined
in the following section.

Figures 4 and 5 shows some simple ray-tracing pictures il-
lustrating the difference between world map and supersnapshot
for blobs, and the different projection properties for relativistically
moving and stationary features. The following points about obser-
vations blobs or jets can be inferred from Figs. 4 and 5:

(i) As expected from Penrose (1959), blobs that are spherical
in their rest frame are always observed as spherical blobs, even
though they are in fact lens-shaped in the observer frame (due to
the Lorentz contraction along the direction of motion). They are
still magnified in the supersnapshot, but the magnification is now
alongthe line of sight; this is why their observer-frame volume still
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How relativistic jets look 7

Figure 4. World maps and supersnapshots of spherical, optically thin blobs and stationary jet features, with the fluid moving with Lorentz factorΓ = 2 at the
line-of-sight angles as shown. The two leftmost columns show blobs which are spherical in their own rest frame, the right-hand column shows spherical jet
features. The observer is located aty = −∞, and blobs that are visible to the observer are shown in red, while blobs that are hidden to the observer are shown
in cyan. As in previous figures, there is a panel each for a “topview” and the projected appearance in the plane of the sky; inthe case of the “supersnapshot”,
both projections include light-travel delays towards the observer, i.e., photons originating at largery values left the source at progressively earlier times. For
the “supersnapshot” and the “jet” column, the projection onto the plane of the sky is identical to the supersnapshot obtained by a distant observer (for the
jet case, it is assumed that the jet is much older than the light travel time difference from the furthest to the nearest feature); for the “world map” column,
the projection on the plane of the sky is whatwould be seen if the speed of light was infinite. The world map shows where the emitting material actuallyis,
while the supersnapshot shows what isobserved. The salient points about this figure are:(1) spherical blobs always appear as spherical blobs, but theirtrue
observer-frame shape is ellipsoidal; moreover, spherical blobs are magnifiedalongthe line of sight, retaining the orientation-dependent volumeVapp = δV ′′,
but the projection onto the plane of the sky makes this effect unobservable as far as the shape of the object is concerned;(2) while theshapeof the spherical
blobs is unaffected by changes inδ, their spacingis affected; the projected length of the entire sequence of blobs is the same in the supersnapshot and the
world map, but taken up by fewer blobs in the snapshot than there actually are; therefore, some of the blobs are hidden (the hidden blobs are shown in cyan).
Thus,(3) the projected appearance of jets and blobs behaves differently as the line-of-sight angle is reduced: jet features move closer together and begin to
overlap as the line of sight passes through multiple features, while blobs appear to move further apart.

scales asVapp = δ′′V ′′, even though their projected appearance is
identical to their rest-frame appearance.

(ii) The observedshapeof spherical blobs is not affected by
changes in the line-of-sight angle, and hence the Doppler factor;
however, theirspacingchanges by a factorδ′′ with respect to their

rest-frame spacing, byM with respect to their true observer-frame
spacing, resulting in an observed projected spacing ofM sin θ
times their true observer-frame spacing. Thus, relativistic blobs
(and relativistic objects in general) behave very unintuitive under
changes of the observation angle – the closer the line-of-sight an-
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8 S. Jester

Figure 5. As Fig. 4, but with slab features of rectangular cross-section. In the slab geometry, the change of the blob-frame line-of-sight angle is seen clearly,
because the projected appearance now varies with that angle: at observer-frame line-of-sight angles greater than the critical angle given bysin θ = 1/Γ

(corresponding to the “beaming cone” half-opening angle), i.e.,θ = 30◦ for Γ = 2, even approaching blobs are seen from behind in their own rest-frame, and
only at line of sight anglesθ < 30◦ are the jet features seen from the front. In fact, for a wide range of angles, the features are seen nearly side-on in their own
rest frame (compare Bicknell & Begelman 1996). As in the spherical-blob case, fewer and fewer blobs are visible for smaller values ofθ, and the projected
spacing of the knots remains constant over the same range of angles where the knots are seen roughly edge-on.

gle is to the critical angle given bysin θ = 1/Γ to the direction of
motion, the further they appear to be apart.

(iii) By contrast, stationary spherical jet features behave as ex-
pected by our everyday intuition, with smaller projected spacings
between individual features for smaller line-of-sight angles.

(iv) The geometry of individual blobs (spherical vs. slab) does
not affecthow manyof the blobs are seen, or their total beamed
luminosity, but it does affect how theprojected appearanceof in-
dividual blobs varies with line-of-sight angle.

The figures do not consider moving shocks, features which are at
rest neither in the frame of the observer nor in that of the fluid.
However, their projected shape as function of Doppler factor is
identical to the projected shape of blobs, i.e., it is governed by the

shock’s Doppler factorδ′. The fluid’s emissivity in the observer
frame, on the other hand, is governed by the fluid’s Doppler factor
δ′′.

3 RELATING OBSERVED AND REST-FRAME
QUANTITIES IN JET OBSERVATIONS

Beaming formulae have been given in numerous places in the lit-
erature. The usual approach is one that considers afixed source
volumeand then determines the changes in the received flux den-
sity, surface brightness etc. resulting from changes in the Doppler
factor, i.e., the line-of-sight angle and Lorentz factor. However, in
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How relativistic jets look 9

Figure 2. Visible fraction of a jet, or other relativistically moving body
emerging from a stationary one and disappearing into anotherstationary
one, on asupersnapshot, as function of the angleθ between the observer’s
line of sight and the jet’s direction of motion, for differentLorentz factors
Γ as given. The visible fraction is the inverse of the magnification factor
M = (1− βµ)−1 defined in the text. Relativistic flux beaming affects the
detectability of jets; forΓ � 1, the visible fraction of a jet at the critical
beaming angleθ ≈ 1/Γ is given by5/(8Γ2); as the jet becomes signifi-
cantly de-beamed for larger line-of sight angles, this is themaximum visible
fraction of the jet material in a relativistic jet.

astronomical observations, it is not thesourcevolume that is fixed,
but the source’sprojected appearancein the supersnapshot. The
fact that the source volume differs when deprojecting the observed
appearance with different line-of-sight angles is not considered of-
ten in the beaming literature. It is therefore worthwhile to restate
the beaming prescriptions for both directions, inferring changing
observables for fixed source properties, and changing source prop-
erties from fixed observables. As above, the equations assume opti-
cally thin, isotropic emission with a power-law emissivityjν ∝ να

that is constant within the emitting region.

3.1 Beaming and de-beaming blobs

In the case of a blob, the pattern frame is identical with the fluid
frame, so thatδ′ = 1 andδ′′ is the relevant Doppler factor. To get
observed quantities in terms of source parameters, we need to spec-
ify a geometry for the emission region. I consider simple spherical
emission regions as well as “slab”-shaped regions of either square
or circular cross-section.

3.1.1 Flux beaming of blobs

The beamed total flux density of a blob is given by

Sν(ν) = d−2
L δ′′3−αj′′ν′′(ν) V ′′, (21)

where emissivity and source volume are held fixed in the fluid rest
frame. The beamed bolometric luminosity is obtained by integrat-

ingSν over the appropriate range ofrest-framefrequencies, leading
(after substitution using eqs. 7 and 8) to

L = δ′′4L′′. (22)

In general, the beaming properties of bolometric quantities are ob-
tained from the frequency differentials by adding1+α to the expo-
nent of the Doppler factor, and the exponent to the Doppler factor of
beamed bolometric quantities does not contain any spectral-shape
parameter such asα.

3.1.2 Surface brightness beaming of blobs

Surface brightness beaming is important because the detectability
of jet features in optical and radio observations is determined by
their peak surface brightness, not by their total flux. The observed
surface brightness is given by the rest-frame volume emissivity in-
tegrated along the observer’s line of sight after rotation into the rest
frame.

3.1.2.1 Spherical blobs For a spherical blob, the beamed sur-
face brightness isδ′′3−α times the surface brightness that would
be perceived by an observer at rest with respect to the blob, but at
the same distance. Since the surface brightness of a spherical blob
varies according to the different length of the line of sight as func-
tion of sky coordinates, I do not give an explicit formula here.

3.1.2.2 Slab blobs For a slab blob with square cross-section of
side lengthw, the observed surface brightness far enough from the
edges is independent of sky coordinates and given by

Iν =
δ′′2−α

sin θ
j′′ν′′(ν) w. (23)

Ignoring edge effects is appropriate for slab blobs with
length:width ratios greater than about 2. The same expression ap-
plies to the surface brightness along the projected axis of a cylin-
drical blob with observed diameterw, and the scaling of observed
surface brightness with the beaming parametersΓ, θ applies to the
entire cylindrical blob.

3.1.3 Inferring the rest-frame properties of blobs

Equations (21) and (22) by themselves give the dependence of
received flux and inferred luminosity on observation angle and
Lorentz factor. In order to infer rest-frame quantities such asj′′

from observations, it is necessary to infer the rest-frame volume
from the source’s projected appearance. The prescription for this
depends on source geometry.

3.1.3.1 Spherical blobs As discussed above, a spherical blob
will appear as the same spherical blob to any observer, including
the rest observer. Hence, the rest-frame volume is simplyV ′′ =
4/3πR3, whereR is the observed radius of the blob. This appar-
ently contradicts eq. (12), but there is in fact no contradiction, as
can be seen from Fig. 4: the(x, y) view of the “supersnapshot” col-
umn shows that forδ > 1, the (unobservable) “observer-frame vol-
ume” of a spherical blob has a larger extentalong the line of sight
than can be inferred from its projected appearance, and a smaller
one forδ < 1. Thus, the rest-frame emissivity of the material is
given by

j′′ν′′(ν) = Sν(ν) d2
L

δ′′−3+α

4/3πR3
. (24)
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10 S. Jester

3.1.3.2 Slab blobs Next, I consider a slab-shaped blob with
square or circular cross-sectionA, i.e., a blob whose intrinsic size
perpendicular to the direction of motion can be inferred directly
from its transverse angular size in the plane of the sky. The rest-
frame length of the slab can be inferred from the projected length
Λproj and the fact that our line of sight crosses the blob in its rest
frame at an angle given by eq. (2), i.e.,Λ′′ = Λproj/(δ sin θ). Thus,
V ′′ = A Λproj/(δ sin θ) and

j′′ν′′(ν) = Sν(ν) d2
L

δ′′−2+α sin θ

AΛproj
, (25)

again ignoring edge effects.
Comparing to the relation between observed flux and rest-

frame volume emissivity, eq. (21), it is appears to be a contradiction
that eq. (25) has a different scaling with Lorentz factor and obser-
vation angle. The difference arises because eq. (21) applies to ob-
servations of the samesourcefrom different directions (V ′′ is kept
fixed), while eq. (25) describes the situation where theobservables
are kept fixed, so that different line-of-sight angles correspond to
different inferred values forV ′′. The decisive aspect that is often
neglected is the length of the sight line across the blob changes due
to the relativistic angle aberration (eq. 2), leading to thesin θ term
in the final expression. Because of this line-of-sight deprojection,
the “de-beaming” formula cannot be expressed as function of the
Doppler factorδ′′ only.

3.2 Beaming and de-beaming jets

3.2.1 Beamed flux density of a jet

The beamed flux density of a jet feature is given by

Sν(ν) = d−2
L δ′′2−αj′′ν′′(ν) V. (26)

This arises simply from integrating the fluid-frame emissivity trans-
formed into the observer frame over the observer-frame volume.
Though comparison with the blob case, eq. (21), seems to reveal
the usual difference in the exponent of the Doppler factor between
“jet” and “blob” case, the expression is multiplied bydifferentvol-
umes, fluid-frameV ′′ for the blob case, observer-frameV for the
jet case, that are at rest indifferentframes. Therefore, merely com-
paring the exponent of the Doppler factor does not contain the full
information about beaming properties of blobs versus jets.

3.2.2 Beamed surface brightness of a slab jet

If the emitting volume is a slab jet with transverse widthw, the
volume of a section with projected lengthΛproj is just V =
w2Λproj/ sin θ. Hence, the observed surface brightness of such a
slab jet is

Iν =
δ′′2−α

sin θ
j′′ν′′(ν) w, (27)

This is identical to the beamed surface brightness of a slabblob
(eq. 23), as it must, because a continuous jet can be considered as a
section of a long blob.

3.2.3 Inferring rest-frame properties of jets

Asking about the “rest-frame” volume of a jet feature is not directly
meaningful, since the outline of the jet feature is at rest in the ob-
server’s frame, while the emitting fluid is not, so there isn’t a single
frame in which both the fluid and its outline are at rest. However,

by substituting eq. (12), we can of course express eq. (26) in terms
of the volumeV ′′ = V/δ′′ of jet fluid that contributes photons
to the observer’s supersnapshot, obtaining the same expression as
for the “blob” case, eq. (21), and hence also the same expression
for the relation between observer-frame and fluid-frame bolometric
luminosity, eq. (22).

If the supersnapshot nature of astronomical observations were
ignored, an alternative definition of “fluid-frame luminosity” of a
jet could be derived by noting the following: according to the world
map of an observer at rest in the fluid frame, the volume of the jet
is contracted. Hence,V ′′ = V/Γ and the fluid-frame bolometric
luminosity would be given byL′′ = 4π j′′V ′′ = L/(δ′′3Γ) —
i.e., exactly the opposite scaling ofV ′′ and henceL′′ with Γ from
that given by Stawarz et al. (2003, eqn. A3). The reason for this ap-
parent contradiction, and that it is only apparently a contradiction,
is again that result of a relativistic experiment depends on what is
held constant in which frame (compare Appendix A). All that mat-
ters for jet observations is the supersnapshot with constant photon
arrival times.

Equation (26) of course correctly describes the dependence of
the received flux for a fixed jet feature when varying the fluid’s
Lorentz factor and the line-of-sight angle. As long as we infer the
correct observer-frameV from the fixed apparent size of a jet fea-
ture as function of the unknown fluid Lorentz factor and the line-
of-sight angle, we can infer the fluid-frame emissivity by inverting
that equation.

For a spherical jet feature, the observer-frame volume can
of course be inferred directly from the projected radiusR of the
sphere, leading to

j′′ν′′(ν) = Sν(ν) d2
L

δ′′−2+α

4/3πR3
. (28)

For a “slab” feature, we can measure its cross-sectional areaA
and assume some rotational symmetry. For fixed projected length
Λproj, the deprojected length is then justΛproj/ sin θ, so that the
relation between emissivity and observed flux of a jet section is

j′′ν′′(ν) = Sν(ν) d2
L

δ′′−2+α sin θ

AΛproj
,

again ignoring edge effects, i.e., assuming a length:width ratio
of greater than about 2. This expression is identical to equation
(25), the relation between observables and rest-frame emissivity
for a slab-shapedblob of fixed projected size but unknown(Γ, θ).
In other words, our lack of knowledge about jet orientation and
Lorentz factor affects elongated slab-shaped blobs and jets in ex-
actly the same way.

However, for asphereof fixed observed radiusR, the inferred
fluid-frame emissivity is different by one power ofδ depending on
whether we are considering a spherical blob or a spherical jet fea-
ture (compare eqns. 28 and 24). This difference between the beam-
ing of an elongated and a spherical blob arises because a spherical
blob in effect becomes magnifiedalong the line of sight, while a
slab blob appears magnifiedin the plane of the sky, as discussed
in §3.1.3 above (again compare Figure 4). The elongationalong
the line of sight is unobservable in the projection on the plane of
the sky. Thus, in the special case of spherical features, thereis a
difference between “jet” and “blob” de-beaming.

3.3 The minimum-energy magnetic field of beamed sources

A synchrotron source, such as the radio jet of an active galac-
tic nucleus, is powered by energy stored either in its magnetic
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How relativistic jets look 11

field or in relativistic particles. As first pointed out by Burbidge
(1959), there is a minimum to the total energy in particles and fields
that is required to power a given observed synchrotron luminosity.
This minimum can be parameterized in terms of the magnetic field
strength at the minimum energy density, which is often used as “the
minimum-energy magnetic field estimate”.

Further derivations and ready-to-use formulae for non-
relativistic sources are given by Pacholczyk (1970), Longair (1994)
and Miley (1980). Beck & Krause (2005) have offered some con-
structive criticism on this so far well-established formalism, in
particular regarding the unknown ratioK of total energy in
relativistic protons and electrons. Harris & Krawczynski (2002)
and Stawarz et al. (2003) have presented detailed derivations of
minimum-energy estimates in the rest frame of relativistic jets, but
reached slightly different conclusions. Armed with the knowledge
from the preceding sections, we can now reconsider the question
of the correct de-beaming of minimum-energy magnetic field esti-
mates.

As noted above, for the case of a “jet” geometry, the rest frame
of the fluid cannot be identified with the rest frame of the “source”,
as the source volume isfixedin the observer frame, while the beam-
ing is determined by the Lorentz factor at which the fluid ismoving
through the observer frame. The same applies for shocks. How-
ever, as extragalactic jets are assumed to be close to ideal MHD
conditions, the rest frame of the fluid is also the rest frame of the
magnetic field, and the frame in which the electron energy distri-
bution is assumed to be isotropic. Thus, whether we are consid-
ering blobs or jets, the fluid rest frame is the frame in which the
minimum-energy field needs to be calculated in order to satisfy the
underlying assumptions. As before, the emission is assumed to be
optically thin emission with spectral shapejν′′ ∝ ν′′α and constant
emissivity throughout the emission region.

In the absence of beaming, the expression for the minimum-
energy field in terms of quantities in the rest frame of the fluid
(double primes) is

B′′

min
7/2 ∝

ν′′1/2+α
2 − ν′′1/2+α

1

ν′′1+α
2 − ν′′1+α

1

L′′

V ′′
, (29)

where the synchrotron spectrum extends over the rest-frame fre-
quency interval(ν′′

1, ν
′′

2); the first fraction is from the functioñc
from Pacholczyk (1970, eqn. 7.8). As pointed out above, neither the
rest-frame volumeV ′′ nor the observer-frame volumeV = δV ′′

is fixed by observations when the line-of-sight angle is unknown,
but it is the projection of the source on the plane of the sky that
needs to be kept fixed. Nevertheless, it is instructive to compare
the minimum-energy field as function ofΓ and θ inferred for
fixed source volume to that inferred for fixed projected appearance.
Hence both will be rederived here, beginning with the fixed-source
case (§3.3.1), followed by the fixed-projection case§3.3.2. Their
direct juxtaposition illustrates why differing opinions have arisen
in the literature about how minimum-energy parameters scale with
Doppler factor.

3.3.1 Minimum-energy parameters for fixed source volume

3.3.1.1 Blob case For a blob, the source volume is at rest in
the fluid frame, thereforeV ′′ is unambiguous, and the beamed
minimum-energy field is obtained from eq. (29) by insertingL′′ =

δ′′−4L, V ′′ = δ′′−1V , andν′′

1,2 = δ′′−1ν1,2. Hence,B7/2
min ∝

δ′′−5/2 and

Bmin(δ′′) = Bmin(δ′′ = 1) δ′′−5/7. (30)

This is identical to equation (A8) of Stawarz et al. (2003), which
implies that their expression applies to the fixed-volume case con-
sidered here, not the fixed-observable case relevant to the inter-
pretation of observations. It is different from equation (A7) of
Harris & Krawczynski (2002) because those authors explicitly con-
sidered the fixed-observable case for a spherical blob whose rest-
frame volumeV ′′ is inferred directly from observables, the case
that will be discussed in the following subsection.

3.3.1.2 Jet caseFrom the frequency integral of the definition of
monochromatic luminosity (eq. 7) and theδ′′-dependence of the
emissivityjν (eq. 11; also eqn. 2.5 of Lind & Blandford 1985), the
bolometric luminosity of a jet section scales with the Doppler factor
of the fluid asδ′′3. Hence,L′′/V for a jet scales in exactly the same
way asL′′/V ′′ for a blob. The Doppler scaling of the frequencies
occurring in thẽc expression are identical to the blob case. Hence,
the expression from eq. (30) is obtained for the jet case also. Again,
this is the same result obtained by Stawarz et al. (2003), again be-
cause they were implicitly considering the fixed-volume case.

3.3.2 Minimum-energy field for fixed observables

This section describes how to infer the rest-frame minimum-energy
field from astronomical observations as function of the unknown
Lorentz factor and line-of-sight angle (usually only considered in
their combination as Doppler factor) in the case relevant to obser-
vations, where it is not the source volume that is kept fixed, but
the source’s projected appearance. As in§§3.1 and 3.2, the compu-
tation of the source volume needs to be done taking into account
that changing the Lorentz factor and line-of-sight angle not only
changes the Doppler factor, but also thelength of the sight line
through the objectdue to the relativistic angle aberration (eq. 2).
The differences between the formulae presented below and those
in the literature arise because the effects of angle aberration are
stated here explicitly.

To express the minimum-energy field as function of an ob-
served flux density at some frequencyνobs, assuming a power-law
spectrum, one expresses the rest-frame flux density in terms of the
rest-frame luminosity

S′′

ν(νobs) =
L′′

4πd2
L

1 + α

ν′′1+α
2 − ν′′1+α

1

να
obs. (31)

Substituting into eq. (29), one obtains

B′′

min
7/2 ∝ S′′

ν(νobs) ν−α
obs

ν′′1/2+α
2 − ν′′1/2+α

1

V ′′
. (32)

As above (§3.1), the transformation properties for fixed observables
depend on the source geometry.

Before considering this expression for different source geome-
tries, it is important to note that theνobs term in this and the de-
rived expressions doesnot scale with the Doppler factor, since it
is explicitly the fixed observing frequency. The effect of observing
the rest-frame spectrum at a Doppler-shifted frequency and hence
at a different amplitude is already accounted for by the−α (K-
correction) term that appears in the exponent of the Doppler factor
multiplying the observed flux density. In other words, even when
Bmin is expressed in terms ofSν(νobs), which scales asδ′′3−α, the
spectral indexα does not appear in the exponent ofδ′′ in the final
expression for the minimum-energy field, or the minimum energy
content, because the minimum-energy field depends onbolometric
quantities and allK-correction terms drop out again. This is also
relevant for deriving the boosted version of the yet-lower limit to
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12 S. Jester

the energy content of a synchrotron source that Longair (1994, p.
296, eqn. 19.29) obtains by settingν1 = νobs in eq. (31) and ne-
glecting the other frequency integration limit. This substitution has
to be done in the Doppler-boosted expressions for the appropriate
geometry, as derived below. Hence, it would not be correct to set
ν′′ = νobs in eq. (32) and apply the boosting afterwards; in other
words, the beamed version of eq. (19.29) of Longair (1994)cannot
be obtained simply by inserting Doppler factors into it. Once more,
the correct boosting transformation needs to be applied not only to
the integrand, but also to theintegration boundaries, and care has
to be taken to do both transformations at the same time.

3.3.2.1 Spherical blobs Since relativistically moving spheres
are always observed with a spherical outline, the rest-frame vol-
ume of a spherical blob can be inferred directly from the observed
radiusR asV ′′ = 4/3πR3. Substituting this and the appropriate
Doppler boosting for flux density (eq. 21) and frequency (eq. 8)
into eq. (32) yields

B′′

min
7/2 ∝ Sν(νobs) ν−α

obs

ν
1/2+α
2 − ν

1/2+α
1

4/3πR3
δ′′−7/2. (33)

This implies that B′′

min ∝ δ′′−1, precisely eq. (A7) of
Harris & Krawczynski (2002), and reassuring since they explic-
itly considered only this special case of a spherical blob. However,
hardly any of the currently known jets has knots with morphology
that accurately can be described as spherical.

3.3.2.2 Slab or cylindrical blobs As discussed above, if a
slab-shaped or cylindrical blob with intrinsic length:width ratio of
greater than 2 is observed to have a projected length (image ex-
tent) Λproj and cross-sectional areaA, its rest-frame volume is
V ′′ = AΛproj/δ′′ sin θ. Performing the corresponding substitu-
tions into eq. (32), one obtains

B′′

min
7/2 ∝ Sν(νobs) ν−α

obs

ν
1/2+α
2 − ν

1/2+α
1

A Λproj
δ′′−5/2 sin θ. (34)

The scaling of rest-frame minimum-energy field with the un-
known Lorentz factor and line-of-sight angleθ of such a blob is
B′′

min ∝ δ′′−5/7(sin θ)2/7, i.e., it is not expressible purely as func-
tion of the Doppler factorδ′′ because the length of the sight line
through the blob scales withsin θ. The scaling differs from that of
Harris & Krawczynski (2002) because they considered only spher-
ical blobs, and from that of Stawarz et al. (2003) because they did
not consider the fixed-observable case.

3.3.2.3 Jet caseIn the jet case, the appropriate fluid-frame vol-
umeV ′′ is again the volume of fluid that contributes photons to
the supersnapshot, rather than theactual Lorentz-contracted vol-
ume inferred from the world map; hence, the appropriate volume
is given byV ′′ = V/δ′′. For a jet with cross-sectional areaA
and projected lengthΛproj, the observer-frame volume is again
V = AΛproj/ sin θ, and henceV ′′ = AΛproj/δ′′ sin θ – identical
to the slab/cylindrical blob case. Therefore, eq. (34) applies also to
continuous jets, analogous to the identical “de-beaming” equations
for slab blobs and jets in§§3.1 and 3.2.

3.3.2.4 An amusing special caseUsually bothθ andΓ are un-
known in jet observations. However, the fact that the jet emission
is detectable makes it more likely that the emission is beamed to-
wards the observer than that it is beamed away from the observer. A
frequent guesstimate that reduces the number of unknown beaming

parameters from 2 to 1 is thereforeδ = Γ, equivalent toµ = β and
sin θ = 1/Γ. Substituting this assumption into eq. (34) leads to

B′′

min ∝ 1/Γ = sin θ.

Thus, ifδ = Γ, the true fluid-frame minimum-energy field is given
by

B′′

min = B
(0)
min × 1/Γ

= B
(0)
min × sin θ,

whereB
(0)
min is the minimum-energy field inferred from the ob-

servables by neglecting beaming and projection effects and assign-
ing the source a volumeAΛproj. It also turns out that at fixedθ,
δ′′−5/7(sin θ)2/7 ≥ 1/Γ. Hence, the true minimum-energy field at
fixedθ is always larger than1/Γ × B

(0)
min.

4 DISCUSSION AND SUMMARY

In §2, I have illustrated the difference between theworld mapof
a relativistic jet, what is actually there, and theworld picture, or
its special case, thesupersnapshot, that corresponds to what is ob-
servable by distant astronomers. For the quantitative interpretation
of world pictures in the presence of unknown beaming parame-
ters (Lorentz factorΓ and angleθ between the fluid motion and
the line of sight), what matters is that theprojected appearanceof
the jet is kept fixed and not theintrinsic volume. This gives rise to
de-beaming formulae that are slightly different from those in the
existing literature.

4.1 Implications for interpretation of flux and surface
brightness of jet features

The most important conclusion for the quantitative analysis of jet
observations is that the scaling relations relating rest-frame quanti-
ties (volume emissivity, intrinsic source size) to observables (pro-
jected source size, surface brightness, total flux)cannotbe stated
as function of the line-of-sight angle and Lorentz factor in a gen-
eral way, but depend on the details of the source geometry. It is
possible to write down explicit scaling relations for certain sim-
ple geometries such as spheres and elongated, rotationally sym-
metric blobs of constant cross-section. For other shapes, such as
ellipsoidal blobs or blobs with non-symmetric cross-sections, the
projected appearance is affected by edge effects, and additionally
by observational effects such as the contrast between the faintest
parts of the source and the sky background, as well as the available
signal-to-noise level. Edge effects are properly taken into account
by the ray-tracing in§2.2, and such ray-tracing modeling of ob-
servables is probably the most accurate route to interpreting obser-
vations of relativistic objects. Indeed, it is part of the prediction
of observables from jet simulations such as those by Aloy et al.
(2003), e.g. The work of Swift & Hughes (2008), which explicitly
considers the relation between the jet appearance in a supersnas-
phot and the underlying physical quantities, taking into account the
retardation along the line of sight.

c© 0000 RAS, MNRAS000, 000–000
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4.2 Implications for interpretation of morphological
information in jet images

Most radio, optical and X-ray maps of relativistic jets (a list of
radio jets is given by Liu & Zhang 2002)2 show a series of well-
separated, distinct features usually referred to as “knots”, with dif-
fuse emission linking them. Given that relativistic beaming favours
the detection of objects with jets at small angles to the line of
sight, and the superluminal motions detected in the cores of many
such sources, it is plausible that the jet material itself is still rel-
ativistic even at large separations (and indeed, this is required in
models accounting for the X-ray emission from powerful radio
jets as beamed inverse-Compton scattering of cosmic microwave
background photons; see Tavecchio et al. 2000; Celotti et al. 2001
for the original development of the idea, as well as the recent re-
view by Harris & Krawczynski (2006)). However, what is not clear
is whether the knots themselves are stationary shock features, or
themselves moving relativistically.

Referring to Figs. 4 and 5, the prevalence of well-separated
knots in jet images seems to suggest that the knots are moving
at least with mildly relativistic Lorentz factors – otherwise, there
should besomejets observed at small angles (favoured by Doppler
boosting) where different knots overlap along the line of sight,
washing out any individual morphological features.

In this case, the knots are subject to retardation magnifica-
tion and hiding (illustrated in Figs. 1 and 3), and we are not seeing
all of the jet features which are actually present between core and
hot spot, but just a small fraction (whose magnitude is given by
Fig. 2). An observation of apparent superluminal motion of indi-
vidual knots would be a direct confirmation that they are moving
relativistically, as in the case of parsec-scale knots in VLBI obser-
vations. The kiloparsec-scale knots are resolved out in VLBI ob-
servations, so that very long-term monitoring programmes at sub-
arcsecond spatial resolution are required to make a potential super-
luminal motion observable.

If jet knots are indeed moving relativistically, the retardation
magnification and hiding need to be taken into account when in-
terpreting morphological observables such as the ratio between
knot separation and jet width, which is important for address-
ing the question of the origin of the jets’ morphological features,
e.g., whether they arise from instabilities (Hardee 2003) or as
manifestation of a stable magnetohydrodynamical configuration
(Königl & Choudhuri 1985).

4.3 Conclusion

It becomes clear once more that relativistic effects are counter to
our non-relativistic intuition, and that familiarity withworld maps,
Lorentz transformations and the resulting phenomena of length
contraction and time dilation is not sufficient for interpretingworld
pictures. When considering the beaming properties of quantities
expressed in terms of integrals, such as a surface brightness, flux or
the minimum-energy magnetic field estimate, one needs to consider
the transformation properties both of the integrand and the integra-
tion volume. Apparent differences between the beaming properties
of “blobs” and “jets” disappear when the same source volume is
considered. Finally, the de-beaming of astronomical observations
needs to be done not for a fixed source, but for the fixedprojection

2 See http://home.fnal.gov/˜jester/optjets/ and
http://hea-www.harvard.edu/XJET/ for lists of optical
and X-ray jets.

of the source. Doing so resolves some conflicts (again only appar-
ent ones) between different de-beaming formulae in the literature.
Given that astronomy provides only world pictures, the concepts
first laid out by Penrose (1959) and Terrell (1959) deserve more
attention in the interpretation of jet observations.

ACKNOWLEDGMENTS

This research has made extensive use of NASA’s Astrophysics Data
System Bibliographic Services. I am grateful to Herman Marshall
for valuable discussions and the impulse to begin this work, and ac-
knowledge fruitful interactions with members of the Fermilab Ex-
perimental Astrophysics Group, and the Astronomy group at the
University of Southampton. I am particularly grateful to Łukasz
Stawarz for detailed feedback in early stages of this work, to Jochen
Weller, Rob Fender and Dan Harris for continued discussions, to
Arieh Königl for helpful comments on the paper – in particular
for reminding me of the Lorentz invariance of opacity – and to
W.C. Herren for inspiration. I thank the referee, Henric, Krawczyn-
ski, for his constructive criticism which helped me improve the pre-
sentation of this material. The portion of this work carried out at
Fermilab was supported through NASA contract NASGO4-5120A
and through the U.S. Department of Energy under contract No.
DE-AC02-76CH03000. Last but not least, I acknowledge support
through an Otto Hahn Fellowship from the Max-Planck-Institut für
Astronomie that enabled much of this work to be carried out within
the Astronomy Group at the University of Southampton, whose
hospitality I enjoyed tremendously.

APPENDIX A: LORENTZ EXPANSION AND TIME
ACCELERATION? A QUESTION OF THE VIEWPOINT

The world-map analysis familiar from physics textbooks shows that
relativistically moving objects experience Lorentz contraction and
time dilation. The derivation begins with the Lorentz transforma-
tions between framesΣ andΣ′′ with alignedx andx′′ axes and
origins coinciding att = t′′ = 0:

t = γ(t′′ + βx′′) (A1)

x = γ(x′′ + βt′′). (A2)

To show that there is Lorentz contraction of objects at rest inΣ′′,
one considers two observers at rest inΣ which coincide with op-
posite ends of the moving object at some fixedt, e.g., t = 0.
Solving eq. (A1) fort′′ and substituting into eq. (A2) then yields
x2 − x1 = (x′′

2 − x′′

1 )/γ, i.e., length contraction. Time dilation is
obtained by considering a clock at rest inΣ′′ whose time is read by
two different observers inΣ, e.g., one at(x, t) = (0, 0), the second
at (x, t) = (x1, t1 = x1/β). The first observer readst′′ = 0 (by
convention); settingx′′ = 0 in eq. (A1), the second observer reads
t′′ = t/γ on the moving clock, i.e., infers that a shorter time inter-
val has elapsed in the moving frame than in the observers’ frame
and that time is therefore dilated.

However, we can ask our observers to do slightly different ex-
periments. Imagine that there are a large number of clocks inΣ′′,
and we are told that the clocks are all synchronized in that frame.
To investigate the behaviour of time, we ask a single observer to
compare the time read on successive clocks that are whizzing past
to her own observer-frame clock. In other words, instead of keeping
x′′ fixed, let us keepx fixed, and choose the observer atx = 0. The
first clock readst′′ = 0. If the clocks are separated inΣ′′ by some
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distancel′′, the second clock, being atx′′ = −l′′ will reach the
observer att′′ = l′′/β. At this time, the observer’s own clock reads
t = l′′/(βγ) = t′′/γ; thus, the observer’s clock has advanced less
than the moving ones, and time is accelerated instead of dilated.
The reconciliation with time dilation is, of course, that the second
moving clock did not readt′′ = 0 at t = 0, but alreadyt′′ = βl′′

— the clocks that are synchronized inΣ′′ arenot in Σ, simultaneity
is relative. Indeed, this setup allows the observers at rest inΣ to in-
fer thattheir clocks are slowed down relative to observers inΣ′′: it
compares the time interval elapsed on asingleclock in one frame to
the interval elapsed between twodifferentclocks in another frame.
The individual clock runs slow compared to two different clocks
whizzing past it, or that it whizzes past.

We can also derive an alternative length measurement. As-
sume that the observers know about special relativity, and that the
observers inΣ′′ have placed a clock at the front and rear end of the
object whose length the observers inΣ are trying to measure. These
observers decide to measure the length by taking into account the
relativity of simultaneity, and they do so by noting the position of
each clock in their own frame when it shows a fixed time in the
movingframe,t′′ = 0, say. If the rear clock is atx′′ = 0, it reads
t′′ = 0 at t = 0 and will be seen by the observer atx = 0. The
front clock is atx′′ = l′′, and thus from eq. (A2) it will readt′′ = 0
when it has reached the observer atx = γl′′. Hence, the observers
in Σ infer that the moving rod has expanded by a factorγ compared
to what it is in its own rest frame. Again, this is just the converse of
the observers inΣ′′ measuring the length of an object at rest inΣ
and finding that the moving object has contracted.

Thus, observers in either frame can both observe that moving
objects appear contracted to themand infer that something that is
at rest in their own frame will appear contracted to observers in the
other frame; similarly, observers can observe clocks in the other
frame run slowand infer that their own clocks will be observed to
run slow by observers in the other frame. The important point is that
the outcome of an experiment depends onwhich quantity is held
fixed in which frame, and the correct interpretation of apparently
contradictory results depends on being clear in the description of
the experiment.
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Aloy M.-Á., Mart́ı J.-M., Gómez J.-L., Agudo I., M̈uller E.,
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