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ABSTRACT

We show here that a purely kinetic approach to the excitation of waves by cosmic rays
in the vicinity of a shock front leads to predict the appearance of a non-alfvénic fastly
growing mode which has the same dispersion relation as that previously found by
Bell (2004) by treating the plasma in the MHD approximation. The kinetic approach
allows us to investigate the dependence of the dispersion relation of these waves on
the microphysics of the current which compensates the cosmic ray flow. We also
show that a resonant and a non-resonant mode may appear at the same time and one
of the two may become dominant on the other depending on the conditions in the
acceleration region. We discuss the role of the unstable modes for magnetic field
amplification and particle acceleration in supernova remnantdtatelit stages of

the remnant evolution.
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1 INTRODUCTION

The problem of magnetic field amplification at shocks is central to the investigation of cosmic ray
acceleration in supernova remnants. The level of scattering provided by the interstellar medium
turbulent magnetic field is ingiicient to account for cosmic rays with energy above a few GeV,

so that magnetic field amplification and large scattering rates are required if energies around the
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knee are to be reached. The chief mechanism which may bensbp®for such fields is the ex-
citation of streaming instabilities (SI) by the same p&esonhich are being accelerated (Skilling
(1975); Bell (1978); Lagage & Cesarsky (1983a,b)). ThHeat of magnetic field amplification on
the maximum energy reachable at supernova remnant (SNRiksh@s investigated by Lagage &
Cesarsky (1983a,b), who reached the conclusion that casysaould be accelerated up to ener-
gies of order~ 10* - 10° GeV at the beginning of the Sedov phase. This conclusion viamgly
based on the assumption of Bohnffdsion and a saturation level for the induced turbulent field
6B/B ~ 1. On the other hand, recent observations of the X-ray saiffaightness of the rims of
SNRs have shown thaB/B ~ 100- 1000 (see Volk et al. (2005) for a review of results), thgreb
raising questions on the mechanism of magnetic field amaliio and its saturation level. In this
context of excitement, due to the implications of thesealisdes for the origin of cosmic rays,
Bell (2004) discussed the excitation of modes in a plasnaedin the MHD approximation and
found that a new, purely growing, non-alfvénic mode appdar high accelerationfgciencies.
The author predicted saturation of this Sl at the I&RIB ~ Ma(;vs/C)Y? wheren is the cos-
mic ray pressure in units of the kinetic presspvg, vs is the shock speed arMa = Vs/Va is the
Alfvénic Mach number. For comparison, standard Sl for nest wave-particle interaction leads
to expecisB/B ~ M}\/znl/z. For dficient acceleration ~ 1, and typically, for shocks in the inter-
stellar mediumM, ~ 10*. Therefore Bell's mode leads &@/B ~ 300— 1000 while the standard
Sl givesoB/B ~ 30. It is also useful to notice that the saturation level mted by Bell (2004) is
basically independent of the value of the background fiéhtessB?/8r ~ (1/2)(Vs/C)Pcr, Where
Pcr is the cosmic ray pressure at the shock surface.

The resonant and non-resonant mode hatter@int properties also in other respects. A key
feature consists in the fiierent wavelengths that are excited. The resonant mode matimexi-
mum growth rate has wavenumbdesuch thatkr,_ o = 1, wherer o is the Larmor radius of the
particles that dominate the cosmic ray spectrum at the shpeiumber. When the non-resonant
mode exists, its maximum growth is foundlat o > 1. There may potentially be many impli-
cations of this dterence: the particle-wave interactions which are respém&or magnetic field
amplification also result in particle scatteringffdsion). The difusion properties for resonant and
non-resonant interactions are in generéiaent. The case of resonant interactions has been stud-
ied in the literature (e.g. Lagage & Cesarsky (1983a)), astléor the situatio®B/B < 1, but
the difusion codficient for non-resonant interactions (in either the lineanan-linear case) has
not been calculated. TheftBrence in wavelengths between the two modes, in additiorfferent

scattering properties, also suggests that the damping@ealir through dferent mechanisms.
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The calculation of Bell (2004) has however raised some amscgue to the following three
aspects: 1) the background plasma was treated in the MHDsippaition; 2) a specific choice
was made for the current established in the upstream plasmanpensate for the cosmic ray
(positive) current; 3) the calculation was carried out ieference frame at rest with the upstream
plasma, where stationarity is in general not realized ¢aigiin for small scale perturbations, the

approximation of stationarity may be sometimes justified).

In the present paper we derive the dispersion relation ofvithees in a purely kinetic approach
and investigate dierent scenarios for the microphysics that determines thmpeasating current.
We show that the fastly growing non resonant mode appears wasicle acceleration is very
efficient, but whether it dominates over the well known resonatgraction between particles
and alfvén modes depends on the parameters that chazadteei shock front, its Mach number

primarily.

Bell (2004) also investigated the developement of the msomant modes by using numerical
MHD simulations. His results have been recently confirmedibgkashvili et al. (2008) with a
similar approach. Niemiec et al. (2008) made a first attempivestigate the development of the
non-resonant modes by using PIC simulations. In this |@i&se, the authors find that the non-
resonant mode saturates at a much lower level than found by2®4). However, as briefly
discussed irg 5, these simulations use a set up that makes théiouwdt to compare directly with

Bell's results.

The paper is organized as follows: §n2 we derive the dispersion relation of the unstable
modes within a kinetic approach and adopting twfiedent scenarios for the compensation of
the cosmic ray current, namely compensation due to the moficold electrons alone§ (2.1),
and to the relative drift of protons and electrof2(2); in§ 3 we discuss the relative importance
of the resonant and non-resonant modes depending on theglyasrameters of the system and
at different spatial scales; we also derive analytic approximatfor the large§ 3.1) and small
(8§ 3.2) wavenumber limits; finally i§ 4 we study the dferent modes during the Sedov evolution
of a “typical” supernova remnant and forfidirent assumptions on the background magnetic field

strength; we conclude i§ 5.

Throughout the paper we will use the expressianselerated particleand cosmic raysas

referring to the same concept.
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2 THE KINETIC CALCULATION

In the reference frame of the upstream plasmaghagof cosmic rays moving with the shock
appears as an ensemble of particles streaming at supe¥ridfgpeed. This situation is expected
to lead to streaming instability, as was indeed demonstratseveral previous works (see Krall
& Trivelpiece (1973) for a technical discussion).

In the reference frame of the shock, cosmic rays are appairignstationary and roughly
isotropic. The upstream background plasma moves with aiglgs towards the shock and is
made of protons and electrons. The charge of cosmic raysmassto be all protons (positive
charges) is compensated by processes which depend on ttaphysics and need to be investi-
gated accurately.

The x-axis, perpendicular to the shock surface has beerenohosgo from upstream infin-
ity (X = —o0) to downstream infinity X = +o0). Therefore a cosine of the pitch angle= +1
corresponds to particles moving from upstream towardstibeks

The dispersion relation of waves in this composite plasnmabeawritten as (Krall & Trivel-
piece (1973)):

2 242 oo +1 2 2
cz_k_1+z4ﬂ qaf dpf g PV~ 1) [6_fa+(§/+ﬂ)16fa], o
— W 0 -1

w? w+kv(pu+Q, [ op \w p du

where the indexr runs over the particle species in the plasmas the wave frequency corre-
sponding to the wavenumbkrandQ, is the relativistic gyrofrequency of the particles of type
which in terms of the particle cyclotron frequen@y; and Lorentz factoy is Q, = Q; /y. For the
background plasma and for any population of cold electrowshas2, ~ Q.

The positive electric charge of the accelerated cosmic, @ysumed here to be all protons,
with total number densit\Ncr, must be compensated by a suitable number of electrons in the
upstream plasma. In the following subsections we discussdiffierent ways of compensating
the cosmic ray current and charge. In the first calculatiormsstme that there is a population of
cold electrons which is at rest in the shock frame and dmftether with the cosmic rays. These
electrons cancel exactly the positive charge of cosmic. rélgs approach is similar to that of
Zweibel (1979, 2003) and resembles more closely the assomspif the MHD approach of Bell
(2004). In the second calculation we assume that the cusfeaismic ray protons is compensated
by background electrons and protons flowing dfedtent speeds. This approach is similar to that
of Achterberg (1983).
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2.1 Modd A: cold electrons

Let n; andne be the number density of ions (protons) and electrons in #ukdround plasma
upstream of the shock. In this section we consider the casbitch a population of cold electrons
with densityn.q Streams together with cosmic rays and compensates thegech@herefore

Ne = Nj andngg = Neg. In terms of distribution functions the four components bardescribed

as follows:

W(P) = 5om0(p—MV)ou ~1) (2)
fu(pp) = ggzé(p—mvs)a(y—l) 3)
90 = gmolp) @
() = 2a(p) ©

In the latter equation, which describes the cosmic rggp) is a function normalized so that
fpzma*dp Pg(p) = 1. In the expressions above the background ions and elschare been as-
sumed to be cold (zero temperature). Introducing the thiedietibution of these particles does
not add, as a first approximation, any important informatmthe analysis of the stability of the
modes. One should check however that damping does not plagmeciable role, especially for
the modes with higlk (see the paper by Everett et al. (in preparation)).

The contribution of the background plasma of electrons aotbps to the right hand side of

Eq. 1 is easily calculated to be:

Are’n,  w + kv 4rene  w + kv

_ (6)

 w?m w+kis+Q WM w+Kvs+Qy

Similarly the cold electrons with densitycg contribute a term:

_4-7Te2 NCR
w Me(w + Q)

(7)

The calculation of cosmic ray contribution is slightly ma@mplex. In its most general form, it

can be written as

ﬂ'ezNCR Pmax 2dg +1 1 _/JZ
f apeP' g [ e ®)

wherepy andpmaxare the minimum and maximum momenta of cosmic ray protonsiinimum

XCR =
Po

momentum is an important ingredient when the spectrum dflacated particles is a power law
in momentum.

The integral in the variable is now
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where® denotes the principal part of the integral and we have ne&gdec with respect taQ;

(low frequency modes). Using Plemelj’s formula for the ftestm one obtains for the cosmic ray

response:
_ neZNCR Pmax dg . > 1+ p/ Pmin .
/\/CR - (,L)k ﬁo pd p [(p pmln(k) )In 1 T p/ pmin + 2pm|np
2e2NCR fpmax dg 5 2
d N - i k >
K Justmpnt) ptP" P

where we have introduced the minimum momentpgi(k) = m€;/k, which comes from the

condition that the second integral in Eg. 8 is non vanishimyg ehen|u| < 1, namely when

vp) > = oo ymup) > M = Pl (10)
y k

If pmin(K) < po the lower limitin the integral in Eq. 10 becompgbecause no particles are present
at pmin. The physical meaning qdi, is that of minimum momentum of the protons that can have
a resonant interaction with waves of given wavelength.

In the limit of low frequencies that we are interesteddny kvs < € < |Qg], the contri-
bution of the background plasma can be Taylor expanded andrtity in the dispersion relation
(displacement current) neglected. So the dispersionoalatads

VK2 = 2 + M(w Kve) Q! [1 = 1£(K) 7 il 2(K)], (11)

wherev, = By/ VArmn; is the Alfven speedy = w + kvs is the wave frequency in the reference

frame of the upstream plasma and we have introduced

+ pmln(k) fpmax 2 ’1i p/pmin ]

I_ k = - min k In —_— _2 min s 12

H® Pp | (7~ Pk 10| T2 77| 20 (12)
Pmax dg 5 5

1209 = ZPmin(K) dp (P ~ Prin(K)?). (13)
Max{ po, Prin(K)] P

One should notice that the phase velocity of the waves in g frame i, = w/k and we
want to concentrate on waves which have a velocity much smthkn the fluid velocitys (which
is supersonic), therefore < kvs. In this limit, and using the fact thaf = <17, one can write the

dispersion relation as
VK2 = &% F %kvsg* [1+15(K) Fil2(K)] . (14)

This dispersion equation is the same as that found by BeD4P0y treating the background
plasma in a MHD approximation. Here we have obtained Eq. 1dssyming that the cosmic ray

current and charge are compensated by a population of aattt@hs moving with the cosmic rays,
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a setup which is equivalent to that of having the cosmic rayecu of Bell (2004). At least within

the context of this specific choice of the compensating odrteeating the background plasma
within the MHD approximation as done by Bell (2004) does rwrgge the results. However the
guestion arises of whether the resulting dispersion matnay be dierent for a diferent and

equally reasonable choice of the compensating currentrdardo investigate this issue, in the
section below we study the case in which the cosmic ray cursetcompensated by assuming a
slow drift between thermal ions and electrons. This apgraasembles more closely the kinetic
approach first put forward by Achterberg (1983). It is alspamant to stress that this recipe is the

same recently used in the PIC simulations of Niemiec et 8082.

2.2 Modd B: compensation by electron-proton relative drift motion

The approach described in this section is the one origipaityorward by Achterberg (1983). We
show that the dispersion relation is identical to that foimthe previous section, provided that
the density of cosmic rays is low enough compared with theitieof the gas in the background
plasma.

Within this approach the electric charge of cosmic raysui@aesl to be all protons) is compen-

sated by the charges of electrons and protons in the baakgmasma
NCR + N = Ng, (15)

and the total current induced in the background plasma bprdsence of cosmic rays vanishes,

namely
0 = NiVs — NeVe. (16)

This condition can be realized by requiring that electrams$ grotons move with slightly étierent
velocities,vs andve respectively. The small drift between the two species |léadscurrent which
compensates the cosmic ray current.

For a given cosmic ray number densiNir the contribution of accelerated particles to the
dispersion relation does not change compared with the quewnodel of current compensation.
The main diferences with respect to the case presented in the previctisrsare that there are no
cold electrons, and that electrons and protons in the baakgr plasma have fierent velocities
and densities. The contribution of the background plasnilagaispersion relation is then:

Are’n,  w + kv 4re’n.  w + kv
W’M w+Kvs+ QWM w+Kve = QF

(17)
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Now, introducing the frequencies = w + kvs andwe = w + kv, and using Egs. 15 and 16, and
again taking the low frequency limit, we obtain

L nc i 2 n . nc . NcgrC
——— (T - | = | —FWwe—=—Fw .
w2 'eB Q) m  CeR CeB
Now we notice that

(18)

Ncr Ncr
~ +kve——
Ncr + N; n;

so that, after neglecting tern@((NCR/ni)z), the contribution of the background plasma to the

dispersion relation becomes:

2 * 2~
G
It is easy to recognize that the first term is the same as theeilsotion of the background plasma
in Model A, while the second term is equal to the contributtdthe cold electrons in Model A. It
follows that the two dispersion relations are identical aperms of ordeO((NCR/ni)z).

At this point it is worth pointing out that in the numerical®simulations of Niemiec et al.
(2008) the compensating current is realized by assumingftabeétween protons and electrons,
exactly as discussed in this section. However, in order taldbe to carry out the calculations, the
authors are forced to adopt unrealistically large valuethefratioNcg/n; (for the most realistic
cases they usBcr/n; = 0.3). In these cases, one should check carefully that figsets on the

dispersion relation of the non-resonant modes can be rtedlec

3 RESONANT AND NON RESONANT MODES

In this section we investigate the modes that result frondtspersion relation in Eq. 14. For the
sake of simplicity we carry out our calculations for a powaa Ispectrum of accelerated particles
with the canonical shapeg(p) « p, which is expected from fusive acceleration at strong

shocks. More specifically the suitably normalizgg) is

1(p )‘4 dgip) _ 4 ( p )‘5
- (P}, =-—(2] . 20
P P (po dp pgl\po (20)
With this expression fog(p) the integrald; andl, read:
. 1 (PP T 1 1+ Akry g A
Il (k) = _FL’O fl diAa [(/l - (er’O)Z) In 1= /ler’o + Zer’o] (21)

1 One should keep in mind that the dynamical reaction of thelacated particles on the shock leads, among other thingkgtformation of a

precursor upstream of the shock, and to non-power law spectr
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4) kr krio<1
1(K) = - (/4) \ L0 3 Lo (22)
(/4) (2kro) ™~ (kro)®)  Kkrio>1.
In terms of the latter, the imaginary and real parts of thgdesncy can be written as:
1
O2(K) = > [_ (kA + a1+ 11(K)) + \/ (k22 + a1+ |1(k)))2 + o212 ] (23)
. I
or(K) = —g—;’l, (24)

wherea = Nankst;‘. It is useful to expresa as a function of the acceleratioffieiency of the

shock. The total pressure in the form of accelerated pestisl

1 Pmax 1
Po= e [ dpBv(pIO(R) = gNerem n( Be%). (25)
Therefore, ify = P./(nimV2) is the accelerationficiency, we can write:
1V2 k k

TR, Ty

whereR = In(me;X) andr_o = poc/eB is the Larmor radius of the particles with momentipm

in the background magnetic fieBh. We have also introduced = 3:7%{% A resonant mode can
be obtained from Eq. 23 with both signs of the polarization.t@e other hand the non-resonant
mode only appears when the lower sign is chosen.

The parametes/va controls the growth rate of the non-resonant mode: wherg > 1 the
non-resonant mode is almost purely growing and its growtrery fast. Whenr/va < 1, the
non-resonant mode is subdominant and a resonant mode isexhtin fact the peak growth rate
in this case is identical to that of the non-resonant modetHaidependence on the wavenumber
k for kr_o < 1 is not identical to that of the resonant mode, as obtaingkd the upper sign in
Eq. 23. In the following we often refer to the mode arisinghathie lower sign of the polarization
as thenon-resonant modalthough one should keep in mind that its peak growth rataaes to
that of the standard resonant mode in the limft3 < 1.

In Fig. 1 we plot the solution of the dispersion relation inase for whicho-/v4 > 1. The
values of the parameters amg: = 10°cm s, By = 1uG, ny = 1 cnm3, 57 = 0.1, pmax = 10° myC.
The normalization of the frequency is chosen such as to alliogct comparison of the growth
rate with the advection time for a fluid element upstream efghock through the characteristic
distancecr,_o/vs. For the typical values of the parameters that we adopt heténethe following,
the time-scaler,_ o/VZ is easily seen to be the shortest involved in the problem.plbis in the
upper (lower) panel are obtained by chosing the lower (Uppign of the polarization in the
dispersion relation (Eq. 23 and Eq. 24).
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Figure 1. We plot the real and imaginary part of the frequency as a foncif wavenumber for the resonant and non-resonant modesMWmbers
are in units of 1r_o, while frequencies are in units Uﬁ/(crL,o). The top panel refers to the non-resonant branch, whiléother panel is for the
resonant branch. In each panel, the solid (dashed) curveseats the real (imaginary) part of the frequency. Theegabf the parameters are as
follows: vs = 10°%cm 573, Bg = 1uG, nj = 1 cnT3, i = 0.1,pmax = 10° myc.

First, let us comment on the consistency of our derivatictmefdisperion relation. It is easy to
check, from Fig. 1, that these are indeed low frequency maddese specifically, they satisfy both
assumptions underlying our calculatian< kvs andw < Q;. Moreover, the non-resonant mode
(lower sign of the polarization in the dispersion relatimg¢haracterized by an imaginary part that
is much larger than its oscillatory part for a very large mfjwavenumbers. In this same range
of k, for our choice of the parameters, its growth is much fasten for the resonant branch.

Further insight in the behaviour of thefiirent wave modes can be gained by investigating the

limits of the dispersion relation for the regimles o < 1 andkr,_ o> 1.

3.1 Largewavenumber limit: kr o> 1

Forkr_o > 1 one easily obtains that(k) ~ —(4/3)(kr_o)~2 andl,(k) =~ —(r/2)(kr_o) . In Eq. 23
there are three terms that determine the actual dependé&dig®n wavenumbek, namely

k o
KVa oc K2, a1+ 1) ~ o— ok, alzz——Tocko.
Mo 2rL,O
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In the rangekr, o > 1 the third term is always subdominant. Moreover we can itietwo critical
values of the wavenumbegrk; andk,, such that fok > k; > 1/r|_ o the first term dominates upon
the third, and fok > k; the first term also dominates upon the second term, whichesfiink.

It is easy to find that

poon n \Y2 o W20 Ve V2 Bo \Y/ m \12
kario= |22 ~ 170(—) | ( ) . 27
Lo 2va 0.1 (n(105mpc)) 1°cm/s/ \1uG/) \cm3 27)
Similarly
-1 3 -2

_T n Pmax Vs Bo ( N )
efio = v 18x 104(0.1)('”(105mpc)) (1090m/s) (l,uG) cm3)” (28)
Fork <« k; Eq. 23 gives

1 k 1
2= Zo—_Fl+ 1+ ——— 1. 2
“l ZO-rL,O {+ T (er,o)z} (29)

When the upper sign is chosen in the above equation we obtaink™Y/2, while when the lower
sign of the polarization is chosen one fingsec kY2, namely the growth rate of the waves increases
with k. This is the non resonant branch found by Bell (2004). Fattwdeaw, increases with up

tok ~ k; and in the range of wavenumbers betw&gandk; is larger than for the resonant waves.
The maximum growth rate is obtained for k;. In fact, fork > k; one finds:

. T o2 1

T 30
“UT 16 varE ) (kro)? (30)

which impliesw; o k™! for both the resonant and non-resonant modes.

The non resonant mode disappears wkgoecomes larger thag, which happens for

-3 2
o n 6 Pmax Vs Bo m \?
A =270 86x10 (In (105mpc))(1090m/s) (l,uG) (cm—3) ' (31)

For the reference values of the parameters, the non-resomaale grows faster than the resonant

mode only for unreasonably lowffeciencies of particle acceleration, as one may conclude by
comparing Eq. 31 withy ~ 0.1 — 0.2 required for the association of cosmic rays to supernova
remnants.

On the other hand, for shock velocity = 108.cm s and magnetic fiel®, = 3uG one easily
sees that the limit in Eq. 31 becomes< 0.08. This implies that the resonant and non resonant
modes compete during the history of a supernova remnartt, thvet resonant mode prevailing
during the stages in which the shock has slowed down apjigci&e will comment further on
this point below.

We summarize the results of this section by giving the foilmywuseful approximations to the

solution of the dispersion relation in the large wavenumioeit. For 1/r, o < k; < k < k, we
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have:
w{es &)Eomres ~ z 3 k—l/2 and & ~non—res (;)kesz i k1/2 (32)
4 r r|_,0
Fork, < kwe have:
w:es C7)?on—res n — k1! and ~res~ cU;{on—resz kVA (33)
4 VAr

3.2 Small wavenumber limit: kr o < 1

In the limit of perturbations with wavelength much largeautithe gyroradius of the lowest energy
particles in the cosmic ray spectrum, the results depenith agethe ratio betweew: ando. As
we already mentioned, for most regions of the parameterzesfa< o, to which case we limit
our analysis here, while we defer to next section a discassiovhat happens for slow shocks.

In the limit 4 < o the imaginary part of the frequency is defined by the expoessi

.o 1o K

On?
w| = Egro {+1 +1+ —(er 0) } (34)

If the upper (lower) sign for the polarization, corresparglio the resonant (non-resonant) mode,
is chosen in Eq. 23, than, & kY2 (&, o k32),

Fork <« 1/r_o we then find:

~ ~ T
w||'es wgomres 3r k1/2 and cJ?on—res ~ eres ~ § /3O'rL,O k3/2. (35)
V L,0

4 RESONANT AND NON-RESONANT MODESIN SNRS

We now study the relative importance of the resonant andrasonant wave modes during the
evolution of a SNR. We consider a remnant originating in a 3plasion with energyEsn. Once
the remnant has entered the Sedov phase, the shock velsaitfuaction of time can be written

as:

o Esw \pomo NVt NP
~4x1 ! ( ) :
vs x10%m s (1051erg) lems 103yr (36)

As discussed in the previous section, the existence of theesonant mode depends on the ratio

o /VZ, which can be written as a function of the age of the remnant as

2 o Esn |72/ m \¥5( By \ 7 Pmax NN
R R )(1051erg) () (mG) ('”(105mpc)) (103yr) o

A
This implies that during the evolution of a “typical” supeka remnant, Bell's instability,

which requiresr/va > 1, is likely to operate only at early times after the begignir the Sedov

phase. The non-resonant mode disappears when the remadenid @ yr old if it is expanding in
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Figure 2. We plot the growth rate of the non-resonant mode as a funofievavenumber. Wavenumbers are in units ff .k, while growth-rates
are in units of the advection tim%/crL,o. The diferent curves in each panel refer téfeient ages of the remnant: solid is for3];0, dashed is
for 5x 10%, dot-dashed is for 70 dot-dot-dashed is for § 10* and finally dotted is for 19 Two different values of the background magnetic field
strangth are assumed in the two panBs= 1 xG in the top panel, an8y = 10uG in the bottom one. The shock velocity is computed according
to the Sedov expansion of a remnant withy = 10°! erg. The remaining parameters are as follows: 1 cn3, 7 = 0.1, pmax = 10° mpC.

a 1uG magnetic field and 10 times faster (age about a fetwi)if the background magnetic field
is 10 times higher. At later times, the streaming cosmic valistill amplify the field but only via
the classical resonant mechanism. This is also clear frgn2Rivhere we plot the growth rate of
the non-resonant mode as a function of age for the above ometivalues of the magnetic field:
Bo = 1uG in the upper panel anBy = 10uG in the lower panel. From the plots in Fig. 2, where
again the time-scale for wave growth is normalized to theef®f the time-scales involved in the
system dynamicsr o/V3, one immediately sees that at least the resonant mode ofrézersng
instability still grows dficiently after 16 yr since the supernova explosion. The non-resonant
mode, on the other hand, soon becomes subdominant.

The non-resonant mode grows the fastedt at k;, so that from Eq. 32 we can derive the

maximum growth rate as:

~ (o o
I'max = ma)(a)|) = ’rok;/z = m (38)
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Figure 3. In the top panel we plot the maximum growth rate of the resbaad non-resonant branches as a function of the age of thezrsuya
remnant. The growth rafnax = max()) is in units of yr'! while along the x-coordinate time is expressed in yr. Thetimn for the diferent
curves is as follows: the dashed line and the symbols arehfonon-resonant mode in a 4B and G magnetic field respectively; the solid
and dot-dashed lines are for the growth of the resonant naggen forBy = 10uG andBp = 1uG respectively. In the bottom panel we plot the
wavenumber corresponding to the fastest growing wave mardiaé same situations considered above. Wavenumbers anitsrofr; o and the
notation for the dierent line-types is as follows: the dashed and dotted linedax the non-resonant mode in agd®and G magnetic field
respectively; the solid line and symbols are for the resbnade, again foBy = 10uG and By = 1uG respectively. The shock velocity changes
with time according to the Sedov evolution of a remnant viighy = 10°* erg. The remaining parameters are as followys= 1 cn3, 5 = 0.1,
Pmax = 10° mpC.

Itis clear that, remarkabl¥;.x does not depend on the background magnetic Bgl®n the other
hand, the wavenumber at which the growth is maximum doesndepeB, (see Eg. 28). These
trends are clearly seen from Fig. 3, where we plot the dep®®den time of the maximum growth
rate,I'max, and of the wavenumber for which this occurs, for both themaat and non-resonant
modes. The plot refers to the “typical” SNR parameters aereid above and the two mentioned
values of the background magnetic field strength. In both figure and Fig. 2 a 10 % particle
acceleration ficiency was assumed, and kept constant during the evolutitredgemnant. This
latter assumption is definitely not very realistic, as cadémonstrated by using non-linear theory
of particle acceleration.

In Fig. 3 the time at which the fastest growing mode switchesifnon-resonant to resonant is
identified by the intersection between the dashed line amddhd By, = 10uG) or the dot-dashed
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(Bo = 1uG) one depending on the magnetic field strength. The dominawntwode progressively
moves to larger wavelengths. The implications of this pacufend are expected to be profound
on the determination of theftlision codicient: we recall that the standard Bohnftdsion is the
limit obtained for resonant interactions of particles aral/es wherwB(k) = B, for any value of

k. For non-resonant modes, theéfdsion properties need to be recalculated from first priesipl
On one hand, since the most unstable modes kaw€l/r, o, most particles do not resonate with
these modes and the typical deflectioffsted by a single particle within a spatial scald/k is
very small. On the other hand the number of scattering eventsy large, therefore a substantial
reduction of the dfusion codficient can still be expected (see Reville et al. (2008) anakaishvili

& Ptuskin (2008)).

5 CONCLUSIONS

We have investigated the excitation of streaming instgbiduced by accelerated particles in the
vicinity of a non-relativistic shock wave, typical of supewa shells expanding in the interstellar
medium. The calculation is based on kinetic theory, hencelevaot require the MHD approxi-
mation to hold for the background plasma. We find that theadspn relation of the waves leads
to the appearance of two modes, a resonant and a non-resmarithe former is the well known
unstable mode, discussed by Zweibel (1979); Achterber§3jldased on a resonant interaction
between waves and particles. The latter is similar to thetudised by Bell (2004), who however
based his analysis on a set of assumptions that called fibvefuinvestigation: the calculation of
Bell (2004) is based on the assumption that the backgroueshm@ can be treated in the MHD
regime, and makes specific prescriptions on the returnminwkich compensates the cosmic ray
current upstream of the shock. Moreover, the whole calicuas carried out in the frame of the
upstream plasma, where in principle there is no stationaotisn of the problem.

Our kinetic calculations are carried out for two models & tompensating current: in the first
model, the return current is established through a pouati cold electrons, at rest in the shock
frame, which exactly compensate the positive charge of @mosag protons. In the second model,
the return current is due to a slight drift between ions amdtebns in the background plasma
upstream of the shock. We have demonstrated that the dispeetation of the waves is the same
in the two cases, to ordé€r (Ncgr/n;)>.

The resonant and the non-resonant mode are found at the saejevith growth rates which

in the general case arefiirent. The non-resonant mode is almost purely growing anerng
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apparent when particle acceleration fiagent. The parameter that regulates the appearance of
the non-resonant mode is/va, whereo = 3pv3/(cR). Wheno/va > 1, the waves excited in

a non-resonant way grow faster than the resonant modes anteathto a substantial magnetic
field amplification.

The strong dependence®fon the shock velocity implies that the non-resonant modke$/
to be the dominant channel of magnetic field amplification NRS in the free expansion phase
and at the early stages of the Sedov-Taylor phase of adiadgiansion. At later times, the non-
resonant modeollapseson the resonant mode, which keeps providing appreciabletgréor
longer times, at least if damping mechanisms are neglettexigrowth of the fastest non-resonant
mode is independent on the strength of the unperturbedlinitgnetic fieldB,.

The non-resonant mode, when present, grows the fastesvahumbelk, given by Eq. 28,
which in the cases of interest is much larger th@n 4, wherer o is the gyroradius of the par-
ticles with minimum momentum in the cosmic ray spectrum.sehemodes are therefore short
wavelength waves, which is the main reason why the assumpfistationarity in the upstream
frame, as required by Bell (2004), was acceptable, dedpgampossibility of reaching actual
stationarity in that frame.

The numerical results in this paper were specialized to #ise of a power law spectrupt®
of accelerated particles, typical of Fermi acceleratiostiaing shocks. However, one should keep
in mind that the levels offéciency required for the non-resonant mode to appear arethath
the dynamical reaction of the accelerated particles onlbekscannot be neglected (see Malkov
& O’'C Drury (2001) for a review). This backreaction leads &veral important #ects: on one
hand the spectra of accelerated particles become congavepacentrate the bulk of the energy
in the form of accelerated particles at the maximum momen@mthe other hand, thetiently
amplified magnetic field also exerts a strong dynamical r@acin the system, provided the mag-
netic pressure exceeds the gas pressure in the shock r&gapndli et al. (2008)). This second
effect results in an enhanced acceleratiffitiency (due to large B-fields) but weaker shock mod-
ification (spectra closer to power laws) due to the reducedpeessibility of the plasma in the
presence of the amplified magnetic field. All theieets are not taken into account in the calcu-
lations presented here. On the other hand, since the nonaesmode appears for large values of
k, the relevant quantities can be assumed to be spatiallyartria the precursor on scalesl/k,

So that at least in this respect our calculations are stiketed to hold, and to a better accuracy
for the non-resonant modek ¢ 1/r o) than for the resonant onek ¢ 1/r o). Moreover, as

stressed above, the dynamical reaction of the magneticl@atts to weaker modification of the
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shock, and therefore to spectra with less prominent cotycgslbser top). Also in this respect,
the calculations presented here should serve as a goodpdiescof all relevant physicalféects
related to the growth of the cosmic ray induced instabditie

However, the acceleration process is directlgeted by the physics of particles’filision in
the shock region, an this is still waiting to be studied iredldor Bell's modes. The fact that these
are non-resonant and arise at large valudswiplies that the standard theory of particle scattering
does not apply (see Zirakashvili & Ptuskin (2008) for a fits¢@pt to discussing thiglect).

Another issue that deserves further investigation is thaetermining the level of field am-
plification at which the instability saturates. This canbetworked out within a linear theory
calculation and only numerical simulations can addressifisiue. Recentfi@rts in this direction
have been made by Bell (2004) and Zirakashvili et al. (2088)itgh MHD simulations and by
Niemiec et al. (2008) by using PIC simulations. While thetfivgo papers find a saturation level
0B?/(4r) ~ (vs/C)P, in the third paper a much lower level of field amplificationfasind. The
authors conclude that the existence of large magnetic frafaliication through the excitation of
non-resonant modes is yet to be established.

Although we agree with this conclusion, we also think tha setup of the PIC simulation
by Niemiec et al. (2008) is hardly applicable to investighi excitation of the Bell instability at
shocks, or at least several aspects of it should be studiegl cacefully. First, in order to carry out
the calculations, Niemiec et al. (2008) are forced to assumealistically large values for the ratio
Ncr/N; (of order 0.3 for their most realistic runs). The return eatras assumed by Niemiec et al.
(2008) corresponds to our second model, which however leatlee same dispersion relation
as Bell (2004) only at orde® (Ncr/ni)?, which is not necessarily the case here. Moreover, the
spectrum of accelerated particles is assumed to be a delttidn at Lorentz factor 2, instead of a
power law (or more generally a broad) spectrum. It is not obsithat for non-resonant modes this
assumption is reasonable. But the most serious limitatiaohi® PIC simulation is in the fact that
the authors do not provide a continuous replenishment ofdseic ray current, which is instead
depleted because of the coupling with waves. In the autfiergthis seems to be a positive aspect
of their calculations, missed by other approaches, buttimadity the cosmic ray current is indeed
expected to be stationary upstream, and we think that thesipdGlation would show this too if
particles were allowed to be accelerated in the simulatenibstead of being only advected and
excite waves. Clearly if this were done, the spectrum of lacated particles would not keep its
delta-function shape, but should rather turn into a powerike spectrum. The latter issue adds

to the absence of a replenishment of the current, which s&enssto be the main shortcoming of
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these simulations. Overall, it appears that the setup addpt Niemiec et al. (2008) would apply
more easily to the propagation of cosmic rays rather thamttighe acceleration in the vicinity of
a shock front.

The issue of flicient magnetic field amplification, possibly induced by casmys, has be-
come a subject of very active debate after the recent evedehlarge magnetic fields in several
shell-type SNRs. The implications of such fields for paetiatceleration to the knee region, as
well for the explanation of the multifrequency observas@f SNRs, are being investigated. Prob-
ably the main source of uncertainty in addreesing thesessisuthe role of damping of the excited
waves. For resonant modes, ion-neutral damping and neaflictandau damping have been stud-
ied in some detail: their role depends on the temperatutesofipstream plasma and on the shock
velocity. For non-resonant modes, being at higbther damping channels could be important (Ev-
erett et al., in preparation). Whether SNRs can be the sairgalactic cosmic rays depends in a
complex way on the interplay between magnetic field amptifica damping, particle scattering

and acceleration, together with the evolution of the renhitaelf.

ACKNOWLEDGMENTS

The authors are very grateful to J. Everett and E. Zweibefonitical reading of the manuscript
and for ongoing collaboration. This work was partially sagpd by PRIN-MIUR 2006, by ASI
through contract ASI-INAF/D8806/0 and (for PB) by the US DOE and by NASA grant NAG5-
10842. Fermilab is operated by Fermi Research Alliance, uin@er Contract No. DE-AC02-
07CH11359 with the United States DOE.

REFERENCES

Achterberg A., 1983, A&A, 119, 274

Bell A. R., 1978, MNRAS, 182, 147

Bell A. R., 2004, MNRAS, 353, 550

Caprioli D., Blasi P., Amato E., Vietri M., 2008, ArXiv e-pis, 804

Krall N. A., Trivelpiece A. W., 1973, Principles of PlasmayRics. McGraw-Hill, pp 249-257
Lagage P. O., Cesarsky C. J., 1983a, A&A, 118, 223

Lagage P. O., Cesarsky C. J., 1983b, A&A, 125, 249

Malkov M. A., O’'C Drury L., 2001, Reports of Progress in Plossi64, 429

Niemiec J., Pohl M., Stroman T., 2008, ArXiv e-prints, 802



A kinetic approach to growth rates of streaming instabiditysupernova shocks 19

Reville B., O'Sullivan S., Dy P., Kirk J. G., 2008, MNRAS, 386, 509

Skilling J., 1975, MNRAS, 173, 255

Volk H. J., Berezhko E. G., Ksenofontov L. T., 2005, A&A, 4329

Zirakashvili V. N., Ptuskin V. S., 2008, ArXiv e-prints, 801

Zirakashvili V. N., Ptuskin V. S., Voelk H. J., 2008, ArXivgrints, 801

Zweibel E. G., 1979, in Arons J., McKee C., Max C., eds, Perticceleration Mechanisms
in Astrophysics Vol. 56 of American Institute of Physics @enence Series, Energetic particle
trapping by Alfven wave instabilities. pp 319-328

Zweibel E. G., 2003, ApJ, 587, 625





