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Abstract: In most global fits of the constrained minimal supersymmetric model

(CMSSM) to indirect data, the a priori likelihoods of any two points in tanβ are

treated as equal, and the more fundamental µ and B Higgs potential parameters are

fixed by potential minimization conditions. We find that, if instead a flat (“natural”)

prior measure on µ and B is placed, a strong preference exists for the focus point

region from fits to particle physics and cosmological data. In particular, we find

that the lightest neutralino is strongly favored to be a mixed bino-higgsino (∼ 10%

higgsino). Such mixed neutralinos have large elastic scattering cross sections with

nuclei, leading to extremely promising prospects for both underground direct detec-

tion experiments and neutrino telescopes. In particular, the majority of the posterior

probability distribution falls within parameter space within an order of magnitude

of current direct detection constraints. Furthermore, neutralino annihilations in the

sun are predicted to generate thousands of neutrino induced muon events per years

at IceCube. Thus, assuming the framework of the CMSSM and using the natural

prior measure, modulo caveats regarding astrophysical uncertainties, we are likely

to be living in a world with good prospects for the direct and indirect detection of

neutralino dark matter.
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1. Introduction

For a variety of reasons, supersymmetry is considered to be among the most attractive

extensions of the Standard Model. In particular, weak-scale supersymmetry provides

an elegant solution to the hierarchy problem [1], and enables grand unification by

causing the gauge couplings of the Standard Model to evolve to a common scale [2].

From the standpoint of providing a dark matter candidate, the lightest neutralino

is naturally stable by virtue of R-parity conservation [3], and in many models is

thermally produced in the early universe in a quantity similar to the measured density

of cold dark matter [4].

In addition to collider searches for superpartners, a wide range of astrophysical

experiments are currently operating and being developed in the hopes of detecting

neutralino dark matter [5]. These techniques can be classified as direct and indirect

detection. While the former efforts are designed to observe the elastic scattering of

neutralinos with target nuclei, the latter techniques attempt to detect the annihila-

tion products of neutralinos, including gamma-rays [6], neutrinos [7], positrons [8],

antiprotons [9], antideuterons [10], and synchrotron radiation [11]. In addition to

astrophysical inputs, the prospects for direct and indirect dark matter detection de-

pend on the mass and couplings of the lightest neutralino, and in turn on the many

parameters which define the masses and couplings of the superpartners.
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Weak-scale supersymmetry could take a great variety of forms, depending on the

details of how supersymmetry is broken. Empirically, our insights into this question

are limited to the measurements of observables indirectly related to the supersym-

metric spectrum, such as the anomalous magnetic moment of the muon, the b → sγ

branching fraction, the Bs → µ+µ− branching fraction, the mass of the W boson,

the effective leptonic mixing angle, Higgs boson and sparticle search constraints,

and the cosmological dark matter abundance. Such observables have been used in

the past to constrain the properties of the CMSSM spectrum (see, for example,

Refs. [12, 13, 14, 15, 16]). Ultimately, this information can be used to determine the

posterior probability distribution over the parameter space of supersymmetry. In

Refs. [17, 18, 19], it was used to examine the prospects for dark matter detection.

In this paper, we consider another input that can play a significant role in de-

termining the posterior distribution over supersymmetric parameters. In particular,

we consider the measure which is associated with each point in parameter space and

define a prior measure which is flat in terms of fundamental CMSSM parameters.

In our analysis, we closely follow Ref. [16], but focus on the phenomenology of neu-

tralino dark matter in the regions of supersymmetric parameter space favored by

indirect constraints and naturalness considerations. When a natural prior measure

(flat in more fundamental CMSSM parameters, rather than in tan β) is included

in the analysis of the parameter space of the constrained minimal supersymmetric

standard model (CMSSM), we find that the focus point region is highly preferred.

In this region, the lightest neutralino χ0
1 is a mixed bino-higgsino (∼ 10% higgsino

fraction) and, therefore, has relatively significant couplings to the Standard Model.

The prospects for the direct and indirect detection of neutralino dark matter in

the favored regions are highly promising. In particular, about 61% of the posterior

probability distribution predicts a neutralino-nucleon elastic scattering cross section

of σχ0N ≈ 10−8 − 10−7 pb, which is within one order of magnitude of the current

direct detection constraints. The remaining 35% of the posterior probability distri-

bution corresponds to parameter space in which the lightest neutralino has somewhat

smaller couplings (and direct detection rates) but still annihilates efficiently in the

early universe via the light Higgs resonance (2mχ0 ≈ mh). The projected rates at

neutrino telescopes are also extremely promising, with most of the posterior proba-

bility distribution being made up of models which predict thousands of events per

year at a kilometer-scale neutrino telescope such as IceCube. Current constraints

from Super-Kamiokande and Amanda/IceCube already exclude a sizable fraction of

the otherwise favored probability distribution. We also discuss the prospects for

indirect detection using gamma-rays and charged cosmic ray particles.

2. The Measure of CMSSM Parameter Space

The CMSSM parameter space consists of the following supersymmetry (SUSY) break-
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ing parameters: the universal scalar mass m0, the universal gaugino mass m1/2, and

the universal tri-linear scalar coupling A0. These parameters constrain the SUSY

breaking terms in the CMSSM potential at a high energy scale, which is usually

taken to be MGUT , the scale at which the electroweak gauge couplings unify. In ad-

dition, tanβ is often used to characterize the ratio of the two Higgs doublet vacuum

expectation values and is taken to be an input parameter. When performing global

fits to the CMSSM, it is important to take into account any smearing due to varia-

tions in important Standard Model input parameters, which we denote collectively as

s. One defines the likelihood, p(D, Memp
Z |m0, m1/2, A0, tanβ, s, MZ), by calculating

the probability density of the parameter point reproducing all current data, D. We

have singled out the empirically measured Z0 boson pole mass, Memp
Z , and the one

predicted in the CMSSM, MZ , since they have a special rôle in what follows.

Here in contrast, in order to make probabilistic inferences, we begin by defining

a measure in the parameter space of the CMSSM by following Ref. [16]:

p(D) =

∫

dµ dB dA0 dm0 dm1/2 ds
[

p(m0, m1/2, A0, µ, B, s)

p(D, Memp
Z |m0, m1/2, A0, µ, B, s)

]

, (2.1)

where p(m0, m1/2, A0, B, µ, s) is the joint prior probability distribution for CMSSM

and Standard Model parameters. In fact, MZ and tan β are related to the more

fundamental parameters by the MSSM Higgs potential minimization conditions [20]:

µ2 =
m̄2

H1
− m̄2

H2
tan2 β

tan2 β − 1
− M2

Z

2
(2.2)

µB =
sin 2β

2
(m̄2

H1
+ m̄2

H2
+ 2µ2). (2.3)

Eq. 2.2 is applied at a renormalization scale equal to the geometric mean of the two

stop masses, Q ∼ √
mt̃1mt̃2 , which cancels some larger logarithms in higher order

corrections and results in higher accuracy. m̄2
H1

and m̄2
H1

are obtained from the

universality boundary condition on scalar masses at MGUT . They are run to Q and

corrected by some tadpole loop corrections [21]. Since Memp
Z and the other data, D,

are independent,

p(D, Memp
Z |m0, m1/2, A0, tanβ, s) = p(D|m0, m1/2, A0, tanβ, s) ×

p(Memp
Z |m0, m1/2, A0, tanβ, s). (2.4)

Direct current data imply that the Z0 boson mass is extremely well constrained,

Memp
Z = 91.1876 ± 0.0021 [22] , and so we make the approximation:

p(Memp
Z |m0, m1/2, A0, tanβ, s) ≈ δ(MZ − Memp

Z ). (2.5)

In the present paper, p(m0, m1/2, A0, µ, B, s) is defined to be a constant, resulting

in so-called “flat” priors in the named parameters. Probabilistic inferences may be
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made based upon the posterior probability distribution, defined to be the product

of likelihood and prior, integrated over all parameters except for the ones we are

interested in, using the previously defined measure. In most previous Bayesian global

fits to the CMSSM [14, 17, 18, 19, 23, 24], (often flat) prior probability distributions

were defined in terms of the measure

dM ≡ d tanβ dMZ dm0 dm1/2 dA0 ds. (2.6)

We refer to dM as the “flat tanβ” measure if it is used in conjunction with a prior

probability distribution that is flat in each of the parameters named on the right-

hand side of Eq. 2.6. One must be aware that different measures for the parameters

may be chosen, and will affect the results if the power of the data is weak. For ex-

ample, in Ref. [23], dM priors that were flat in ln m0 and ln m1/2 were compared to

those that are flat in m0 and m1/2. In Ref. [24], a naturalness prior was introduced in

terms of dM that disfavors regions of parameter space for which large cancellations

are necessary in the Higgs potential [25]. In Ref. [16], p(m0, m1/2, A0, µ, B, s) from

Eq. 2.1 was chosen to strongly disfavor hierarchies between the different parameters,

encoding the prejudice that they should be of the same order. In this study, we drop

the “of the same order” prejudice, which was deemed by Ref. [18] to be going a step

too far. By comparing the results found in studies using different prior measures,

some non-negligible dependence upon the prior measure chosen can be found, indicat-

ing that determinations of the favored regions of the CMSSM parameter space from

current data are somewhat uncertain. If more data compatible with the CMSSM is

obtained in the future, it is expected that this unwanted dependence on the choice

of the prior measure will be reduced.

Following Ref. [16]1, substituting Eqs. 2.5 and 2.4 into Eq. 2.1, and calculating

the Jacobian of dµ dB → d tanβ dMZ from Eqs. 2.2 and 2.3, we arrive at a map

between dM and our desired measure:

p(D) =

∫

d tanβ dA0 dm0 dm1/2 ds
[

p(m0, m1/2, A0, µ, B, s)

p(D|m0, m1/2, A0, µ, B, s)MZ

∣

∣

∣

∣

B

µ tanβ

tan2 β − 1

tan2 β + 1

∣

∣

∣

∣

]

MZ=Memp
Z

, (2.7)

where µ and B are obtained from Eqs. 2.2 and 2.3. For now, until more data are

obtained, we are stuck with dependence upon the priors and so attempts to make

good guesses for reasonable prior distributions are important. The prior measure

defined in Eq. 2.7 is clearly superior to dM because it is phrased in terms of param-

eters that are more fundamental to the model: namely, µ and B rather than tan β

and MZ . We shall compare and contrast the posterior samples obtained from these

1Note that in Ref. [16], the prior factor in Eq. 2.7 was called the “REWSB” prior. Here, we

refer to it as a “natural prior”.
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different priors. Note that one can still argue whether the prior measure should be

flat in µ and B, or whether some other measure (such as one flat in log B and log µ

for instance, see the discussion in Ref. [16]) is more appropriate. If a flat prior in

log B, log µ is taken, one can multiply the integrand of Eq. 2.7 by a further factor of

1/(Bµ). Whichever choice is taken, we believe that the connection with the funda-

mental parameters of the MSSM is clearer if one starts from a measure dµ dB, rather

than d tanβdMZ . We refer to the prior measure defined in Eq. 2.7 with constant

p(m0, m1/2, A0, µ, B, s), as the natural prior.

3. Electroweak Symmetry Breaking and CMSSM Parameter

Space

Our calculation of the likelihood closely follows the calculation found in Ref. [16],

with additional b−physics observables and updated empirical values. The four im-

portant Standard Model (SM) inputs referred to in the previous section collectively

as s are: the inverse fine structure constant evaluated in the MS scheme at MZ ,

1/αMS(MZ) = 127.918 ± 0.018 [22], the equivalent version of the strong coupling

constant, αMS
s (MZ) = 0.1176 ± 0.002 [22], the bottom quark mass evaluated at

its own mass, mb(mb)
MS = 4.20 ± 0.07 GeV [22], and the pole top quark mass,

mt = 172.6± 1.8 GeV [26]. The muon decay constant is very accurately determined,

and its central value is used as a fixed input, Gµ = 1.16637 × 10−5 GeV−2, and is

used to predict the W boson pole mass, MW .

Observable Central value Combined Uncertainty References

RBR(Bu→τν) 1.259 0.378 [27]

∆o− 0.0375 0.0289 [28]

R∆ms
0.85 0.12 [27, 29]

δaµ × 1010 29.5 8.8 [30]

MW 80.398 GeV 27 MeV [31]

sin2 θl
w 0.23149 0.000173 [32, 33]

BR(b → sγ) × 104 3.55 0.72 [34]

ΩDMh2 0.1143 0.01 [4]

Table 1: Indirect constraints used. For each quantity, an estimate of the theoretical error

in our CMSSM prediction has been added to the empirical error in quadrature.

In table 1, we show the updated values of the observables used in our likelihood

calculation, along with the relevant references. Here, RBR(Bu→τν) is the ratio of the

experimental and SM predictions of the branching ratio of Bu mesons decaying into

a tau and a tau neutrino. The SM prediction of this quantity is rather uncertain

because of two incompatible empirically derived values of |Vub|: (3.68± 0.14)× 10−3

versus the value coming from inclusive semi-leptonic decays, (4.49 ± 0.33) × 10−3.
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We simply combine these two measurements assuming independent Gaussian errors

to give our SM prediction of the branching ratio BRSM(Bu → τν) = (112 ± 25) ×
10−6. R∆ms

is the ratio of the experimental and the SM neutral Bs meson mixing

amplitudes. ∆0− is the isospin asymmetry in B → K∗γ decays.

We have used SOFTSUSY2.0.17 [21] to calculate the sparticle and Higgs masses

and couplings. Any point in the CMSSM parameter space contravening 95% con-

fidence level sparticle direct search limits is given zero likelihood as described in

Ref. [23]. The SM inference of the LEP2 Higgs search may be used to constrain

the lightest CP-even Higgs boson h0 of the CMSSM, since other constraints force

the model to be in the decoupling SM-like régime. Thus, likelihood penalties from

LEP2 are combined with a 3 GeV Gaussian smearing to model the uncertainty in

the SOFTSUSY2.0.17 theoretical prediction. The SUSY Les Houches Accord [35] is

used to transfer the spectral information to micrOMEGAs2.1 [36], which calculates

the relic density of neutralino dark matter and its elastic scattering and annihila-

tion cross sections, and SuperIso2.0 [38], which calculates the branching ratio of b

quarks into s quarks and a photon using one-loop MSSM corrections and NNLO SM

QCD corrections. SuperIso2.0 is also used to predict ∆o−. MW and sin2 θl
w are pre-

dicted with the full two-loop MSSM effects included [39]. R∆ms
and RBR(Bu→τν) are

computed using the approximate one-loop expressions in Refs. [40, 41] respectively.

We performed a Markov Chain Monte Carlo bank sampling scans [42] over four

SM inputs and the four continuous CMSSM parameters, choosing µ > 0. There is

a statistical preference coming from the (g − 2)µ measurement [23]. Several chains

were run using different random numbers for 200,000 steps each. For each chain,

5000 bank points were obtained at random from previous 10×50,000 step scouting

Metropolis runs. In particular, it was important to include points from the h-pole

region, the stau co-annihilation region and the focus point region in the bank (all

described below) as these good-fit regions were (in some cases) not simply connected,

a situation ideally suited to bank sampling. Enough chains were generated in order

that they satisfy the Gelman and Rubin convergence criterion of
√

R̂ < 1.05 [43].
√

R̂ provides an estimated upper bound on the decrease in standard deviation that

could be obtained in any of the eight input parameters by running the MCMC chains

for more steps. 9 chains were sufficient for natural priors, whereas 20 were sufficient

for the flat prior case. Our scan was performed over the parameter ranges: 60 GeV <

m1/2 < 2 TeV, 60 GeV < m0 < 4 TeV, -4 TeV < A0 < 4 TeV, 2 < tan β < 62. Bank

sampling allows us to efficiently sample from distributions which have well separated

peaks, which is the case for the natural posterior probability distribution.

In Fig. 1, we show the posterior probability distribution marginalized to three

dimensions, m0, m1/2 and tan β, resulting from the fit. The darker inner surface

contains 68% of the probability distribution and the outer lighter surface contains

95%. In Fig. 2, we show the same distribution, marginalized to two dimensions (m0

– 6 –



Figure 1: Iso-posterior probability density surfaces of the CMSSM parameters, projected

in three dimensions. The posterior has been marginalized over the unseen parameters,

taking into account the empirical inputs described in the text and using a natural prior

(left) or the flat tan β prior (right) as described in the text. The inner (outer) surfaces

contain 68%(95%) of the posterior probability density, respectively. The natural prior

enhances the focus point region (bottom) for the reasons discussed in the text.
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Figure 2: Posterior probability distributions in the m0 −m1/2 plane, taking into account

the empirical inputs described in the text and using a natural prior (left) and a flat tan β

prior (right), as described in the text. If naturalness considerations are taken into account,

small m1/2 and large m0 are favored. In each frame, contours enclosing the 68% and 95%

confidence regions are shown.

and m1/2).

The shape of the posterior is dominated by the relic density constraint: the

CMSSM tends to give much too high values for Ωχh2 in generic parts of parameter

space unless there exists a specific mechanism through which efficient annihilation
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can occur. On the left-hand side of Figs. 1 and 2 (natural priors), we see that this

results in a large posterior for the focus point region of parameter space, where there

is a significant higgsino fraction in the composition of the lightest neutralino, causing

it to efficiently annihilate into fermion and/or gauge boson pairs. There also exists

a favored region in which 2mχ0
1
≈ mh0 at the lowest values of m1/2, disconnected

from the other region. In this case, annihilation occurs through the lightest CP-even

Higgs resonance into b and τ pairs.

On the right-hand side of Figs. 1 and 2, we show for comparison the results

found using the flat tan β prior. For low values of tan β, we have a vertical funnel

on the right hand side of Fig. 1, corresponding to the stau co-annihilation region,

where staus efficiently annihilate with the neutralino lightest SUSY particle (LSP)

because of quasi mass degeneracy. At high tan β, but moderate values of m0 and

m1/2, 2mχ0
1
∼ mA0 , leading to efficient dark matter annihilation through s−channel

pseudo-scalar Higgs boson exchange, into b and τ pairs. At low m1/2, we again have

the h0−pole annihilation region but, for flat tanβ priors, small values of tanβ are

disfavored as they lead to values of mh0 which are below the LEP2 limit. The LEP2

Higgs mass constraint also means that the h0 region is outside the 68% contour. At

high m0, the focus point is also in evidence for flat tan β priors.

Some features of the posterior distribution become much clearer when marginal-

ized to one CMSSM parameter dimension. Such marginalizations are shown in Fig. 3,

one for each of the four continuous CMSSM parameters. Three key differences are

immediately noticed when comparing the results found using the natural and flat pri-

ors. Firstly, in considerable contrast to the flat tanβ case, the natural prior strongly

favors heavy sfermion masses (large m0). Secondly, the natural prior prefers low to

moderate values of tanβ, again in contrast to the flat tanβ case. The posterior pdfs

of m0 and tan β therefore display themselves to be strongly prior dependent, whereas

m1/2 shows a smaller difference between the fits using the two priors, and A0 shows

very little dependence. Thus, the choice of theoretical prejudice alters the results of

the fit for tanβ and m0. The natural prior prefers somewhat smaller values of m1/2

relative to those found using the flat prior. From the m1/2 figure, we see the strong

bi-modality of the posterior, where the spike at low values of m1/2 corresponds to

the h0−pole region.

Although one might expect values of m0 much larger than Memp
Z to require an

unacceptable degree of fine tuning, this does not have to be the case. In particular,

although large values of m0 lead to large values of m̄2
H1,2

unless counter-balanced

by an almost equally large value of µ2 in order to obtain the empirical value of

M2
Z

emp
= (91 GeV)2, this fine tuning can be avoided in portions of supersymmetric

parameter space known as the focus point region (also known as the ‘hyperbolic

branch’). In this region, the RG trajectories of the Higgs mass parameters meet at

a point near the weak scale, at which their (small) values are independent of their

input values at the UV boundary. This leads to a Higgs potential which is largely

– 8 –



Figure 3: Posterior probability distributions of the CMSSM parameters, marginalized

over the unseen parameters, taking into account the empirical inputs described in the text

and using a flat tan β prior (dashed) or a natural prior (solid) as described in the text. For

the natural measure, small to moderate values of m1/2 and tan β are preferred, while m0

is strongly favored to be large. In each frame, each distribution is plotted in 100 bins of

equal width.

insensitive to the scalar masses. As a result, models with multi-TeV squarks, sleptons

and heavy Higgs scalars can exist with only a modest degree of fine tuning [44].

Eq. 2.7 indicates that the natural prior favors lower tanβ (thus suppressing the

A0 pole region) and low values of µ, which occur in the focus point region. We can see

evidence of the latter by examining Fig. 4, where the logarithm of the marginal prior

probability density is plotted as a function of m0 and tan β for a scan where all data

was ignored. µ is particularly low in the focus point region, and so the prior factor

1/µ is the dominant factor in enhancing the focus point at high m0. We also see the

preference for lower values of tanβ in the figure evident in Eq. 2.7. Ref. [18] assumed

significantly smaller theoretical errors on the prediction for the branching ratio of
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b → sγ than ours. There, it was found that the current best-predicted value of

the branching ratio from the Standard Model (found by including some higher order

contributions in the calculation), additional preference for the focus point region was

found compared to the case where the higher order contributions were neglected. If

we were to reduce our assumed theoretical errors on the prediction of this quantity,

we would obtain a similar further enhancement of the focus point region.

A very distinctive dark mat-
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Figure 4: Marginalised natural prior as a function

of m0 and tan β.

ter phenomenology emerges in the

majority of the CMSSM parame-

ter space favored by the natural

prior. In particular, most of this

space contains a rather light neu-

tralino, with a mixed gaugino-higgsino

composition as predicted by com-

parably low values of µ and M1/2.

Such mixed neutralinos, which ap-

pear in the focus point region, have

sizable couplings to SM gauge bosons

and fermions which enable them

to annihilate efficiently and avoid

being overproduced in the early universe. There also exists a sizable probability (ap-

proximately 35%), however, for the parameter space in which the lightest neutralino

falls in the h0-pole region, without a large degree of higgsino composition. This

region can be seen in the figures, and appears at m1/2 ∼ 100 GeV or mχ0 ≈ 60 GeV.

Writing the lightest neutralino as a mixture of gauginos (bino and wino) and

higgsinos:

χ0 = N11B̃ + N12W̃
3 + N13H̃1 + N14H̃2, (3.1)

we define the gaugino and higgsino fractions as |N11|2 + |N12|2 and |N13|2 + |N14|2,
respectively. Within the CMSSM, the assumption that the gaugino masses unify at

a common scale ensures that |N12|2 is never much larger than a few percent. The

relative bino and higgsino fractions of the lightest neutralino are, therefore, largely

dictated by the ratio of M1 (determined by m1/2) and µ. In Fig. 5, we show the

posterior probability distributions for the mass and higgsino fraction of the lightest

neutralino. Interestingly, the natural priors lead to a strong preference for a highly

mixed higgsino-bino composition for the lightest neutralino (|N13|2 + |N14|2 ∼ 0.1).

This is a direct consequence of being in the focus point region of supersymmetric

parameter space. In particular, as m0 is increased, the value of |µ|, as determined

by the electroweak symmetry breaking conditions, is driven to smaller values, thus

increasing the higgsino content of the lightest neutralino. In the following sections we

will explore the phenomenology and detection prospects for neutralino dark matter
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Figure 5: Posterior probability distributions for the mass of the lightest neutralino and its

higgsino fraction, using a natural prior (solid) or a flat tan β prior (dashed), as described

in the text. If naturalness considerations are taken into account, a light neutralino with a

mixed higgsino-gaugino composition is favored. In each frame, each distribution is plotted

in 100 bins of equal width.

with these properties.

4. Direct Detection

Searches for dark matter which attempt to detect such particles through their elastic

scattering with nuclei are known as direct detection. Experiments currently in-

volved in this effort include CDMS [45], XENON [46], ZEPLIN [47], Edelweiss [48],

CRESST [49], WARP [50], KIMS [51], and COUPP [52].

The ability of experiments such as these to detect a weakly interacting mas-

sive particle (WIMP) depend on its mass and on its elastic scattering cross section

with the nuclei making up the detector. The elastic scattering cross section of a

neutralino or other WIMP can be broken into spin-independent and spin-dependent

contributions. Spin-independent interactions represent coherent scattering with the

entire nucleus, and lead to a cross section proportional to the square of the target

nucleus’ mass. Spin dependent interactions, in contrast, lead to a cross section that

scales with J(J + 1), where J is the total spin of the target nucleus. Currently, di-

rect constraints on spin-independent scattering are far more stringent than those for

spin-dependent scattering. For this reason, we focus on spin-independent scattering

in this section.

The spin-independent neutralino-nucleus elastic scattering cross section is given

by:

σ ≈
4m2

χ0m2
T

π(mχ0 + mT )2
[Zfp + (A − Z)fn]2, (4.1)

– 11 –



where mT is the mass of the target nucleus, and Z, A are the atomic number and

atomic mass of the nucleus, respectively. fp and fn are the neutralino’s couplings to

protons and neutrons, given by [53]:

fp,n =
∑

q=u,d,s

f
(p,n)
Tq

aq
mp,n

mq
+

2

27
f

(p,n)
TG

∑

q=c,b,t

aq
mp,n

mq
, (4.2)

where aq are the neutralino-quark couplings [53, 54] and f
(p,n)
Tq

denote the quark

content of the nucleon and have been measured to be: f
(p)
Tu

≈ 0.020 ± 0.004, f
(p)
Td

≈
0.026 ± 0.005, f

(p)
Ts

≈ 0.118 ± 0.062, f
(n)
Tu

≈ 0.014 ± 0.003, f
(n)
Td

≈ 0.036 ± 0.008 and

f
(n)
Ts

≈ 0.118± 0.062 [55]. The first term in this equation corresponds to interactions

with the quarks in the target, which can occur through either t-channel CP-even

Higgs exchange, or s-channel squark exchange. The second term corresponds to

interactions with gluons in the target through a quark/squark loop. f
(p)
TG is given by

1 − f
(p)
Tu

− f
(p)
Td

− f
(p)
Ts

≈ 0.84, and analogously, f
(n)
TG ≈ 0.83.
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Figure 6: Posterior probability distributions in the neutralino-nucleon, spin-independent

elastic scattering cross section vs neutralino mass plane, taking into account the empirical

inputs and using the natural (left) and flat tan β (right) priors described in the text. If

natural priors are used, the focus point region is preferred, leading to σχN,SI ∼ 3 × 10−8

pb. The light Higgs pole region is also seen in the left frame with mχ0 ∼ 60 GeV and

a smaller cross section. In each frame, contours enclosing the 68% and 95% confidence

regions are shown. Also shown is the 90% confidence level current upper bound placed by

the CDMS collaboration [45] assuming a local dark matter density of ρχ0 = 0.3 GeV/cm3

and a characteristic velocity of v0 = 230 km/s.

In Fig. 6, we show the posterior probability distributions for the neutralino’s spin-

independent elastic scattering cross section (per nucleon), for the case of a natural

prior (left) and a flat tan β prior (right). From this figure, it is clear that the most
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probable parameter regions, corresponding to a highly mixed neutralino in the focus

point, are concentrated around σχN,SI ∼ 3×10−8 pb, which is just beyond the current

reach of direct detection experiments such as CDMS [45]. It is straightforward to

see why is the case. In the focus point region of the CMSSM, the squarks and heavy

Higgs boson masses are large enough to not contribute significantly to the process

of neutralino elastic scattering. In this case, and for a neutralino with a negligible

wino content, the coupling aq is proportional to N11N14/m
2
h. With the higgsino

fraction predicted to be ∼ 0.1 (as seen in the left frame of Fig. 5), the resulting

elastic scattering cross section is expected to be quite large, leading to the results

found in the left frame of Fig. 6. The lower left portion of the left hand frame of

Fig. 6 corresponds to the light Higgs pole region, in which the lightest neutralino is

largely bino-like. In this region, the neutralino-quark couplings and corresponding

cross sections with nuclei are smaller compared to the mixed bino-higgsino region.

In the right hand frame, we show the flat tan β prior direct detection cross section

posterior probability for comparison. Despite our updated constraints and additional

observables, the flat tan β posterior looks indistinguishable to the eye to previous

determinations [17, 18], where the connection between a preference for the focus

point and good direct detection prospects were pointed out.

Before moving on to the prospects for indirect detection, a few comments are

in order. Firstly, direct detection experiments do not simply measure the WIMP’s

interaction cross section, but instead measure the cross section multiplied by the flux

of WIMPs passing through the detector. The observed rate, therefore, depends on

the local density of dark matter and, to a lesser degree, on its velocity distribution.

Constraints such as those from CDMS shown in Fig. 6 are made under reasonable

assumptions about the local dark matter density and velocity distribution. Mea-

surements of the Milky Way’s rotation curves can be used to estimate a local dark

matter density in the range of 0.22 to 0.73 GeV/cm3 [56]. As long as the fine-grained

structure of the dark matter distribution is not highly clumpy, this range should be

appropriate for the purposes of direct detection (for discussions, see Ref. [57].) The

nuclear physics involved in neutralino-nuclei scattering also introduces a degree of

uncertainty into the constraints placed by direct detection experiments (for more

details, see Ref. [58]).

5. Indirect Detection

5.1 Neutrino Telescopes

Through elastic scattering with nuclei in the Sun, neutralinos can become gravita-

tionally bound, leading them to accumulate and annihilate in the Sun’s core. Such

annihilations can potentially produce a flux of high energy neutrinos observable to

next generation neutrino telescopes [7].
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Figure 7: Posterior probability distributions in the neutralino-proton, spin-dependent

elastic scattering cross section vs neutralino mass plane, taking into account the empirical

inputs and using the natural (left) and flat tan β (right) priors described in the text.

If naturalness considerations are taken into account, the focus point region is preferred,

leading to σχp,SD ∼ 10−4 pb. The light Higgs pole region is also seen in the left frame with

mχ0 ∼ 60 GeV and a smaller cross section. In each frame, contours enclosing the 68% and

95% confidence regions are shown.

Assuming a standard local density and velocity distribution, neutralinos become

captured by the Sun at a rate given by [59]:

C⊙ ≈ 3.35 × 1019 s−1

(

σχp,SD + σχp,SI + 0.07 σχHe,SI

10−7 pb

)(

100 GeV

mχ0

)2

, (5.1)

where σχp,SD, σχp,SI and σχHe,SI are the spin dependent (SD) and spin independent (SI)

elastic scattering cross sections of neutralinos with hydrogen (protons) and helium

nuclei, respectively. The factor of 0.07 reflects the solar abundance of helium relative

to hydrogen and well as dynamical factors and form factor suppression.

In the previous section, we calculated the posterior probability for the neu-

tralino’s spin-independent elastic scattering cross section. In Fig. 7, we show the

analogous result for the spin-dependent, neutralino-proton elastic scattering cross

section. Again, we find that the natural priors lead to a strong preference for

large elastic scattering cross sections. In this case, this results from the sizable

higgsino couplings to the Z-boson, which leads to a cross section which scales as:

σχ0p,SD ∝ [|N13|2 − |N14|2]2. By comparing Figs. 6 and 7, we clearly see that the

spin-dependent cross section will dominate the overall capture rate of neutralinos in

the Sun. The flat tanβ prior frame on the right hand side looks rather similar to the

posterior obtained recently in the literature [18], despite the fact that it has been

obtained with updated data and additional observables.
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If the capture rate and annihilation cross section are sufficiently large, equilib-

rium will be reached between these processes. For a number of neutralinos in the

Sun, N , the rate of change of this quantity is given by:

Ṅ = C⊙ − A⊙N2, (5.2)

where C⊙ is the capture rate and A⊙ is the annihilation cross section times the

relative neutralino velocity per unit volume. The present neutralino annihilation

rate in the Sun is given by:

Γ =
1

2
A⊙N2 =

1

2
C⊙ tanh2

(√
C⊙A⊙ t⊙

)

(5.3)

where t⊙ ≈ 4.5 billion years is the age of the solar system. The annihilation rate is

maximized when it reaches equilibrium with the capture rate (ie. when
√

C⊙A⊙t⊙ ≫
1). For the vast majority of the favored parameter space, we find that this condition

is easily satisfied.

Neutralinos can generate neutrinos through a wide range of annihilation chan-

nels. Annihilations to heavy quarks, tau leptons, gauge bosons and Higgs bosons

can each generate neutrinos in their subsequent fragmentation and decay. The muon

neutrino spectrum at the Earth from neutralino annihilations in the Sun is given by:

dNνµ

dEνµ

=
C⊙FEq

4πD2
ES

(dNν

dEν

)Inj

, (5.4)

where C⊙ is the capture rate of neutralinos in the Sun, FEq is the non-equilibrium

suppression factor (≈ 1 for capture-annihilation equilibrium), DES is the Earth-

Sun distance and (dNν

dEν
)Inj is the neutrino spectrum from the Sun per neutralino

annihilating. Due to νµ − ντ vacuum oscillations, the muon neutrino flux observed

at Earth is the average of the νµ and ντ components.

Muon neutrinos produce muons in charged current interactions with nuclei in

the material inside or near the detector volume of a high energy neutrino telescope.

The rate of neutrino-induced muons observed in a high-energy neutrino telescope is

given by:

Nevents ≈
∫ ∫

dNνµ

dEνµ

dσν

dy
(Eνµ

, y) Rµ((1 − y) Eν) Aeff dEνµ
dy, (5.5)

where σν(Eνµ
) is the neutrino-nucleon charged current interaction cross section, (1−

y) is the fraction of neutrino energy which goes into the muon and Aeff is the effective

area of the detector. Rµ is either the distance a muon of energy, Eµ = (1 − y) Eν,

travels before falling below the muon energy threshold of the experiment, called the

muon range, or the width of the detector, whichever is larger. The spectrum and

flux of neutrinos generated in neutralino annihilations is determined by its mass and

dominant annihilation modes.
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Figure 8: Posterior probability distributions for the rate of neutrino events from neutralino

annihilations in the Sun (per square kilometer, per year), using a flat tan β prior (dashed)

or a natural prior (solid) as described in the text. The left (right) frame corresponds to

the rate predicted at the Super-Kamiokande (IceCube) experiment. In each frame, each

distribution is plotted in 100 bins of equal width. Note that in the right frame, 39% of the

distribution (the union of the light Higgs-pole region and the stau co-annihilation region)

does not appear, as no events above the 50 GeV threshold are generated.

In Fig. 8, we show the posterior probability distribution for the rate of neutrino

induced muons from dark matter annihilations in the Sun in a experiment such as

Super-Kamiokande (left) [60] and in a kilometer-scale, high energy neutrino telescope

such as IceCube (right) [61]. For Super-Kamiokande, we plot the rate of muons with

an energy greater than 1 GeV, and use a detector width of 40 meters. For the case

of IceCube, we have used a 50 GeV muon energy threshold, and a kilometer width.

Currently, the strongest constraint on the neutrino flux from dark matter anni-

hilations in the Sun comes from Super-Kamiokande, which has placed an upper limit

on the rate of neutrino-induced muons from the Sun of approximately 3 × 103 per

square kilometer, per year [60]. Slightly weaker constraints have also been placed

by Amanda [62], Baksan [63] and Macro [64]. The approximate Super-Kamiokande

constraint is shown as a vertical dotted line in the left frame of Fig. 8. Assuming

an average local dark matter density of 0.3 GeV/cm3, this bound excludes a sizable

fraction (38%) of the probability distribution favored by our analysis. If a rather con-

servative value of 0.1 GeV/cm3 were used instead, only 22% of the of the probability

distribution is excluded by the Super-Kamiokande limit.

The predicted rates in IceCube, as shown in the right frame of Fig. 8, are ex-

tremely promising. About 61% of the probability distribution corresponds to models

which would produce thousands of muon induced neutrino events per year from dark

matter annihilations in the Sun. In contrast, the rate of atmospheric neutrino in-

duced muons in the same angular window is only approximately 500 events per square
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kilometer per year. Therefore, on the order of only 5×
√

500 ∼ 100 events per square

kilometer, per year would be required to produce a 5σ detection in IceCube.

The 35% of the probability distribution that falls in the light Higgs-pole region

cannot be easily observed by IceCube, however, as these models contain neutralinos

with ≈ 60 GeV masses, well below the range required to generate muons above

IceCube’s energy threshold.

5.2 Gamma-Rays and Charged Particles

Dark matter annihilating throughout the Milky Way’s halo can potentially lead

to observable fluxes of gamma-rays, electrons/positrons, antiprotons and/or an-

tideuterons. The strategies for detecting gamma-rays from dark matter annihilation

are quite different from those for charged particle searches, as gamma-rays travel

undeflected by magnetic fields, making the observation of point-like or extended re-

gions of high dark matter density possible. Some of the most promising regions

include the center of the Milky Way [65] and nearby dwarf satellite galaxies [66].

Charged particles produced in dark matter annihilations, in contrast, diffuse in the

galactic magnetic field erasing any directional information. Nonetheless, if the rate

of dark matter annihilation is large enough in the galactic halo, it may be possible

to identify its contribution in the antimatter component of the cosmic ray spectrum.

Additionally, electrons and positrons produced through dark matter annihilations

could potentially produce an observable flux of synchrotron radiation as they trav-

elling through the Galactic Magnetic Fields [11].

The prospects for detecting dark matter with gamma-rays and charged particles

each depend on both particle physics and astrophysical inputs. Regarding particle

physics, the neutralino’s annihilation cross section and mass (and to a lesser extent

its dominant annihilation modes) each impact the reach of indirect detection efforts.

In Fig. 9, we show the posterior probability distribution for the annihilation cross

section and mass of the lightest neutralino. Using natural priors, the favored focus

point region leads to a cross section times relative velocity of σAnnv ≈ 3 × 10−26

cm3/s, which is approximately the maximal value possible for a thermal WIMP.

The models in the light Higgs-pole region have considerably smaller annihilation

cross section, making their indirect detection with gamma-rays or charged cosmic

rays very unlikely. If flat tanβ priors are used, the neutralino’s annihilation cross

section can be considerably smaller than the bulk of the favored natural prior region.

A number of astrophysical inputs also impact the reach of gamma-ray, cosmic ray

and synchrotron searches for dark matter annihilation. In the case of gamma-rays and

synchrotron radiation, the annihilation rate in the inner galaxy or elsewhere depends

on the integral of the dark matter density squared, over the observed line-of-sight.

This leads to a strong dependence on the density of dark matter in the inner parsecs

of halos, well beyond the resolution of current N-body simulations. Furthermore, the

gravitational potential in the inner region of the Milky Way is dominated by baryons
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Figure 9: Posterior probability distributions in the annihilation cross section vs lightest

neutralino mass plane, taking into account the empirical inputs and using the natural (left)

and flat tan β (right) priors described in the text. If naturalness considerations are taken

into account, the focus point region is preferred, leading to σAnnv ∼ 3× 10−26 cm3/s. The

light Higgs pole region is also seen in the left frame with mχ0 ∼ 60 GeV and a smaller

cross section times relative velocity. In each frame, contours enclosing the 68% and 95%

confidence regions are shown. Also shown is the reach of the GLAST telescope for the case

of a Navarro, Frenk and White (NFW), halo profile [67].

rather than dark matter, whose effects are not generally included in such simulations.

Although the impact of baryonic matter on the dark matter distribution is difficult

to predict, an enhancement in the dark matter density and corresponding annihila-

tion rate is expected to result from the process of adiabatic compression [68]. The

adiabatic accretion of dark matter onto the central super-massive black hole might

also lead to the formation of a density spike in the dark matter distribution, leading

to an enhanced dark matter annihilation rate [69]. Collectively, these astrophysical

uncertainties lead to several orders of magnitude of variation in predictions of the

gamma-ray flux from dark matter annihilations.

In Fig. 9, we show the projected reach of the GLAST gamma-ray telescope [70]

after ten years of observation, as calculated in Ref. [67], for the case of a dark matter

distribution following the Navarro, Frenk and White (NFW) profile [71], neglecting

adiabatic compression and any other such effects. For this choice of the dark matter

distribution, a non-negligible fraction of the posterior probability distribution favored

by the natural priors are within GLAST’s reach. One again, we remind the reader

that variations from the NFW profile could modify this projection considerably. If

the dark matter annihilation rate is even mildly enhanced from that predicted for

a simple NFW profile, GLAST could potentially probe the entire range of CMSSM

parameter space favored by the natural priors. This is in contrast to the results found
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using flat tanβ priors, which allow for neutralinos with much smaller annihilation

cross sections (see also Ref. [19]). We also note that, if the lightest neutralino is

heavier than a few hundred GeV, ground-based atmospheric Cerenkov telescopes

could also be used to search for dark matter annihilations in the inner Milky Way

and elsewhere [72].

The prospects for the detection of cosmic ray electrons/positrons, antiprotons

and antideuterons are also subject to large degree of astrophysical uncertainty. Namely,

the diffusion parameters that describe the magnetic and radiation fields of the Milky

Way [73], as well as the dark matter distribution, can significantly impact the reach

of experiments such as PAMELA [74] and AMS-02 [75] to detect the presence of

dark matter annihilations. In particular, the “boost factor” that results from in-

homogeneities in the dark matter distribution can impact the prospects for such

experiments considerably. For moderate choices of the diffusion parameters and

boost factor (∼1-10), prospects for PAMELA to detect positrons from dark matter

annihilations over the background of cosmic ray secondaries are similar to those for

GLAST to detect gamma-rays [76], as shown in Fig. 9.

6. Summary and Conclusions

By considering measurements of quantities such as the anomalous magnetic moment

of the muon, the b → sγ branching fraction, the Bs → µ+µ− branching fraction, the

mass of the W boson, the effective leptonic mixing angle, Higgs boson and sparticle

search constraints, and the cosmological dark matter abundance, it is possible to

constrain the parameter space of supersymmetry. The results of global fits to such

indirect data currently depend, however, on the choice of priors which are adopted. In

most of the global fits of supersymmetric parameter space which have been performed

to date, priors have been used which are flat in the derived quantity, tanβ. A far

more natural choice would be to use priors which are flat (or perhaps, logarithmic) in

the fundamental parameters µ and B. In this article, we have considered the impact

of adopting such natural priors upon fits of the CMSSM to indirect data, focusing on

the phenomenology of neutralino dark matter that is found in the parameter space

favored by such fits.

Using natural priors and updated indirect data, we find a that two regions of the

CMSSM parameter space are strongly favored. Firstly, about 61% of the posterior

probability distribution corresponds to the focus point region. Of the remainder, 35%

of the posterior probability distribution corresponds to the light Higgs-pole region in

which the lightest neutralino annihilates on resonance with the light Higgs boson and

4% corresponds to the stau co-annihilation region, where staus and other sleptons

efficiently annihilate with the lightest neutralinos. In contrast to the results found

using priors flat in tan β, we find that the stau-co-annihilation and A-funnel regions
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of the CMSSM parameter space contribute negligibly to the posterior probability

distribution.

In the favored focus point region, the lightest neutralino is a mixed gaugino-

higgsino (∼10% higgsino fraction) with a mass less than approximately 300 GeV.

Such a neutralino has a very distinctive dark matter phenomenology and is nearly

optimally suited for the purposes of direct and indirect detection. In particular,

a mixed gaugino-higgsino neutralino possesses large couplings to Standard Model

fermions, and thus has large elastic scattering cross sections with nuclei. In the light

Higgs-pole region, the lightest neutralino can have considerably smaller couplings.

We find that neutralinos in the favored focus point region have a spin-independent

elastic scattering cross section with nucleons of ∼ 3×10−8 pb, which is within a factor

of 2 (5) of the current limit from CDMS for a 100 GeV (300 GeV) neutralino. We,

therefore, expect direct detection experiments to probe the majority of the posterior

probability distribution of the CMSSM parameter space in the very near future.

The prospects for neutrino telescopes found using natural priors are also very

promising. In particular, most of the favored parameter space predicts thousands of

events to be observed per year in a kilometer-scale neutrino telescope such as IceCube.

Current constraints from Super-Kamiokande already exclude 38% of the posterior

probability distribution, assuming a local dark matter density of 0.3 GeV/cm3.

Although searches for dark matter using gamma-rays and charged particles de-

pend strongly on unknown astrophysical inputs, our analysis finds that the majority

of the favored parameter space predicts a neutralino annihilation cross section near

the maximum possible for a thermal relic (∼ 3 × 10−26 cm3/s). This along with the

relatively light mass range favored for the lightest neutralino makes the prospects for

GLAST and PAMELA to detect neutralino dark matter near optimal.

We believe that a prior that is flat in µ, B is a much more natural choice than one

flat in tanβ.If the naturalness prior were complemented with an additional hyper-

parameter prior that enforces that all soft terms are “of the same order” [16], the

focus point is disfavoured. However one can consider differences in the derived pos-

terior probability distributions from the different priors as evidence that more data

is needed to constrain the model. Thus, fit predictions that are robust (i.e. approx-

imately invariant) with respect to changes in assumed prior distributions are not

attained for mSUGRA, since it has many parameters and the data constraining it

are rather indirect. While this is undeniably true, it is still interesting to examine

the effect of the more natural prior as it gives us our “best bet” for quantities such

as the dark matter-nucleon cross-sections relevant for direct detection, or galactic

annihilation cross sections relevant for indirect detection. Our neutralino-nucleon

cross-sections coming from the fit for the flat tanβ prior are similar to other previ-

ous determinations in the literature, providing validation of our calculations. Our

best guess for this quantity leads to a good chance that a further increase of a factor

of 10 in sensitivity by the experiments will lead to a direct detection discovery. Had,
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instead of priors flat in µ, B, we had chosen priors that are flat in log µ and log B,

we expect that our fits would show even stronger preference for the focus point: an

additional factor of 1/(µB) in the integrand of Eq. 2.7 would have lead to even more

preference for the focus point region, with an associated extra boost in detection

cross-sections.

Taken together, the results presented in this article are very encouraging for the

prospects for direct and indirect efforts to detect neutralino dark matter. If natural

choices are made in constructing priors, fits to the currently available data predict

that, within the context of the CMSSM, the lightest neutralino is likely to have

large elastic scattering and annihilation cross sections. In particular, the majority of

the posterior probability distribution of the CMSSM parameter space (about 61%)

should be within the reach of very near future direct detection experiments, and

should be detectable in the near future by IceCube.

Voltaire’s satirical philosopher Pangloss long held the position that we live in the

“best of all possible worlds”. We find that if naturalness considerations are taken

into account, then (modulo the usual astrophysical uncertainties) the prospects for

the direct and indirect detection of neutralino dark matter in the CMSSM are, if not

Panglossian, are at least extremely encouraging.
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