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ABSTRACT

We measure the two-point spatial correlation function for clusters selected

from the photometric MaxBCG galaxy cluster catalog for the Sloan Digital Sky

Survey (SDSS). We evaluate the correlation function for several cluster samples

using different cuts in cluster richness. Fitting the results to power-laws, ξcc(r) =

(r/R0)
−γ, the estimated correlation length R0 as a function of richness is broadly

consistent with previous cluster observations and with expectations from N-body

simulations. We study how the linear bias parameter scales with richness and

compare our results to theoretical predictions. Since these measurements extend

to very large scales, we also compare them to models that include the baryon

acoustic oscillation feature and that account for the smoothing effects induced

by errors in the cluster photometric redshift estimates. For the largest cluster

sample, corresponding to a richness threshold of N200 ≥ 10, we find only weak

evidence, of about 1.4 − 1.7σ significance, for the baryonic acoustic oscillation

signature in the cluster correlation function.

Subject headings: cosmology:observations - large-scale structure of the Universe

- galaxies:clusters - SDSS
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1. Introduction

Galaxy clusters have long been recognized as powerful cosmological probes (Borgani

2006; Rozo et al 2007a). In particular, measurement of the cluster mass function vs. redshift

constrains cosmological parameters, including those associated with dark energy (Wang et al.

1998; Haiman et al 2001; Gladders et al. 2007; Rozo et al. 2007b; Mantz et al. 2007).

This has motivated the design of new wide-area cluster surveys in the optical (Abbot et al.

2007), X-ray (Rapetti et al. 2006), and using the Sunyaev-Zel’dovich effect (SZE) (Ruhl

et al. 2004; Seghal et al 2007). The utility of this probe hinges on limiting the uncertainty

in the relation between cluster mass and whatever observable (e.g., optical richness, X-ray

luminosity, or SZE flux decrement) is used as a proxy for it. Measurement of the two-point

correlation function of clusters can help calibrate such mass-observable relations and thereby

improve the resulting cosmological constraints (Majumdar & Mohr 2004; Lima & Hu 2005).

Since clusters are the largest virialized mass concentrations in the Universe, measure-

ment of their spatial clustering also provides insight into models of large-scale structure

formation and tests theoretical frameworks, such as the Halo Model, that describe the re-

lation between the galaxy, cluster, and dark matter distributions, i.e., the bias (Rozo et al.

2004; Younger et al. 2005; Smith et al. 2007b; Schultz et al. 2006; Smith et al. 2007a).

On very large scales, r ∼ 100 h−1 Mpc, the two-point correlation function or power

spectrum of clusters should show evidence of baryon acoustic oscillations (BAO) (Angulo

et al 2005). In concert with measurements of the cosmic microwave background anisotropy,

the BAO scale provides an estimate of cosmic distance and thereby a geometric probe of dark

energy (Seo et al 2003; Hu & Haiman 2003). A possible detection of BAO in the power

spectrum of clusters from the Abell/ACO catalog was reported in Miller et al. (2001),

while earlier studies had claimed evidence for a feature in the cluster correlation function at

r ∼ 125 h−1 Mpc (Kopylov et al. 1998; Mo et al. 1992; Einasto et al. 1997a ,b,c).

The BAO feature was detected at 3.4σ significance in the two-point correlation function

of ∼ 47, 000 luminous red galaxies (LRGs) with spectroscopic redshifts in the range 0.16 <

z < 0.47 in the Sloan Digital Sky Survey (SDSS) (Eisenstein et al. 2005). Using slightly

larger samples, the BAO feature was also detected in the LRG power spectrum (Huetsi 2006;

Tegmank et al. 2006; Percival et al. 2007).

The BAO feature has also been inferred from the large-scale clustering of ∼ 600, 000

LRGs identified in the deeper SDSS photometric survey (Blake et al. 2007; Padmanabhan

et al. 2007). Although the photometric catalog covers a larger volume and contains many

more galaxies than the spectroscopic sample, the galaxy redshifts in the former must be

estimated photometrically. With a photometric redshift uncertainty of σz ∼ 0.03 for this
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sample, much of the information in the radial modes of the power spectrum is lost, and the

BAO feature was detected at less than 3σ significance. Based on theoretical considerations

presented in Seo et al (2003) and Blake & Bridle (2005), Blake et al. (2007) presented a

direct measurement of the 3D power spectrum, with a correction for the damping of power

in the radial direction due to photometric redshift uncertainties. By contrast, Padmanabhan

et al. (2007) measured the angular power spectrum in photometric redshift slices and used

it to reconstruct the three-dimensional power spectrum.

In this paper, we present measurements of the two-point correlation function for optically

selected galaxy clusters in the Sloan Digital Sky Survey (SDSS) and study the possible

detection of baryonic oscillations. The cluster samples are derived from the MaxBCG catalog

(Koester et al. 2007a,b), in which clusters are identified as concentrations of red-sequence

galaxies; the colors of these early-type galaxies are used to estimate photometric redshifts

for the clusters. The two point correlation function for galaxy clusters in SDSS was studied

in Basicalos & Plionis (2004) using an earlier cluster catalog.

We focus on measurement of the 3D cluster correlation function. In comparing the obser-

vations to models of large-scale structure, the model predictions are corrected for the effects

of photometric redshift errors. We use two different methods for estimating this correction

which are in good agreement for the photometric redshift error σz ∼ 0.01 characteristic of

the MaxBCG catalog.

The cluster correlation function measurements provide weak evidence (∼ 1.4 − 1.7σ)

for the presence of BAO in the cluster spatial distribution. An independent measurement of

the power spectrum for the same cluster sample has been presented in (Huetsi 2007), also

indicating weak evidence (∼ 2σ) for acoustic features in the power spectrum.

The paper is organized as follows. In section 2 we describe the MaxBCG cluster catalog,

the samples we derive from it, and our measurements of the cluster correlation function.

In section 3 we introduce our model for the cluster correlation function and discuss the

corrections due to photometric redshift errors, presenting two different correction methods.

In section 4 two different estimates of the correlation function covariance matrix are described

and compared. In section 5 we compare the model to the data, extracting estimates of the

cluster bias as a function of richness and mass, and comparing the goodness of fit for models

with and without BAO. We present our conclusions in section 6.
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2. The MaxBCG cluster correlation functions

2.1. The MaxBCG cluster catalog

The cluster samples we analyze are derived from the SDSS MaxBCG catalog (Koester

et al. 2007a) for SDSS DR5 (Adelman-McCarthy et al. 2000). The MaxBCG method

(Koester et al. 2007b) identifies clusters using two optical properties. First, the brightest

cluster galaxy (BCG) typically lies near the center of the cluster galaxy light distribution.

Second, the cores of rich clusters are dominated by red-sequence galaxies that occupy a

narrow locus in color-magnitude space, the E/S0 ridge-line. MaxBCG uses a maximum-

likelihood method to evaluate the probability that a given galaxy is a BCG near the center

of a red-sequence galaxy density excess. Once a list of potential cluster centers is obtained,

galaxies are grouped around those centers and the clusters are identified.

One measure of the richness of the clusters, denoted N200, is defined as the number of

galaxies on the E/SO red sequence brighter than 0.4L∗ that lie within a scaled radius R200 of

the BCG, where R200 is the radius within which the density of galaxies with −24 < Mr < −16

is 200 times the mean density of such galaxies (Hansen et el. 2005). Dynamical (Becker

et al. 2007) and statistical weak lensing measurements (Johnston et al. 2007; Sheldon et al.

2007) indicate that N200 is strongly correlated with cluster virial mass. The public MaxBCG

catalog contains 13,823 clusters with N200 ≥ 10; the catalog is approximately volume-limited

over the redshift range 0.1 − 0.3 and covers 7500 square degrees. Tests on mock catalogs

indicate that the MaxBCG sample should be & 90% pure and complete for clusters with

N200 ≥ 10 (Koester et al. 2007a; Rozo et al 2007a).

We subdivide the MaxBCG catalog into four samples for analysis, using the following

thresholds in cluster richness: N200 ≥ 10, 11, 13, and 16. The corresponding virial mass

thresholds, based on statistical weak lensing measurements, are approximately 4.3, 5.1, 6.1,

and 7.9 × 1013 h−1M⊙ (Johnston et al. 2007). The resulting numbers of clusters Nc and

the spatial number densities nc (assuming a survey volume of 0.5h−3 Gpc3) for each sample

are given in Table 1. Note that by virial mass we mean the mass denoted by Mvir in

(Johnston et al. 2007); it is defined in terms of the overdensity at collapse with respect to

the background density by the redshift- and cosmology-dependent formula, ∆vir = (18π2 +

82x − 39x2)/(1 + x), with x = Ωm(z) − 1, derived in (Bryan & Norman 1998) for ΛCDM

models. This definition corresponds to the mass M that appears in the halo bias formulas

of Section 5.3, where we drop the subscript for simplicity.
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Table 1: Cluster samples used in this analysis: Nc is the number of clusters in each sample,

nc indicates the mean number density for each sample, assuming a volume of 0.5 h−3 Gpc3.
sample Nc nc [ h3 Mpc−3]

N200 ≥ 10 13823 2.8 × 10−5

N200 ≥ 11 11265 2.3 × 10−5

N200 ≥ 13 7796 1.6 × 10−5

N200 ≥ 16 4853 1.0 × 10−5
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The redshifts for the MaxBCG clusters are estimated photometrically from the g − r

colors of the red-sequence galaxies. Since the color locus of these galaxies has finite width,

the cluster photometric redshifts have a non-zero dispersion around the true values. Tests

using a subsample of the BCGs with spectroscopic redshifts indicate that the dispersion in

the cluster photometric redshift estimates is approximately σz ≡ 〈(zph − zsp)
2〉1/2 ≃ 0.01,

with a small dependence on richness (Koester et al. 2007a). For the N200 ≥ 10 sample,

the dispersion varies from 0.006 at the lower end of the redshift range (z = 0.1) to 0.011 at

the upper end (z = 0.3). The error distribution is generally well described by a Gaussian

(Koester et al. 2007a).

As we will show, for separations larger than ∼ 50 h−1 Mpc, the translation of the cluster

correlation function from real space to photometric-redshift space depends sensitively on

the photometric redshift uncertainty, σz. In this work, for simplicity we assume a constant

photo-z dispersion of σz = 0.01, as suggested by (Koester et al. 2007a), as our default.

Throughout the paper, and particularly in §3.2.3, 5.1 and 5.2.3, we discuss the systematic

errors associated with the uncertainty in σz.

2.2. Estimation of the two-point correlation function

We measure the correlation function ξ(r) for each cluster sample by means of the Landy-

Szalay estimator (Landy & Szalay 1993),

1 + ξLS(r) =
1

RR(r)
×

[
DD(r)

n2
R

n2
D

− 2DR(r)
nR

nD
+ RR(r)

]
(1)

where DD(r) represents the number of cluster pairs with separation r ± ∆r/2 in the data,

RR(r) is the number of pairs in the same separation bin in a random catalog uniformly

distributed over the same survey volume, DR(r) is the number of pairs with one member

of the pair from the data sample and the other from the random catalog, nR is the number

density of clusters in the random catalog, and nD is the number density of the data cata-

log. To reduce the effects of shot noise, the random catalog is five times denser than the

data catalog. The random catalog is generated using the same angular mask used for the

weak lensing analysis of the MaxBCG catalog (Sheldon et al. 2007) and with the redshift

distribution measured in the data, see Fig. 4 in Koester et al. (2007a).

Due to selection effects, the redshift distribution changes slightly as a function of the

richness threshold, so a different random catalog is generated for each sample. The separation
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r is given in comoving coordinates, and it is obtained assuming a flat ΛCDM cosmology

with Ωm = 0.27. Where needed, we adopt the following other cosmological parameter values

in this work: the Hubble parameter h ≡ H0/100km/s/Mpc = 0.72, the baryon density

Ωb = 0.046, the primordial perturbation spectral index ns = 1, and linear power spectrum

amplitude σ8 = 0.9.

3. A model for the cluster correlation function

In this section, we develop a model for the cluster correlation function that includes

the effects of non-linear evolution and bias (§3.1) and photometric redshift errors (§3.2)

and that can be compared to the measurement of the correlation function on large scales,

r ∼ 20 − 200 h−1 Mpc, with particular attention to the region where the BAO feature is

expected.

3.1. Non-linear evolution and bias

Although the rms density perturbation amplitude on large scales is much smaller than

unity, one cannot rely on linear perturbation theory to precisely predict the large-scale cor-

relation function, especially on the BAO scale of ∼ 100 Mpc. The effects of non-linear

evolution of perturbations on the acoustic features in the matter power spectrum and corre-

lation function have been the subject of several studies in the recent literature, using analytic

and semi-analytic techniques and N-body simulations (Meiksin et al 1999; Seo et al 2003;

White 2005; Eisenstein et al. 2007; Jeong & Komatsu 2006; Guzik & Bernstein 2007;

Huff et al. 2007; Crocce & Scoccimarro 2007; Matarrese & Pietroni 2007; Smith et al.

2007a; Angulo et al. 2008). It has been recognized that the growth of structure induces a

substantial damping of the acoustic peak in the correlation function with respect to linear

theory; this damping must be taken into account when comparing theory with observations.

In this work, we model this effect using Renormalized Perturbation Theory (RPT) (

Crocce & Scoccimarro 2006; Crocce & Scoccimarro 2007). This prescription has the advan-

tage of being based exclusively on first principles and, as shown in (Crocce & Scoccimarro

2007), achieves remarkable agreement with results from N-body simulations. In general, the

RPT non-linear matter power spectrum can be expressed as the sum of a term that accounts

for the degradation of the initial power at a given wavenumber k and a term arising from

the non-linear gravitational coupling of modes of different wavenumbers,

PRPT (k) = G2(k; a)PL(k) + PMC(k; a) . (2)
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Here G(k; a) is the RPT propagator from the initial conditions, a is the cosmic scale factor,

PL is the power spectrum in linear perturbation theory for the ΛCDM model, and PMC is

the contribution from mode coupling. We refer the reader to Crocce & Scoccimarro (2006)

and Crocce & Scoccimarro (2007) for detailed descriptions of the computation of the power

spectrum in RPT. As shown in (Crocce & Scoccimarro 2007), the first term in Eqn. (2) is

primarily responsible for the damping of the acoustic peak in the correlation function, while

the second term gives a small correction of the order of a few percent at the relevant scales.

We neglect the latter term in this analysis, since its contribution is subdominant compared

to the observational errors in our measurements.

While the RPT model has been validated against simulations around the BAO scale,

its validity on the smallest scales we consider in our analysis, r ∼ 20 h−1 Mpc, has not yet

been properly tested. We therefore limit its use to describing the damping of the baryonic

peak at large scales. To model the non-linear evolution of the non-BAO part of the power

spectrum amplitude on small scales we use the halofit code (Smith et al. 2003). As a

result, our adopted non-linear matter power spectrum model is given by

PNL(k) = [PL(k) − PL,nw(k)]G2(k; a)

+PHF,nw(k; a) , (3)

where the “no-wiggles” PL,nw and PHF,nw are the linear power spectrum and non-linear

halofit power spectrum with the acoustic oscillations edited out using the featureless trans-

fer function derived in (Eisenstein & Hu 1998). Given the measurement errors for the current

cluster sample and the uncertainties in the photo-z errors (§3.2), we find that the theoretical

uncertainties in modeling the non-linear evolution of the baryonic peak—as reflected in the

different approaches in the recent literature—are negligible by comparison. For example, we

find that using the alternative prescription for the non-linear matter power spectrum PNL(k)

followed by (Eisenstein et al. 2005) does not change the significance of the BAO feature

in this work.

The dark matter correlation function is obtained in the usual way via the Fourier trans-

form of the non-linear matter power spectrum,

ξmm(r) =
1

2π2

∫
PNL(k)

sin kr

kr
k2dr . (4)

For the ΛCDM model parameters given in §2.2, the predicted non-linear correlation function

is shown as the black dashed curve in Fig. 3 below. To connect this to observations, we will

assume, for simplicity, that the correlation function for a given cluster sample is related to

the matter correlation function by a constant bias factor,

ξcc(r) = b2 ξmm(r) . (5)
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A more accurate description of cluster bias is possible, but again the uncertainties in the

bias prescription are expected to be small compared to the current measurement errors. We

treat the bias factor b as a fit parameter in comparing the model to observations; in §5.3 we

compare the fit values of the bias with predictions from the Halo Model.

3.2. Effects of photometric redshift errors

As noted in §2.1, the estimated photometric redshifts (photo-z’s) for the MaxBCG

clusters have a non-negligible uncertainty, σz ≃ 0.01. This translates into a positional

uncertainty along the line-of-sight of approximately 30 h−1 Mpc, depending on cosmological

parameters. The effect on the three-dimensional correlation function is a smearing of the

acoustic peak and a relative damping of power on small scales. We consider and compare

two prescriptions to model this effect, one analytic, the other based on a direct geometric

approach. For simplicity, we ignore the redshift dependence of σz in this analysis. We note

that the effect of photo-z errors is analogous to but simpler to model than redshift-space

distortions in spectroscopic surveys.

3.2.1. Analytic power spectrum smearing

In the first approach, we adopt the simple analytic prescription for power spectrum

smearing introduced in Blake & Bridle (2005). Assuming a Gaussian smearing along the

line of sight due to photo-z errors, the damping of the power spectrum in the plane-parallel

approximation is given by

Pc,σ(k⊥, kz) = Pc(k)e−k2
zσ2

, (6)

where k⊥ and kz are the components of the wavevector k perpendicular and parallel to the

line of sight, Pc(k) = b2PNL(k) is the true (real-space) non-linear cluster power spectrum,

and σ is the dispersion in comoving distance along the line of sight, which is related to the

photometric redshift error σz by

σ =
c

H(z)
σz . (7)

In this expression, we evaluate the Hubble parameter at the effective median sample redshift

z = 0.22. Although the photo-z correction to the power spectrum is clearly anisotropic in

Fourier space, one can retrieve the monopole part of the observed (photo-z space) power

spectrum as

P̃c(k) ≡ 1

2

∫
d cos θ Pc,σ(k sin θ, k cos θ)
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=

√
π

2σk
erf(σk)Pc(k) , (8)

where θ is the angle between k and the line of sight (see also (Huetsi 2007)). The monopole

of the measured (photo-z-space) correlation function can then be computed as the Fourier

transform of P̃c(k).

3.2.2. Geometric smearing

While convenient, the analytic approach above does not take into account light-cone

effects or the effects of the survey geometry. Here we directly model the geometric effects of

photo-z errors on the measurement of the correlation function. For simplicity, we consider a

random Poisson distribution of points covering the survey volume, using the same random

catalog that is used in the two-point function estimator (§2.2). We displace each point along

the line of sight by a random distance drawn from a Gaussian probability distribution,

P (zph) ∼ exp

[
−(zph − z)2

2σ2
z

]
, (9)

where zph is the simulated photometric redshift estimate for a point at true redshift z, and

σz is the standard deviation of the photo-z estimate. For each pair with true separation r

in the random catalog, we obtain a “measured” separation r̃ after the displacements due to

photo-z errors. We then calculate the conditional probability P (r̃|r) for a pair to have a

measured separation r̃ after displacement, given the true separation r, or, equivalently the

probability P (∆r|r) for the difference ∆r ≡ r̃− r, given the value of r. In Fig. 1 we plot the

normalized probability distributions for ∆r corresponding to four representative values of r.
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Fig. 1.— Normalized, conditional probability distributions P (∆r | r) of the difference ∆r =

r̃ − r, given r = 50, 100, 150, and 200 h−1 Mpc, as measured from the random catalogs,

assuming Gaussian photo-z errors with σz = 0.01. The dashed blue lines correspond to the

exponential fit of eq. (10).
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By definition, ∆r is limited by ∆r ≥ −r, and we therefore expect P (∆r|r) to be

asymmetric in ∆r. As Fig. 1 suggests, P (∆r|r) is well-described by an asymmetric Laplace

(or exponential) distribution,

P (∆r|r) = C(r) ×





exp
[
− ∆r

σ+(r)

]
for ∆r ≥ 0

exp
[

∆r
σ
−

(r)

]
for ∆r < 0

(10)

which is continuous at ∆r = 0, and where the normalization factor is

C(r) =
1

σ+(r) + σ−(r)[1 − exp(−r/σ−(r))]
. (11)

We fit the functional form in Eqn. (10) to the probability distributions measured for values

of r ranging from 10 to 250 h−1 Mpc in steps of 10 h−1 Mpc. We then fit the function σ+(r)

to an exponential functional form with three parameters,

σ+(r) = σ+,0

(
1 + c+e−r/r+

)
, (12)

while for σ−(r), imposing the condition σ−(0) = 0, we consider the two-parameter form

σ−(r) = σ−,0

(
1 − e−r/r

−

)
. (13)

The resulting parameter values, for four different values of the photo-z dispersion, σz = 0.005,

0.007, 0.01 and 0.02, are given in Table 2. These functions, together with the values measured

from the realizations, are shown in Fig. 2. Note that the probability distribution is never

symmetric, as the two functions σ+(r) and σ−(r) differ significantly at all relevant scales.
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Table 2: Values of the parameters determined by fitting the exponential expressions for σ±(r)

to the dispersions measured from the Poisson realizations corresponding to σz = 0.005, 0.007,

0.01 and 0.02.
σz σ−(r) σ+(r)

σ−,0 r− σ+,0 r+ c+

0.005 7.20 22.9 7.80 30.9 0.596

0.007 9.93 31.1 11.2 24.6 0.840

0.010 15.1 49.4 17.8 30.5 0.913

0.020 29.4 100.0 36.1 25.0 2.318
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Fig. 2.— Values of σ+(r) and σ−(r) measured from the Poisson realizations and correspond-

ing fitting functions from Eqns. (12) and (13) as determined from the measured probability

distributions P (∆r|r) for a Gaussian photometric-redshift error of σz = 0.005, 0.007, 0.01

and 0.02.
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Using this procedure, we obtain an analytic expression for the probability function

P (∆r|r). The measured (photo-z-space) cluster correlation function, ξ̃cc(r̃), can then be

approximately derived from the real-space correlation function ξ(r) by a normalized convo-

lution,

ξ̃cc(r̃) =

∫ ∞

0
ξcc(r)P (r̃|r)RR(r)dr∫ ∞

0
P (r̃|r)RR(r)dr

, (14)

where P (r̃|r) ≡ P (∆r|r), and RR(r) is the total number of pairs in the random catalog

at the actual separation r. We find that the separation dependence of this quantity in the

random catalog can be fit over the relevant range of scales by

RR(r) =
( r

1.35

)2

−
( r

9.11

)3

+
( r

32.0

)4

, (15)

where the separation r is in units of h−1 Mpc.
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Fig. 3.— Predicted matter two-point correlation function, including correction for photo-z

errors. Dashed black curve shows the non-linear matter correlation function (Eqn. 4) for

the ΛCDM model, while the dotted black curve shows the linear theory correlation function.

Long-dashed blue and solid red curves show the non-linear correlation function in photo-z

space for Gaussian photo-z errors with σz = 0.005, 0.007, 0.01, and 0.02. Long-dashed blue

curves use the analytic plane-parallel approximation of Eqn. (8), solid red curves use the

geometric convolution of Eqn. (14). In all cases, the BAO feature is severely smoothed by

the photo-z errors. Corresponding curves in the lower parts of each panel show the relative

differences with respect to the linear theory prediction; the spike around r ≃ 130 h−1 Mpc

corresponds to the scale at which the linear correlation function vanishes.
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3.2.3. Comparison

In Fig. 3 we compare these two methods of estimating the impact of photo-z errors on

the two-point correlation function, for Gaussian photo-z errors with dispersion σz = 0.005,

0.007, 0.01, and 0.02. The continuous red curves show the photo-z-space correlation func-

tions calculated using the geometric convolution in Eqn. (14); the long-dashed, blue curves

show the corresponding results using the Fourier transform of the analytic approximation of

Eqn. (8). On small scales, r . 30 h−1 Mpc, photo-z errors strongly suppress the correlation

function amplitude and flatten its slope. On larger scales, as the lower left panel of Fig. 3

shows, the combination of non-linearity and photo-z error transforms the expected BAO

bump into a more subtle inflection feature in the two-point correlation function. As a result,

when statistical errors are included, we do not expect to be able to detect the BAO signature

with high significance in this data set.

The geometric and analytic results are in excellent agreement with each other for small

values of the photo-z dispersion, but a difference is observed for σz & 0.01. In the data

analysis and in the rest of the paper we adopt the geometric model and assume a constant

error σz = 0.01 for our fiducial results, except where otherwise noted. In this case, the

photo-z error changes the amplitude of the non-linear correlation function—in going from

real to photo-z space—by as much as 170% on scales r ∼ 90 h−1 Mpc. However, we note

that even a small uncertainty in the photo-z dispersion σz introduces a significant systematic

uncertainty in the mapping of the correlation function amplitude from real to photo-z space,

due to the difference in the smoothing of the acoustic features. For some of our results below,

we therefore estimate a systematic error in the inferred real-space correlation function by

comparing results from the geometric model for σz = 0.01 with those for σz = 0.007. At the

same time, we note that a sufficiently large spectroscopic sample can in principle reduce the

uncertainty in σz to a small level. We plan to carry out a more detailed study of this and

other issues in the modeling of the correlation function in photo-z space elsewhere (Estrada

et a.l 2008).

4. The covariance matrix

In order to compare the model predictions to the data and extract parameter measure-

ments, we must have an estimate of the error covariance for the correlation function. There

are two common procedures for estimating the errors. The first uses a jackknife estimator

by creating subsamples from the data; this has the advantage of being independent of model

assumptions, but it may not properly account for the variance due to modes on scales larger

than those spanned by the survey. The second estimates the errors from a model, either
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using the variance among a large number of survey mock catalogs or, on large scales, us-

ing an analytic estimate assuming Gaussian perturbations. The model errors in principle

account for cosmic variance due to modes on arbitrarily large scales, but they assume the

model provides an accurate representation of the data. In the data-model comparison of §5,

we present fit results based on both the jackknife and an analytic prediction; in this section,

we compute these error estimates and compare them.

For the jackknife error estimate, we produced 1000 subsamples of each of the four

MaxBCG samples, in each case with 1/1000th of the clusters removed at random. This

procedure corresponds to the “traditional” jackknife approach in statistics, but it differs from

the standard jackknife practice in large-scale structure studies, in which entire subvolumes

are removed at random. The correlation function is measured for each subsample, and the

covariance matrix is estimated from

Cov(ξi, ξj) =
N − 1

N

N∑

l=1

(ξl
i − ξ̄i)(ξ

l
j − ξ̄j) , (16)

where ξl
i = ξl(ri) is the correlation amplitude in the ith separation bin, ri, for subsample

l, and N = 1000 is the number of subsamples. In Fig. 4 we show the diagonal jackknife

standard deviation, σξ(ri) ≡
√

Cov(ξi, ξi), for the four samples (black points). As a test we

have also performed jackknife measurements by removing subvolumes. When the number

of removed subvolumes is small, the jackknife measurements are noisy; when it is large, the

results appear to converge to those from the “removal of clusters” procedure above.

In the alternative approach to error estimation, the predicted error covariance assuming

Gaussian perturbations is given by

Cov(ξi, ξj) ≃ 64π4

V

∫ ∞

0

dkk2P 2
tot(k)

×sin(kri)

kri

sin(krj)

krj

. (17)

Here V is the survey volume and

Ptot(k) = b2PNL(k) +
1

nc
, (18)

where b is the linear bias parameter, PNL(k) is the non-linear matter power spectrum com-

puted as described in the previous section, and the second term in Eqn. (18) accounts for the

shot-noise correction. For the term involving 1/n2
c in Eqn. (17) we make use of the integral

∫
dk sin(kri) sin(krj) =

π

2
δD(ri − rj)

≃ π

2 ∆r
δij , (19)
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where ∆r = 5 h−1 Mpc is the bin-size for the correlation function measurement. For a

detailed discussion of these shot-noise effects, see Cohn (2006).

Fig. 4 shows the analytic prediction for correlation function standard deviations includ-

ing the shot-noise correction (red, continuous curves), using the ΛCDM power spectrum

and the best-fit values for the bias parameters from the analysis in §5 (note that those bias

parameter estimates are derived using the jackknife covariance matrix). The predictions are

consistent with the jackknife estimates at the few to 30% level for all samples.
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Fig. 4.— Standard deviations σξ(ri) ≡
√

Cov(ξi, ξi) of the correlation functions ξ(r) for

the four MaxBCG samples, estimated using the jackknife technique (black points) and as

predicted by linear perturbation theory including the shot-noise contribution in Eqn. (17)

(solid red). The linear theory prediction assumes the ΛCDM model parameters given in §2.2

and values of the linear bias parameter derived in §5.
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The expression in Eqn. (17) is the analytic estimate for the covariance of the correlation

function in real space. To estimate the covariance for ξ in photo-z space, a näıve approach

would be to replace the expression for Ptot(k) in Eqn. (18) with a photo-z-corrected expression

analogous to that in Eqn. (8), i.e.,

P̃tot(k) = b2PNL(k)

√
π

2σk
erf(σk) +

1

nc

. (20)

This would result in a predicted covariance generally lower than that in real space and more

discrepant with the jackknife estimates, about 50% lower than the latter for all samples.

Such an expression would account for the smoothing induced by photometric errors along

the line of sight, but it does not include the extra component due to the intrinsic randomness

of photo-z displacements. We postpone a more detailed discussion of the covariance of the

correlation function in photo-z space to future work (Estrada et a.l 2008); here, we limit

ourselves to the analytic estimate of Eqn. (17). This expression does not take into account

contributions due to the non-Gaussianity generated by gravitational instability and due to

the anisotropic geometry of the survey. In these respects, it should provide a lower bound

for the actual correlation function covariance.
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Fig. 5.— Cross-correlation coefficients for the binned correlation function for the N200 ≥
10 sample determined from the jackknife technique (top) and from the Gaussian analytic

prediction in real-space (bottom) including the shot-noise contribution. The horizontal axes

show the linear bin separation label i, where i = 1 corresponds to ri = 5 h−1 Mpc and i = 39

to ri = 195 h−1 Mpc.
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In Fig. 5 we show the cross-correlation coefficients, defined by

Cij ≡
Cov(ξi, ξj)√

Cov(ξi, ξi)Cov(ξj, ξj)
, (21)

for the N200 ≥ 10 sample. We present results for both the jackknife estimator (top panel)

and the Gaussian analytic prediction in real space (bottom panel) including the shot-noise

contribution. The off-diagonal elements differ significantly between these two approaches,

and it appears that the jackknife may underestimate them. Underestimating the off-diagonal

elements could lead one to assign greater significance to features in the correlation function

such as the acoustic peak, since it corresponds to underestimating the covariance between

different separation bins. In other words, when comparing two models to the data, say, one

with the BAO feature and the other without, if the jackknife and linear theory diagonal

covariance elements are similar (as in, e.g., the N200 ≥ 10 case in Fig. 4), then the jackknife

error estimate will yield a larger value for the χ2 difference between the two models compared

to the linear theory error estimate.

5. Results

In this section we present the correlation function measured for the four cluster samples

introduced in § 2, using the estimator of Eqn.(1). We first present the measurement on

scales r . 60 h−1 Mpc and present fits for the correlation length and power-law slope of the

two-point function, corrected for photo-z errors. We then consider the correlation function

on larger scales and compare to the model presented in § 3, determining the best-fit values

for the cluster linear bias parameter and the evidence for baryonic features.

5.1. Estimate of the correlation length
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Fig. 6.— Data points show the cluster correlation function in photo-z space measured for

the four richness samples in bins of width ∆r = 5 h−1 Mpc, with jackknife errors. Dotted

red curves show inferred power-law ξcc(r) in real space, assuming σz = 0.01. Solid red curves

show best-fit power-law models convolved with the photo-z error distribution, ξ̃cc(r̃), which

should match the data. Dashed blue curves show power-law fits to the data assuming no

photo-z error correction, σz = 0.
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Historically, measurements of the cluster correlation function found results consistent

with a power law over scales r . 60 h−1 Mpc or so (Bahcall et al. 1983; Peacock et a.l

1992; Croft et a.l 1997; Nichol et a.l 1992; Gonzalez et a.l 2002),

ξcc(r) =

(
r

R0

)−γ

, (22)

where the correlation length R0 depends on cluster richness, and the slope is γ ∼ 1.8. A

compilation of these results, along with measurements from an earlier, much smaller version

of the MaxBCG catalog (from the SDSS Early Data Release, EDR), can be found in Bahcall

et al. (2003).

In Fig. 6, we show the estimated correlation functions for the four maxBCG samples

over the range 20− 60 h−1 Mpc. To fit these results to the power-law form of Eqn. (22), we

must include the effects of photometric redshift errors. We do this by inserting Eqn. (22)

into Eqn. (14) and comparing with the data, assuming a photo-z scatter of σz = 0.01. The

resulting best-fit correlation function in observable space, ξ̃cc(r̃), and the inferred power-law

correlation function in real space, ξcc(r), are shown as the solid and dotted red curves in

Fig. 6. In Table 3, we present the inferred correlation length and slope in real space for

the four MaxBCG samples. The statistical errors on R0 and γ come from the jackknife

covariance. However, since there is some uncertainty in the photo-z error variance, in the

Table we show results for both σz = 0.01 and 0.007; the difference between them provides

an estimate for the systematic errors in the inferred parameters. We also show the inferred

parameter values in the case that photo-z errors are completely ignored, σz = 0; these

correspond to the power-law fit parameters in photo-z space.



– 26 –

Table 3: Power-law fits to the cluster correlation function on scales r = 20 − 60 h−1 Mpc,

for three values of the photo-z error variance, σz = 0.01, 0.007, and 0. The inferred real-

space correlation length R0 is given in h−1 Mpc, and γ is the inferred slope of the real-space

correlation function. The fourth column gives the χ2 per degree of freedom for the best fit,

while the fifth column shows the mean cluster separation d, in h−1 Mpc, assuming a sample

volume of 0.5 h−3 Gpc3.
sample R0 γ χ2/d.o.f. d

σz = 0.01

N200 ≥ 10 15.93 ± 0.33 2.21 ± 0.11 0.45 33.1

N200 ≥ 11 16.45 ± 0.38 2.18 ± 0.12 0.36 35.4

N200 ≥ 13 18.14 ± 0.43 2.24 ± 0.15 0.33 40.0

N200 ≥ 16 19.33 ± 0.48 2.56 ± 0.23 0.48 46.9

σz = 0.007

N200 ≥ 10 14.80 ± 0.46 1.98 ± 0.10 0.42 33.1

N200 ≥ 11 15.27 ± 0.52 1.95 ± 0.11 0.35 35.4

N200 ≥ 13 17.14 ± 0.56 2.00 ± 0.13 0.31 40.0

N200 ≥ 16 19.18 ± 0.58 2.26 ± 0.17 0.47 46.9

σz = 0

N200 ≥ 10 14.42 ± 0.73 1.84 ± 0.11 0.43 33.1

N200 ≥ 11 14.81 ± 0.81 1.80 ± 0.12 0.39 35.4

N200 ≥ 13 16.94 ± 0.92 1.85 ± 0.14 0.30 40.0

N200 ≥ 16 20.10 ± 0.92 2.13 ± 0.19 0.49 46.9
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Fig. 7.— Correlation length R0 vs. mean cluster separation d for different cluster samples.

Results for the MaxBCG catalog (this work) are shown as red diamonds. Vertical error

bars include the systematic uncertainty in R0 due to photo-z error uncertainty as well as

the marginalized error from the χ2 analysis; horizontal error bars correspond to an assumed

20% systematic uncertainty in the maxBCG sample volume. Black squares are from the

compilation of earlier cluster measurements of Bahcall et al. (2003), in which a power-law

slope γ = 2 has been assumed. The dashed curve is the power-law fit of Eqn. (23) to the

prediction of ΛCDM, from Younger et al. (2005).
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Models of structure formation predict that the correlation length R0 should scale with

the cluster mean separation d, where 1/d3 = nc (Szalay & Schramm 1985; Governato et al.

1999; Lake 1999; Colberg et al. 2000). Younger et al. (2005) studied this scaling using

N-body simulations of the ΛCDM model and found that the results are well represented by

a power-law relation over the separation range 20 h−1 Mpc < d < 60 h−1 Mpc,

R0 = 1.7

(
d

h−1 Mpc

)0.6

h−1 Mpc , (23)

for σ8 = 0.84. In Fig. 7 we plot R0 vs. d for the MaxBCG samples (red diamonds) and for

the cluster measurement compilation presented in Bahcall et al. (2003) (black squares) and

compare those with the power-law ΛCDM relation of Eqn. (23) (dashed curve). We have

not plotted the SDSS EDR results of Bahcall et al. (2003), since they come from a subset

of the current data and are therefore not independent of the new results we show here.

As Fig. 7 shows, the correlation function results given here are broadly consistent with

those from previous cluster samples, including the scaling of the correlation length with

richness or mean separation. However, the correlation amplitude is slightly higher than the

ΛCDM prediction of Eqn. (23), by about 14 (8) % for σz = 0.01 (0.007); the cluster bias is

higher by the same factor. To decide whether this difference is significant will require more

precise modeling of the maxBCG photo-z error distribution as a function of richness and

redshift. In addition, Eqn. (23) has been derived for mass-selected catalogs, and it therefore

uses a different selection function from the observations.

As noted in §3.2.3, we can compare the results for a photo-z dispersion of σz = 0.01 with

those for σz = 0.007 to estimate the systematic error due to the uncertainty on the dispersion

σz. For the N200 ≥ 10 sample, the resulting systematic error on the correlation length is

∆R0 = 1.13, about three times larger than the statistical error; for the correlation slope

the systematic error is ∆γ = 0.22, about twice the statistic error. Including this systematic

largely eliminates the discrepancy between the data and the model of Eqn. (23), as Fig. 7

shows. As noted in §3.2.3, this systematic can be reduced by more careful modeling of σz

and its redshift dependence.

5.2. Correlation function on large scales

Here we consider the cluster correlation function measured over a larger range of scales,

from 20 to 195 h−1 Mpc, and compare the results with the theoretical model of §3. We

describe the model correlation function for each MaxBCG sample by a two-parameter model,

ξ̃cc(r̃; s, b) = b2 ξ̃mm(r̃ ∗ s) , (24)
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where r̃ is the separation in photo-z space, ξ̃mm is the matter correlation function of Eqn.

(4), corrected for photometric redshift errors as described by Eqn. (14), assuming σz = 0.01,

and the parameter s is described below. For comparison, we also show results for the model

fits using the analytic correction of Eqn. (8) for the photo-z errors. Note that, in fitting for

the cluster linear bias parameter b, we fix the linear matter power spectrum amplitude σ8 to

its fiducial value of 0.9; in actuality, the fit constrains the product b(σ8/0.9).

In this model, we have assumed that small variations in the cosmological parameters

can be incorporated simply as changes in the predicted physical separation r, i.e., by the

scale shift parameter s defined by

s ≡
[
D2

M(z; p)

H(z; p)

]1/3 [
H(z; p∗)

D2
M(z; p∗)

]1/3

. (25)

Here, z is the median survey redshift, H(z; p) is the Hubble parameter, DM(z; p) = [c/(1 +

z)]
∫ z

0
dz′/H(z′) is the comoving angular diameter distance, and p represents the cosmological

parameters (Seo et al 2003; Eisenstein et al. 2005; Angulo et al. 2008; Seo & Eisenstein

2007; Huetsi 2007); p∗ represents the fiducial set of cosmological parameters enumerated at

the end of §2.2. The scale shift parameter involves a geometric average of the two transverse

components and the line-of-sight component and therefore applies to spherically averaged

separations r. Although the s parameter does not capture the full cosmological parameter

dependence of the correlation function, it does describe the effects of small cosmological

parameter variation on the location of the baryon acoustic peak to the accuracy we need

(Blake & Glazebrook 2003). It is therefore a convenient model parametrization for the

purpose of determining the significance of the BAO feature.

To assess the significance of a possible BAO feature, we also compare the data to a

model with no BAO feature in the linear power spectrum, computed using the smooth

transfer function of Eisenstein & Hu (1998). In the no-BAO case, the uncertainties in

the measurements of the cluster correlation functions do not allow a meaningful constraint

on the shift parameter s: with a flat prior on it, s tends to unphysically small values,

particularly if we restrict the analysis to relatively large scales (r & 60 h−1 Mpc). In the

computation of the χ2 statistic, we therefore introduce, for both the BAO and no-BAO cases,

a Gaussian prior on the parameter s, with central value s = 1 (corresponding to our fiducial

cosmology) and standard deviation of 0.05, consistent with the current uncertainties in the

relevant cosmological parameters Ωmh2 and Ωbh
2 from WMAP CMB observations (Spergel

et al. 2007). Since we are not attempting to constrain cosmological parameters with this

measurement but only gauging the significance of a possible BAO feature, this prior on s

simply allows us to make a sensible comparison between the BAO and no-BAO models.
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Fig. 8.— Measured correlation functions for the four MaxBCG samples (points) in 36 linear

separation bins from r = 20 to 195 h−1 Mpc. Best-fit ΛCDM models from the two-parameter

fits with BAO features (solid red curves) and without acoustic features (dashed red curves).

Error bars on the data points are estimated using the jackknife, while the shaded green areas

show the linear theory (Gaussian) predictions for the errors. Insets show close-ups of the

region around the expected BAO feature.
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Fig. 9.— Same as fig. 8 but showing ξ(r)r2 to emphasize the large-scale features.
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5.2.1. Results

Figs. 8 and 9 show the measured cluster correlation functions together with the best-fit

models from the two-parameter analysis both with and without acoustic features and using

the geometric correction for photo-z errors. The error bars on the data points correspond

to one standard deviation from the diagonal of the jackknife covariance matrix; since the

covariance matrix is non-diagonal, the points in different separation bins are correlated.

For each sample, the green shaded region shows the Gaussian prediction for the standard

deviation, plotted around the best-fit model.

In Table 4 we present the best-fit values for the two parameters b and s for the four

MaxBCG samples and the corresponding χ2 values. The fits are based on measurements in 36

linear bins ranging in separation r̃ from 20 to 195 h−1 Mpc, resulting in 34 degrees of freedom.

For the upper rows of the Table, the correlation function covariance is determined from the

jackknife method; the lower rows show results using the linear perturbation theory covariance

matrix, Eqn. (17). Note that the linear theory covariance estimate requires knowledge of the

linear bias factor b, which is one of the parameters we are aiming to extract from the data.

We therefore first estimate the linear covariance using the values of b from the jackknife

error fits; the resulting linear theory covariance estimates are then used to recompute the χ2

values and extract new estimates of b and s.
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Table 4: Best-fit values for the parameters b, s from ξ̃cc(r̃) measurements for the four

MaxBCG samples, using the covariance from the jackknife method (upper rows) and from

the Gaussian analytic prediction (lower rows), with the error on b marginalized over s. Last

column displays χ2 difference between the best BAO and no-BAO fits. The fits use the

geometric correction for photo-z errors with σz = 0.01 and measurements over the range

20 ≤ r̃ ≤ 195 h−1 Mpc. The χ2 value corresponds to 34 degrees of freedom.
sample BAO fits no-BAO fits

N200 ≥ b s χ2 b s χ2 ∆χ2

Covariance matrix from jackknife

10 2.80 ± 0.13 0.96 24.6 2.79 ± 0.14 0.96 26.6 2.0

11 2.91 ± 0.15 0.97 22.3 2.90 ± 0.16 0.98 23.8 1.5

13 3.26 ± 0.20 0.97 18.0 3.25 ± 0.20 0.98 18.9 0.9

16 3.76 ± 0.24 1.02 19.2 3.74 ± 0.25 1.03 20.5 1.3

Covariance matrix from linear theory

10 2.86 ± 0.11 0.98 93.1 2.86 ± 0.13 1.00 95.5 2.4

11 2.95 ± 0.12 0.97 97.9 2.95 ± 0.13 0.99 100.2 2.3

13 3.35 ± 0.14 1.00 77.9 3.37 ± 0.16 1.02 79.7 1.8

16 3.96 ± 0.19 1.04 76.5 3.98 ± 0.20 1.07 78.4 1.9
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Using the jackknife error estimates, the N200 ≥ 10 sample shows a difference in χ2 be-

tween the BAO and no-BAO models of ∆χ2 = 2; this corresponds to a marginal significance

of 1.4σ for the BAO feature. Using the same sample, Huetsi (2007) found a somewhat larger

significance of about 2σ for the BAO feature from a power spectrum analysis. Using the

jackknife error and computing the theoretically expected χ2 difference for this sample between

the BAO and no-BAO models, the typical expected difference corresponds to only 1σ. That

is, given the photo-z errors and the sample size, we would not expect a priori to find a

highly significant BAO detection from this sample, as noted in §3.2.3. The significance of

the BAO feature generally goes down as the cluster richness threshold is increased, reflecting

the larger Poisson errors for these smaller samples. The values for the bias parameter trend

upward with increasing cluster richness, as expected on theoretical grounds—more massive

clusters are more strongly clustered (see §5.3)—and consistent with the results on smaller

scales (§5.1).

If we drop the 5% Gaussian prior on the shift parameter s, the correlation function data

of the N200 ≥ 10 sample constrains it to the 1σ range s = 0.92 ± 0.08 for the BAO model

fit and the jackknife covariance matrix. The 8% error on s, roughly twice that for the SDSS

spectroscopic LRG sample (Eisenstein et al. 2005), does not yield a significant constraint

on cosmological parameters.

The same analysis carried out using the Gaussian (linear theory) error covariance yields

significantly larger values for the χ2 statistic in all samples, a sign that this method possibly

underestimates the errors. However, the differences in χ2 between the BAO and no-BAO

models are comparable to though slightly larger than those for the jackknife errors. In the

N200 ≥ 10 case, for instance, ∆χ2 = 2.4, corresponding to a significance of 1.5σ.

5.2.2. Analytic photo-z error correction
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Table 5: Same as Table 4 but using the analytic photo-z error correction of Eqn. (8).

sample BAO fits no-BAO fits

N200 ≥ b s χ2 b s χ2 ∆χ2

Covariance matrix from jackknife

10 2.84 ± 0.14 0.94 24.3 2.82 ± 0.15 0.95 26.7 2.4

11 2.96 ± 0.16 0.96 21.9 2.94 ± 0.17 0.97 23.6 1.7

13 3.32 ± 0.20 0.97 17.6 3.30 ± 0.21 0.98 18.7 1.1

16 3.82 ± 0.25 1.01 19.0 3.82 ± 0.27 1.02 20.5 1.5

Covariance matrix from linear theory

10 2.89 ± 0.12 0.96 91.7 2.88 ± 0.14 0.98 94.7 3.0

11 2.98 ± 0.13 0.96 96.4 2.98 ± 0.14 0.98 99.2 2.8

13 3.38 ± 0.15 0.98 76.7 3.38 ± 0.17 1.00 79.0 2.3

16 3.99 ± 0.20 1.02 75.6 4.00 ± 0.22 1.04 78.1 2.5
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Fig. 10.— Best-fit models to r2ξ(r) for the N200 ≥ 10 sample, assuming different errors on the

photometric redshift determination: σz = 0 (no correction, dotted black curve), σz = 0.005

(short-dashed blue curve), σz = 0.007 (long-dashed magenta curve), σz = 0.01 (continuous

red curve), and σz = 0.02 (dot-dashed green curve), using the geometric photo-z correction.
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To gauge the robustness of these results, in Table 5 we present the model fits using the

analytic photo-z correction of Eqn. (8) in place of the geometric correction. The best-fit

values of the parameters as well as the absolute values and differences in χ2 are close to and

consistent with those presented above. The values of the bias parameters and the significance

of the BAO feature are both slightly higher in this case. This is traceable to the fact that

the analytic photo-z correction leads to slightly less smoothing of the correlation function

than the geometric correction for σz = 0.01, as can be seen from Fig. 3. On one hand,

reduced smoothing decreases the correlation amplitude at small scales, where the error bars

are smaller. On the other hand, a more pronounced (less smoothed) acoustic peak better

fits the excess of power at scales of about 110 h−1 Mpc that is clearly visible in the data

in Fig. 9. For the N200 ≥ 10 sample, the significance of the BAO feature here is about

1.5 - 1.7σ, depending on the covariance estimate (jackknife or linear), closer to the result of

(Huetsi 2007), which used the same analytic photo-z error correction to the power spectrum.

5.2.3. Dependence on photometric redshift error
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Table 6: Best-fit values for the 2-parameter analysis of the N200 ≥ 10 sample assuming

different values for the photometric redshift error σz. The middle rows correspond to the

geometric correction, the lower ones to the analytic method. Here we assume jackknife

covariance, and there are 34 d.o.f. for the χ2 analysis.
BAO fits no-BAO fits

σz b s χ2 b s χ2 ∆χ2

No photo-z correction

0 2.30 0.90 39.6 2.17 0.86 43.6 4.0

Geometric photo-z correction

0.005 2.27 0.88 31.8 2.19 0.86 33.8 2.0

0.007 2.44 0.90 27.8 2.39 0.89 29.6 1.8

0.01 2.81 0.96 24.6 2.79 0.96 26.6 2.0

0.02 4.20 1.14 36.1 4.19 1.15 36.2 0.1

Analytic photo-z correction

0.005 2.28 0.88 31.7 2.22 0.86 33.2 1.5

0.007 2.51 0.91 27.6 2.45 0.90 29.5 1.9

0.01 2.84 0.94 24.3 2.82 0.95 26.7 2.4

0.02 3.85 1.02 25.0 3.88 1.04 26.3 1.3
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Here we assess the impact of uncertainties in the photometric redshift errors on the

results. We carry out the analysis of the N200 ≥ 10 sample using different values of the

photo-z dispersion σz. In Table 6 we present the best-fit parameter and χ2 values for σz = 0,

0.005, 0.01, and 0.02 for both the geometric and analytic photo-z error corrections. The

significance of the BAO feature (∆χ2) is not strongly dependent on the photo-z dispersion,

except for the case σz = 0.02, which is twice as large as estimated from the maxBCG catalog.

Fig. 10 shows the best-fit models of table 6 using the geometric photo-z correction, compared

to the data for the N200 ≥ 10 sample.

As we discussed in §5.1, we can use the difference in results for σz = 0.01 and σz =

0.007 to derive an approximate systematic error estimate for the bias parameter due to the

uncertainty in σz. For the N200 ≥ 10 sample, a difference of ∆σz = 0.003 corresponds

to a difference of ∆b = 0.37. As we noted for the correlation length in §5.1, this error is

significantly larger than the statistical error of about 0.14 for this sample. However, this

systematic error estimate is quite conservative. Moreover, any redshift dependence of σz can

be included in the geometric method and should not be counted as a systematic error. We

postpone a more detailed discussion of this point to a future paper.

5.2.4. The integral constraint

So far we have not modeled the impact of the integral constraint, which arises from

the fact that the integral of the two-point function over the survey volume is assumed to be

zero when estimating the sample density in Eqn. (1). One can model this by including an

additive constant c in the correlation function,

ξ̃obs = b2
[
ξ̃mm(r̃; s) + c

]
. (26)

We find that the improvement to the model χ2 by treating this term as an extra free parame-

ter is very small. For instance, for the N200 ≥ 10 sample, the analysis of this three-parameter

model gives a marginalized value of c = 0.0002±0.0003, consistent with zero, while it changes

the best-fit values for b and s by amounts much smaller than their statistical errors. Com-

pared to the two-parameter model above, the value of the best-fit χ2 decreases by only 0.4

(for 34 d.o.f.) for both the BAO and no-BAO models.
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Fig. 11.— 1-σ contour plots for b, s, and c × 103 (dashed, blue curves) marginalized over

the third parameter, for the N200 ≥ 10 sample.. Upper left panel also shows results of a

2-parameter analysis (b and s: red, continuous line) for comparison.
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To illustrate these points, in the upper left panel of Fig. 11 we show the 1-σ contour

for the 2-parameter analysis (red, continuous line) compared to the 3-parameter analysis

in which we marginalize over c (blue, dashed lines) for the N200 ≥ 10 sample. In the

latter case, we do not impose the WMAP prior on the shift parameter s, and we only

consider the baryonic model. Other panels show contours for c versus b and s, marginalized

over the missing parameter. The degeneracy between the bias and shift parameters is not

significantly affected by the introduction of c. The additive constant also does not introduce

large degeneracies with the other two parameters, and its allowed values are consistent with

zero.

5.2.5. Sample Purity

According to Koester et al. (2007a), the MaxBCG cluster sample is estimated to be

about 90% pure. As a simple test of the effects of sample purity on the correlation function,

we replace 10% of the clusters in the N200 ≥ 10 sample with randomly distributed points.

As expected, this lowers the correlation function amplitude by a factor of about (0.9)2,

corresponding to a ∼ 10% systematic uncertainty in the bias, with negligible change in the

shift parameter s. We also find slightly lower values for the χ2, particularly for the no-BAO

models, when the jackknife covariance and the geometric correction for photo-z errors are

used. This results in a significantly lower value for the χ2 difference between the BAO and

the no-BAO model, ∆χ2 = 0.7.

5.3. Cluster bias

Here we compare the values obtained for the cluster bias parameters for the different

richness samples with the theoretical predictions that can be derived in the framework of

the Halo Model (Mo & White 1996; Mo et al. 1996; Sheth & Tormen 1999). We also

translate the bias-richness relation into a measurement of bias vs. halo mass, using the

mass-richness relation derived from statistical weak lensing measurements for this cluster

sample in (Johnston et al. 2007).

For this analysis, we compare results using three different separation intervals: r =

20−60 h−1 Mpc, 20−195 h−1 Mpc, and 60−195 h−1 Mpc. The resulting values for the linear

bias are given in Table 7, and the corresponding fits to the data of the N200 ≥ 10 sample

are plotted in Fig. 12. As in the previous section, the 1− σ errors on b are determined after

marginalizing over the shift parameter s, including the 5% Gaussian CMB prior on s. The
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ΛCDM model with BAO is assumed.
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Table 7: Linear cluster bias parameter b estimated for the different samples, using differ-

ent ranges in the separation r̃ and the jackknife covariance matrix. The values have been

marginalized over the shift parameter s, using a Gaussian prior with mean s = 1 and disper-

sion σs = 0.05. We use the geometric photo-z error correction with σz = 0.01 and assume

σ8 = 0.9 for the mass clustering amplitude.
sample range [ h−1 Mpc]

N200 ≥ 20 ≤ r̃ ≤ 195 20 ≤ r̃ ≤ 60 60 ≤ r̃ ≤ 195

10 2.81 ± 0.13 2.87 ± 0.16 3.21 ± 0.37

11 2.91 ± 0.15 2.96 ± 0.17 3.35 ± 0.44

13 3.26 ± 0.19 3.33 ± 0.21 3.40 ± 0.55

16 3.76 ± 0.24 3.82 ± 0.27 3.46 ± 0.77
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Fig. 12.— Two-parameter ΛCDM fits to the correlation function of the N200 ≥ 10 sample,

using different separation ranges: r = 20−60 h−1 Mpc (short-dashed blue), 20−195 h−1 Mpc

(solid black), and 60−195 h−1 Mpc (long-dashed red). Here we use jackknife error covariance

and the geometric photo-z error model with σz = 0.01.
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Table 7 indicates that the bias increases with richness, as noted above. The increase

is driven by the measurements on scales r . 60 h−1 Mpc: there is no significant trend of

correlation amplitude with richness on larger scales, because the statistical errors are large

there. In addition, for the N200 ≥ 10 and 11 samples, the bias on scales r & 60 h−1 Mpc

appears to be larger than that on smaller scales, as indicated by the mismatch of the model

fits in Fig. 12. This could be an indication of scale-dependent bias or of extra large-scale

power beyond that expected in ΛCDM, as also suggested by the photometric LRG analyses

(Blake et al. 2007; Padmanabhan et al. 2007), but the trend is not statistically significant

given the errors for the current sample.



– 46 –

Fig. 13.— Cluster bias as a function of richness. The data points correspond to the values

measured in the correlation function analysis, Table 7, with geometric correction for photo-z

errors. Points correspond to different separation ranges for the measurement: r = 20 to

195 h−1 Mpc (black), 20 − 60 h−1 Mpc (blue), and 60 − 195 h−1 Mpc (red); the points are

slightly displaced from each other horizontally for clarity. The curves represent the Halo

Model predictions, for which mass has been translated to richness by matching the cluster

counts to the halo mass function at z = 0.22. Dashed curve assumes zf = zo, and the

continuous curve accounts for the distribution of formation redshifts [Eqn. (34)]. Shaded

regions around the HM curves show the errors due to 20% uncertainty in the survey volume.

Left panel: assuming σ8 = 0.9 for the linear power spectrum normalization; Right panel:

σ8 = 0.8. Here the bias values measured from the correlation function have been rescaled by

0.9/0.8 since the clustering amplitude is proportional to (bσ8)
2.
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The Halo Model (hereafter HM) provides an analytic expression for the bias of halos

as a function of halo mass, bh(M) (Mo & White 1996; Mo et al. 1996; Sheth & Tormen

1999). We can therefore express the expected value for the bias of a given cluster richness

sample as

b ≃ 1

nc

∫ ∞

Mmin

dMnh(M, z) bh(M, z) , (27)

where nh(M, z) is the mass function of dark matter halos at redshift z, and bh(M, z) is the

halo bias function from HM. The threshold mass Mmin for a given richness sample can be

determined by requiring that the theoretical cluster number density,

nc =

∫ ∞

Mmin

dMnh(M, z) , (28)

matches the observed value for the sample. The implicit simplifying assumption in this

matching is that halo mass is a monotonic function of cluster richness, with no scatter in

the relation between them.

We use the Sheth & Tormen (Sheth & Tormen 1999) formula for nh(M, z),

nh(M, z) = − ρ̄

M2

d lnσ

d lnM
f(ν) , (29)

where ν = δc/σ(M, z) with δc = 1.686, σ2(M, z) is the variance in the linear density pertur-

bation amplitude on mass scale M at redshift z, and the function

f(ν) = A

√
2q

π

[
1 + (qν2)−p

]
νe−qν2/2 , (30)

with A = 0.322, p = 0.3, and q = 0.707. We neglect the mild dependence of the critical

density δc on the value of Ωm(z), using the constant value from spherical collapse in an

Einstein-de Sitter Universe. For our fiducial cosmology, and assuming the survey volume

to be 0.5 h−3 Gpc3, by matching the number densities we find for our four samples the

theoretical mass thresholds Mmin = 8.6, 9.9, 12.5 and 16.7 × 1013 h−1 M⊙, respectively for

N200 ≥ 10, 11, 13 and 16. Note that these mass estimates are about a factor of two higher

than those inferred directly from weak lensing measurements for the same cluster sample

(§2.1) (Johnston et al. 2007), a point to which we return below.

The halo bias function bh, which depends on both the redshift of observation zo and on

the redshift of formation zf of the halos, is given in the HM by (see, e.g., Mo et al. (1996);

Scoccimarro et al. (2007))

bh(M, zo, zf) = 1 +
qν2(zf ) − 1

δf (zo, zf)

+
2p/δf(zo, zf)

1 + [ q ν2(zf) ]p
, (31)
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where δf(zo, zf) = δcD(zo)/D(zf ), with D(z) the linear perturbation growth function. In

estimating the bias, it is sometimes simply assumed that the redshift of formation and

observation coincide, zo = zf , in which case Eqn. (31) can be substituted directly into

Eqn. (27) to calculate the expected bias for a given cluster sample. However, this assumption

is clearly not realistic.

To treat the more plausible case zf > zo requires a prescription for the probability

distribution of the redshift of formation zf for clusters of mass M observed at redshift zo.

This issue was first explored in (Lacey & Cole 1993, 1994), where the formation time of a

halo observed at redshift zo is defined as the time when the most massive progenitor accreted

a mass equal to half the final mass. They also provided relatively simple formulas to compute

the formation redshift distribution based on the spherical collapse model. Here we make use

of Giocoli et al. (2007), where an improved estimate of the formation time is proposed and

compared to N-body simulations. We consider the rescaled probability for the redshift of

formation zf of a halo of mass M observed at redshift zo to be given by

p(ω) = 2 ω erfc(ω/
√

2) , (32)

where

ω =
√

q
δf (zo, zf ) − δf (zo, zo)√
σ2(M/2, zo) − σ2(M, zo)

, (33)

and where, as above, q = 0.707. The bias for halos of mass M observed at redshift zo is then

given by

bh(M, zo) =

∫ ∞

zo

bh(M, zo, zf) ×

p[ω(M, zo, zf)]
dω(M, zo, zf)

dz
dz (34)

where the function bh(M, zo, zf ) is given by Eqn. (31), and we assume zo = 0.22 as the mean

redshift of observation for the cluster sample.
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Fig. 14.— Bias vs. halo virial mass. Points indicate data from the cluster correlation

function using the full separation range r = 20 − 195 h−1 Mpc. Cluster richness has been

translated into halo virial mass using the weak lensing relation of Eqn. (35). The smaller

(black) horizontal error bars correspond to the weak lensing measurement uncertainty on

the constant of proportionality Mvir|20 in the mass-richness relation (Johnston et al. 2007),

while the larger (red) horizontal error bars also include a 50% scatter in halo mass at fixed

richness. The position of the data point itself is the mean value in both cases; the inferred

mass is slightly smaller when the intrinsic scatter is taken into account. Solid curve shows

halo bias prediction, bh(M, z), from the Halo Model, using the mean cluster redshift z = 0.22.

Left panel: assuming σ8 = 0.9; Right panel: σ8 = 0.8.
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Fig. 13 shows the predicted HM values for the cluster bias as a function of richness

and compares them with the values of the bias parameters obtained from the correlation

function analysis (Table 7). The dashed curve corresponds to the approximation zo = zf ,

while the continuous curve uses the more realistic treatment of Eqn. (34). The shaded areas

around the curves represent the errors on these predictions assuming an uncertainty in the

survey volume of 20%. The right panel of Fig. 13 shows the HM results with a lower power

spectrum amplitude than our fiducial value, σ8 = 0.8. The HM prediction, including the

treatment of the formation redshift, appears to be in satisfactory agreement with the cluster

correlation function measurements, especially for the lower value of σ8. We also note that our

result for the N200 ≥ 10 sample is in good agreement with the value for the bias parameter

obtained from the power spectrum analysis of the same sample in Huetsi (2007), that is,

b = 3(σ8/0.85).

In Fig. 13, the HM prediction for halo bias vs. mass has been translated to bias vs.

richness by using the number density matching condition in Eqn. (28). As noted above, the

halo mass for given richness derived from this procedure is a factor of two higher than that

inferred more directly from statistical weak lensing measurements (Johnston et al. 2007),

which suggests that the HM curves in Fig. 13 should perhaps be shifted horizontally to the

right by about a factor of two in N200 (since halo mass is close to linear in richness). A

plausible cause of this mismatch is the neglect of the large scatter (∼ 50%) in the mass-

richness relation (Rozo et al. 2007b) when matching the number density of clusters to the

theoretical density of massive halos.

To address this problem, we can dispense with the number-density matching and instead

make use of the weak lensing results to translate optical cluster richness to halo virial mass,

i.e., we can translate the cluster correlation function measurements into a measure of bias vs.

halo mass, with a minimum of theoretical assumptions. Those results can then be compared

directly with the HM predictions for bh(M). Using statistical weak lensing measurements,

Johnston et al. (2007) found the mean relation between halo virial mass and cluster richness

to be

Mvir(N200) = Mvir|20

(
N200

20

)αN

, (35)

where Mvir|20 = 1.1× 1014 h−1 M⊙ and αN = 1.29. The combined statistical plus systematic

error on Mvir|20 is about 17%; the corresponding error on the exponent αN is about 3%.

However, as noted above, the intrinsic scatter in the mass at fixed richness is larger, of order

50%. Including that scatter, we can calculate the distribution of halo masses, P (Mvir), for

each of the four cluster richness samples. For each sample, we use the mean of the P (Mvir)

distribution as the effective mean halo mass and the 68% confidence interval to denote the

spread in mass. In recent work Rozo et al. (2008) have shown that the mass calibration
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in Eqn.(35) has a bias that can be corrected by boosting the virial masses by 18%, this

correction is applied in the results presented here.

The resulting bias vs. mass relation inferred from the cluster correlation function and

weak lensing mass-richness calibration is shown by the data points in Fig. 14 for σ8 = 0.8

and 0.9. For comparison, the linear halo bias vs. mass relation from HM is shown by the

solid curve. The measured cluster bias at the central effective halo mass for each richness

sample appears to be about ∼ 15−20% higher than the HM prediction, with a slightly lower

discrepancy for lower σ8. This is consistent with the results of §5.1. To further illustrate this

trend, in Fig. 15 we show the same comparison for σ8 = 0.7, where the agreement between

the measurements and the HM is further improved. The fact that the measured bias is

slightly higher than that predicted from the HM could be an indicator of halo assembly bias

(Wu et al. 2008).
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Fig. 15.— Same as Fig. 14 but for σ8 = 0.7.
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6. Conclusions

We have measured the large-scale 3D correlation function for four richness samples in the

MaxBCG catalog of optically selected galaxy clusters from the SDSS, currently the largest

cluster catalog available. Since the cluster redshifts in this sample were estimated photo-

metrically, our modeling of the observed correlation function includes a careful treatment of

the impact of photo-z errors. The geometric approach to photo-z errors we have introduced

should be of broad utility in the analysis of future large photometric galaxy surveys.

On scales r = 20 − 60 h−1 Mpc, the cluster correlation function is well fit by a power

law in separation, with a correlation scale R0 that increases with cluster richness. We have

determined the relation between the correlation scale R0 and the mean cluster separation

d, finding qualitative agreement with the compilation of previous cluster measurements pre-

sented in Bahcall et al. (2003). The scaling of R0 with d is also consistent with that predicted

in N-body simulations of ΛCDM (Younger et al. 2005), but with a slightly (10−15%) higher

value of R0 at fixed d.

We have modeled the large-scale correlation function on scales r = 20 − 195 h−1 Mpc

using a non-linear model of the ΛCDM power spectrum that includes the effects of non-linear

damping of the baryon acoustic peak. Non-linear damping, coupled with the estimated

photo-z errors, imply that we do not expect a robust detection of the BAO feature in

these samples. Indeed, we find that the data set does not yield a clear detection of baryon

acoustic features in the correlation function: for the largest sample considered, N200 ≥ 10,

the significance for the best-fit BAO model with respect to a featureless model is about

1.4 − 1.7σ, depending on whether the covariance matrix is determined using the jackknife

procedure or linear perturbation theory.

Comparison of the clustering on scales less than and greater than r ∼ 60 h−1 Mpc

provides weak evidence that the clustering amplitude for the N200 ≥ 10 and 11 samples

is larger on large scales than on small scales, relative to a ΛCDM power spectrum. Such

a suggestion of extra large-scale power has also been seen in the clustering of the SDSS

photometric LRG sample (Blake et al. 2007; Padmanabhan et al. 2007), but statistical

confirmation will require samples covering larger volumes.

Finally, we have combined the clustering measurements with weak lensing calibration

of the mass-richness relation (Johnston et al. 2007) to directly infer the bias as a function

of halo mass, a fundamental quantity in studies of structure formation. Again, the trend of

increasing bias with halo mass is qualitatively consistent with the predictions of ΛCDM, but

the amplitude of the bias is ∼ 15−20% higher than the model prediction. This disagreement

is reduced for lower values of the power spectrum amplitude σ8. Given the large intrinsic
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scatter in the relation between halo mass and cluster optical richness, however, as well as

uncertainty in the photo-z error dispersion σz, it is not yet clear whether this is a significant

discrepancy. Moreover, an elevated cluster bias could be a sign of assembly bias (Wu et al.

2008).
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