
Abstract—The standard least-squares curved track fitting 
process is tailored for FPGA implementation so that only integer 
multiplications and additions are needed.  To further eliminate 
multiplication, coefficients in the fitting matrices are carefully 
chosen so that only shift and accumulation operations are used in 
the process.  Comparison in an example application shows that 
the fitting errors of the multiplierless implementation are less 
than 4% bigger than the fitting errors of the exact least-squares 
algorithm.  The implementation is suitable for low-cost, low-
power applications in high energy physics detector trigger 
systems. 

Index Terms—Trigger, Track Fitting, FPGA Firmware, FPGA 
Computing 

I. INTRODUCTION 
N high-energy physics experiments, track fitting is 
traditionally considered a software task implemented in the 

higher level trigger and analysis stages.  It is now possible to 
do track fitting in FPGA based lower level trigger systems.   A 
successful example of track finding and fitting in high rate 
hadron collider trigger applications is the Fermilab CDF 
Silicon Vertex Trigger system [1-3]. 

Although implementing a fitting algorithm in today’s large 
FPGA’s is possible, without the judicious use of resources, 
cost and power consumption quickly become major concerns. 
Power-hungry operations requiring significant silicon 
resources, like the multiplications and divisions in many 
algorithms, can be replaced by less resource-intensive 
operations such as shifts, additions and subtractions. Such 
replacements can dramatically reduce the number of FPGA 
logic elements and thereby power consumption, justifying a 
minimal loss in precision. 

In this paper, we describe a curved track fitter suitable for 
FPGA implementation that uses only integer multiplications 
and additions.  The fitter is based on a standard least-squares 
algorithm with modifications to the matrix coefficients.  A 
multiplierless version of the fitter is also discussed in which 
only shift and addition operations are used.  The fitter is 
designed to match the data fetching speed so that it can be 
used to process a flowing data stream in trigger and DAQ 
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systems. 
Our FPGA curved track fitter was originally developed for 

the level 1 pixel trigger of the Fermilab BTeV experiment 
[4][5].  The pixel detector consists of measurement planes as 
shown in Fig. 1. 

 

Raw hit data from the pixel planes are first sent through 
several stages for time stamp ordering, combining into hit 
clusters, and generating hit coordinates before sending to 
FPGA based segment trackers.  Possible detector 
misalignments are also corrected while generating the 
coordinates.  In the segment tracker, hits from three 
neighboring planes are grouped into inner and outer triplets 
representing, respectively, the beginning and ending segments 
of complete tracks. One possible implementation of the triplet 
finding algorithm is the “Tiny Triplet Finder” (TTF)[6].  Once 
the inner and outer triplets are found, they are then matched to 
form complete tracks in order to identify all hit coordinates 
belonging to a track. This complete set of coordinates can then 
be used by the track fitter to estimate the track parameters.  In 
the original baseline design of the BTeV trigger system, the 
track fitting is done in a CPU-based higher level trigger farm, 
partially because the hits from the full detector were not 
available until reaching the CPU farm.  With the latest 
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Fig. 1.  Tracks in the BTeV detector: (a) The configuration for tracks with an 
odd number of hits.  (b) The configuration for tracks with an even number of 
hits. 
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proposed change to the baseline architecture [7], events are 
built parasitically in the early stages.  Hits from the full 
detector are, therefore, available to the FPGA segment tracker, 
making it possible to perform track fitting at this stage of the 
trigger. 

Although the FPGA fitter described in this paper was 
originally developed for a low level trigger system, it can also 
find application in higher level trigger and analysis stages. One 
could easily imagine its implementation in an FPGA based 
reconfigurable co-processor.  Such a fast and fairly precise 
track fitter occupying a small footprint will be of great value to 
applications requiring the fast and efficient filtering of 
interesting events. 

In Appendix A, we discuss why the errors produced by the 
approximations in the multiplierless algorithm are negligible.  
According to Equation (A14) derived from Theorem 1, the 
multiplierless algorithm or other approximations can be used 
in any function-fitting processes based on least-squares method 
without increasing the fitting errors significantly. 

II. PRINCIPLE 

A. Computations for Track Fitting 
In the detector with magnetic field along x-axis, a track is 

projected to both the non-bend and bend views and its 
equations can be written approximately: 
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A track has either an odd or an even number of hits.  The 
center of the track is chosen with z=z0 as shown in Fig. 1.  The 
parameters x0 and y0 are offsets of the track and l and h are 
slopes at track center.  The parameter η represents the track 
momentum.  With a set of coordinate measurements xi and yi,
the parameters of the tracks can be found with the following 
linear combinations. 
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The coefficients can be chosen nearly freely as long as the 
following constraints are satisfied: 
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For example, the least-square fit is an algorithm that yields 
minimum fitting error.  The bend view parameters of the least-
square fitting are linear combinations given in the following 

with coefficients satisfying the constraints above: 
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For other choices of the coefficients in the linear 
combination, the errors of the fitting are bigger, but each 
choice is still considered as a valid fitting algorithm. 

B. Non-Division Integer-Only Operations for FPGA 
In general, the computations above need floating point 

multiplications and divisions.  To simplify the process so that 
it can be done in an FPGA with low resource usage, the 
advantage of invariance of Equations (2) through (7) under re-
scaling is taken.  Each set of coefficients can be multiplied 
with a common factor so that the sums in the denominators in 
Equation (2) become 32, 512 or 4096.  The constraints for the 
coefficients can be summarized as following: 
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Then the linear combinations for calculating the track 
parameters can be rewritten: 
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The unit of measured coordinates x[i] and y[i] are chosen so 
that they are integers.  For example, the channel numbers or 
their integer multiples in the silicon pixel detector can be used 
as the hit coordinates.  The coefficients in the linear 
combinations are also chosen to be integers and the results of 
the linear combinations: xx32, ll512, yy32, hh512 and eta4096 are 
also integers, representing the corresponding parameters 
scaled by factors of 32, 512 and 4096, respectively.  Note that 
divisions are not needed anymore.  The only computations 
needed in Equation (14) are integer multiplications and 
accumulation. 

The unit in the z direction is chosen so that the separation 
between two detector planes is 2.  With this unit, the possible 
values of (zi - z0) are also integers, which are even when the 
number of hits is odd with the middle plane being 0 and are 
odd when the number of hits is even with the two center 
detector planes being -1 and +1. 

With this simple scaling, the fitting process can be 



implemented in FPGA devices with integer multipliers such as 
the Altera Cyclone II [8] family devices.  Bigger scaling 
factors such as 8192, 16384 etc. can also be chosen if better 
calculation precision is required. 

C. Eliminating Full Multiplications 
To reduce computations further, the coefficients in the 

linear combinations are limited to the “weight-two” or “two-
bit” integers, e.g., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 
which are 2m+2n or 2m-2n with positive integers m and n. An 
example of choosing e[i] for tracks with odd numbers of hits is 
shown in Table I. 

 
The columns of ei in Table I represent coefficients derived 

from the least-squares fitting.  The e[i] coefficients are chosen 
in a spread sheet, guided by the ei coefficients.  Since the 
parameterization of the track in Equation (1) is chosen with 
symmetry around z0, the coefficients for the least-squares 
fitting are also symmetric.  Some symmetric properties of the 
coefficients are sufficient conditions for certain constraints in 
Equations (9) though (13).  For example, the symmetric 
property ei = e-i exists and with this property, the constraint 
Σei(zi-z0)=0 is satisfied automatically.  Appropriate symmetries 
are programmed in the spread sheet cells so that the constraints 
and scaling requirement are satisfied with minimum hand 
editing.  In our work, the coefficient selection is semi-
automatic.  Clearly it is not too difficult to write a fully 
automatic program to choose the coefficients. 

The relative errors contributed by the parameter η for both 
algorithms are calculated.  The relative error here is defined as 
transverse reconstruction RMS error after projecting the track 
by half-length (L/2) from the first or last hit of the track, with 
the unit of the RMS error of the y[i] measurements.  Assume 
the errors of the y[i] measurements δyi are independent and 
they have the same RMS value δy, then the error of the 
calculating parameter η can be estimated: 
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The assumption of independence of the measurement errors 
may not hold if most tracks are high momentum and parallel. 

But for typical events with various track angles, it is a good 
approximation.  The transverse reconstruction RMS error δY
after projecting the track by half-length from first or last hit of 
the track, i.e., (z-z0) = 2(L/2), can be calculated: 
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More precisely, the values in row “Error” of Table I are 
defined as (δY/δy).  The choice of error-scaling here reflects 
the typical application in our detector.  When charged tracks 
come from the interaction point with small angles, they travel 
long distances before hitting the detector planes and produce 
long tracks with many hits.  On the other hand, shorter tracks 
with few hits are those coming from interaction points with 
larger angles and hit the first detector planes after traveling 
short distances.  Therefore, the projections needed for tracks 
are often proportional to their lengths recorded in the detector. 

Note that the “projection” here should just be viewed as a 
rescaling process to bring the fitting errors of a parameter to a 
convenient unit.  It is an estimate for a single parameter only.  
If, for example, the vertex measurement error is needed, the 
errors for all parameters should be considered simultaneously 
since they could be correlated.   

Similarly, the coefficients e[i] and relative errors for tracks 
with even numbers of hits can be calculated as shown in our 
previous document [9]. 

From Table I, it can be seen that the errors increase for the 
multiplierless algorithm compared with the least-squares 
algorithm.  However, the multiplierless fitting algorithm 
increases the track reconstruction errors only slightly (less than 
4%).  

III. FITTING ERRORS AND DISCUSSIONS 
The coefficients of the fitting matrix for the other two 

parameters of a curved track yy32 and hh512 are also calculated 
using similar procedures.  The relative errors, defined as 
(δY/δy), contributed by the three parameters with different 
track lengths for both least-squares and FPGA multiplierless 
algorithms are plotted in Fig. 2. 

 
The multiplierless algorithm used in the FPGA increases the 

fitting errors for all parameters as expected.  However, the 

TABLE I
COEFFICIENTS FOR THE FPGA TRACK FITTER (CURVATURE, ODD HITS)

Half-length of the Track 
16 14 12 10 8 6 4 

z-z0 ei e[i] ei e[i] ei e[i] ei e[i] ei e[i] ei e[i] ei e[i]
-16 5.3 6
-14 3.3 2 7.5 8
-12 1.6 2 4.3 4 11.3 12
-10 0.1 0 1.6 2 5.6 5 17.9 18
-8 -1.1 0 -0.7 -2 1.0 1 7.2 7 31.0 31
-6 -2.0 -3 -2.4 -2 -2.6 -4 -1.2 -1 7.8 8 61.0 56
-4 -2.6 -3 -3.6 -5 -5.1 -5 -7.2 -8 -8.9 -9 0.0 12 146.3 144
-2 -3.0 -3 -4.4 -4 -6.6 -5 -10.7 -9 -18.8 -20 -36.6 -40 -73.1 -64
0 -3.2 -2 -4.6 -2 -7.2 -8 -11.9 -14 -22.2 -20 -48.8 -56 -146.3 -160
2 -3.0 -3 -4.4 -4 -6.6 -5 -10.7 -9 -18.8 -20 -36.6 -40 -73.1 -64
4 -2.6 -3 -3.6 -5 -5.1 -5 -7.2 -8 -8.9 -9 0.0 12 146.3 144
6 -2.0 -3 -2.4 -2 -2.6 -4 -1.2 -1 7.8 8 61.0 56
8 -1.1 0 -0.7 -2 1.0 1 7.2 7 31.0 31

10 0.1 0 1.6 2 5.6 5 17.9 18
12 1.6 2 4.3 4 11.3 12
14 3.3 2 7.5 8
16 5.3 6

Error 2.91 3.02 3.05 3.15 3.22 3.26 3.41 3.43 3.65 3.65 3.93 3.99 4.28 4.29
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Fig. 2 Relative errors between the least-squares fit and the FPGA
multiplierless fit. 



differences are very small.  In other words, the fitting errors 
are relatively insensitive to the variations of the coefficients of 
the fitting matrix. 

It can be seen from Fig. 2 that the relative error contributed 
by the curvature parameter (eta4096) is significantly higher than 
the errors contributed by the offset and slope parameters.  We 
will focus on the curvature parameter in our discussion. 

In general, fitting of longer tracks yields smaller errors due 
to two reasons: longer lever arms and more measurement 
points.  In order to compare these two effects, relative errors 
contributed by the curvature parameter calculated with several 
fitting schemes are plotted in Fig. 3. 

In addition to the least-squares algorithm and the FPGA 
approximation shown in Table I, two other “3-point” 
algorithms are also studied.  One of the 3-point schemes 
calculates eta4096 using hits of the first three detector planes at 
the beginning of a track.  In this case, the lever arm is a fix 
length, despite the extra length provided by additional planes.  
This scheme produces the largest errors.  When the track is 
projected over long distances, the errors increase rapidly.  The 
calculation method of this scheme is the simplest.  However, 
the result from this scheme is only useful as a coarse estimate 
of track momentum.  It causes large errors due to short lever 
arm when the tracks are to be projected in long distance. 

 
The other 3-point scheme calculates the eta4096 using the 

first, the middle and the last hits of a track.  In this situation, 
advantage of the full track length is taken.  However, the 
information provided by the redundant measurements of the 
other points in the track is not used.  The relative errors when 
the track is projected over half-length are nearly a constant. 

The full-length 3-point scheme may appear to be simpler in 
computation than the multiplierless fitting scheme, but actually 
this is not the case.  To calculate eta4096 using the 3-point 
scheme, a lookup table and a floating point multiplication are 
needed in order to bring results for different track lengths into 
a unified scale.  In the multiplierless fitting scheme, the scale 
unification is achieved through choosing the two-bit 
coefficients. 

IV. FPGA IMPLEMENTATION 
FPGA curved track fitters both with and without multipliers 

were compiled and simulated in an Altera Cyclone II [8] 
device (EP2C5T144C6).  The block diagram of the 
multiplierless version is shown in Fig. 4.  

When a data train of track hit coordinates arrives, the 
number of hits in the track, “Nalg” is first extracted from the 
header.  This number is used to construct the address for the 
Constant MEM so that the set of the constants corresponding 
to the given track length is chosen.  The 16-bit hit coordinates 
x(i) and y(i) are clocked at 100 MHz through the fitter, one 
clock cycle per pair of the coordinates (i.e., the total 
throughput rate is 400 MB/s). 

 
For each parameter, an accumulator is used to calculate the 

linear combination.  The coordinate data is shifted through a 
logarithmic shifter by pre-defined numbers of bits that are 
stored in the constant memory.  The shifted version of the 
coordinate is added to or subtracted from the accumulator. 

The Constant MEM, SHIFTER and accumulator are 
clocked at 200 MHz.  Therefore, each coordinate is shifted 
and added/subtracted twice.  This is equivalent to multiplying 
the coordinate by a two-bit integer and accumulating for the 
linear combination. 

A simple simulation is shown in Fig. 5.  Hit coordinates of a 
track with 5 hits are sent through the fitter.  The coordinates X 
and Y represent a track with the following parameters: x0 =
1002, l = 0.5, y0 = 4, h = 2 and η = 7.  The signal HDR is an 
indicator of the header word and Y (=5) at the header is 
interpreted as the number of hits in the track.  The coordinates 
are then fed into the fitter and are accumulated.  Shortly after 

Fig. 4 The multiplierless FPGA track fitter. 
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Fig. 3 Relative errors of several track fitting schemes. 



all coordinates are input, the calculated track parameters xx32, 
ll512, yy32, hh512 and eta4096 are output from the bus RQ in 
sequence, with the data valid signal DV indicating the first 
parameter xx32.  It can be seen that the outputs are the 
expected results: xx32 = 32064 = 32*1002, ll512 = 256 = 
512*0.5, yy32 = 128 = 32*4, hh512 = 1024 = 512*2 and 
eta4096 = 28672 = 4096*7.   

The time between the inputting of the last hit coordinates 
and the outputting of first track parameter is about 45 ns, or 9 
clock cycles at 200 MHz.  However, this is not the “deadtime” 
of the fitter.  The fitter is designed in a pipelined fashion which 
allows a new set of track data to follow the previous set of data 
immediately. 

Silicon resource usages of the FPGA curved track fitters are 
given in Table II. 

 
Both fitters (with and without multipliers) process a pair of 

coordinates, 16-bit each, at 100 MHz.  Each parameter is kept 
in a 32-bit accumulator.  In the version with multipliers, the 
multipliers are clocked at 200 MHz, which allows two 
parameters to share a multiplier.  So the fitter using 3 
multipliers is capable of calculating up to 6 linear 
combinations, although only 5 are used. 

In implementing the logarithmic shifter for the multiplierless 
version, advantage of the global loading feature available in 
the Cyclone II FPGA family is taken so that a 3-to-1 
multiplexer can be implemented in one logic element 
(typically can only implement a 2-to-1 MUX).  This way, a 
logarithmic shifter capable of shifting 0 to 8 bits can be built in 
2 stages.  A 16-in-24-out shifter uses 44 logic elements with 
this design. 

V. CONCLUSION 
Track fitting in an FPGA both with and without multipliers 

has been discussed.  The fitting errors in the approximate 

multiplierless algorithm is only slightly larger than the errors 
of the least-squares fitting algorithm. 

Multipliers are now available in more and more FPGA 
devices today and it seems that eliminating multiplications is 
not as critical as several years ago.  Intrinsically, however, 
multiplication is a power and resource consuming operation 
and a multiplierless algorithm becomes especially beneficial 
when the firmware developed in an FPGA is to be ported to an 
application-specific integration circuit (ASIC). 

Generally speaking, more computations yield better quality 
of the results.  From the 3-point schemes, to the multiplierless 
FPGA fitter, to the least-squares algorithm, the fitting errors 
reduce as the number of total operations increases.  However, 
after a certain point, the quality of the results does not improve 
as rapidly as before.  It is common that a large amount of 
computations brings only a small improvement in the 
mathematically perfect algorithms.  So it is possible to find 
algorithms with a reasonable amount of computations that 
produce sufficiently good results, as illustrated in this paper. 
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APPENDIX A
In an attempt to understand the insensitivity of the fitting 

errors in the multiplierless algorithm, we study several topics 
on least-squares fitting.  Some variables are redefined from our 
earlier document [9] to follow the conventions in mathematics 
references. 

Consider fitting m measurement points with a set of n (n<m)
functions using various algorithms: 

)()()()( 332211 zaxzaxzaxzaxy nn++++= L (A1) 
In fitting with a parabola, e.g., the functions a1(z) a2(z), a3(z)

are chosen to be 1, z, z2. The parameters x1, x2 to xn (Note: 
They are not coordinates.) are to be evaluated through fitting 
the measurement data (z1, y1), (z2, y2) to (zm, ym).  The z-
coordinates here are known and can have any values.  We use 
an m-row by n-column matrix A = {aij} = {aj(zi)} to denote the 
function values at the corresponding measurement points.  We 
also define vectors y = (y1, y2, ... ym)T and x = (x1, x2, ... xn)T so 
that an over-constrained linear equation system can be written 

TABLE II 
SILICON RESOURCES USAGE OF CURVED TRACK FITTERS IN FPGA 

Device: EP2C5T144C6 
Price: $19.20 (September 2007) 

With  
Multiplier 

Multiplierless 
Version 

Logic Elements 634/4608 (14%) 728/4608 (16%)
M4K RAM 6/26 (23%) 3/26 (12%) 
18-bit Multipliers 3/13 (23%) 0 

Fig. 5.  Simulation of the FPGA track fitter (multiplierless version) 



in matrix format: 
Axy = (A2) 

One set of parameters x that produces minimum fitting 
errors can be found using least-squares method.  We skip the 
detailed derivation process of least-squares fitting and directly 
write down the final result [10][11]: 

yAAAx TT 1)( −=) (A3) 
From the total least-squares (TLS) theory, the relative 

variations of the final fitted parameters is upper bounded by 
the relative perturbations of the measurement data y and the A
matrix, scaled by the condition number of matrix A.
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The condition number K(A) of matrix A is defined as the 
ratio of the biggest and smallest singular values of A derived 
from the singular value decomposition (SVD) of A. We use 
the 2-norm ||*|| throughout this document.  In order to obtain a 
robust set of parameter x, it is necessary that matrix A is well-
conditioned, i.e., the condition number K(A) is not too much 
bigger than 1, which we shall assume. 

In multiplierless algorithm design work, however, a tighter 
and parameter-by-parameter error estimate is more desirable 
due to following reasons: 

(1) The elements in x usually have different units, such as 
offset, slope and so on.  In order to calculate the norm ||x||, the 
elements must be redefined so that they have a unified unit. 

(2) In multiplierless applications, the perturbations in A
normally can be ignored as in ordinary least-squares (OLS).  
But there are perturbations from calculation and the 
perturbations usually can be limited within some subspaces 
(which we will see is an advantage) and their effects are small. 

In the remaining part of this section, we first define a matrix 
called algorithm matrix which represents a generic fitting 
algorithm.  Then we will show that the least-squares algorithm 
is a special case of the generic algorithms.  We will study the 
orthogonal property of the algorithm difference matrices and 
their application in estimating fitting errors. 

Definition 1: The algorithm matrix G = {gji} is defined to 
be an n-row by m-column left inverse matrix of A:
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With an algorithm matrix G, the values calculated from the 
following linear combinations are called a set of fitting 
parameters under algorithm G:
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With constraints (A5), the parameters calculated in (A6) 
reduce to the “true” values if the fitting model (A1) is correct 
and there are no measurement errors.  In fact, if for a set of 
parameters x0 (the “true” values), the linear equation system 
y=Ax0 holds for all rows, then x = Gy = GAx0 = I x0 = x0.

In general the left inverse G of m x n matrix A is not unique.  
For each parameter xj, there are m values of gji that satisfy n
constraints which permits different values of gji to be chosen.  

Each set of gji values corresponds to a particular fitting 
algorithm.  For example, given four measurement points, there 
are many ways to calculate the parameter η and two of them 
are shown in Fig. 1(b).  It can be shown that the least-squares 
fitting algorithm is a special case of the generic algorithms. 

We use G
)

to represent the algorithm matrix of the least-
squares fitting.  Comparing with (A6), it can be seen that: 

TT AAAG 1)( −=
) (A7) 

Clearly G
)

satisfies the left inverse constraints given in (A5): 
IAAAAAG TT == −1)(

) (A8) 
We choose the least-squares algorithm as a reference.  All 

the other generic fitting algorithms are viewed as a 
perturbation from the least-squares algorithm: 

jijiji gggGGG ∆+=∆+= )) (A9) 

Theorem 1 (The Algorithm Deviation Orthogonality 
Theorem, ADOT): The row space of the difference matrix ∆G
of two algorithms is orthogonal to the column space of A:
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Simply right multiply (A9) with A and use (A5) and (A8) to 
get equation (A10).  Note that this theorem is true for the 
difference of any two algorithms but we will use ∆G to denote 
only the difference between an arbitrary algorithm and the 
least-squares algorithm. 

Corollary 1: The row space of difference matrix ∆G of two 
algorithms is orthogonal to the row space of the algorithm 
matrix G

)
of the least-squares fitting: 

0=∆ TGG
)

(A11) 
Combining (A7) and (A10) gives (A11).  In fact, (A7) 

describes that the row space of G
)

is in the column space of A
and according to ADOT, the row space of ∆G is orthogonal to 
any vectors in the column space of A including row vectors of 
G
)

.
Now consider the fitting error for each of the parameters x1,

x2 to xn. If the y-measurements are independent and they have 
the same standard deviation δy, the variations of the 
parameters can be written: 
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The square-sum in (A12) is actually the length of the row 
vector of the matrix G. It contains contributions from the 
least-squares algorithm and the additions from the 
perturbation: 
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The middle sum term in (A13) vanishes because from 
(A11), the row spaces of ∆G and G

)
are orthogonal.  The 

variations of the fitting parameters due to measurement errors 
are simply composed with two parts: 
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The equation (A14) reflects the fact that the error of each 
parameter is a minimum when the least-squares fitting 



algorithm is used.  Around this point, the fitting errors are 
relatively insensitive to the perturbation of gji values allowing 
the user to choose different gji values to reduce the total 
computations without increasing the fitting errors significantly.  
If, for example, all gji values differ from values in 

jiĝ by 10%, 

the error of each parameter increases by only about 0.5% from 
the minimum. 

The intrinsic reason for this insensitivity is because the 
perturbation of G is limited in a subspace allowed by (A5).  
Unlike the perturbations generated by computational rounding 
errors which are small but unrestricted, the perturbations in 
multiplierless algorithms are allowed to be relatively large as 
long as (A5) is satisfied.  From ADOT, the perturbations in 
multiplierless algorithms increase the fitting error only slightly. 
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