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ABSTRACT 
 

A collaboration is a collection of services that work 

together to achieve a common goal. Although collab-

orations help when tackling difficult problems, they lead 

to security issues. First, a collaboration is often per-

formed by services that are drawn from different security 

domains. Second, a service interacts with multiple peer 

services during the collaboration. These interactions are 

not isolated from one another -- e.g., data may flow 

through a sequence of different services. As a result, a 

service is exposed to multiple peer services in varying 

degrees, leading to different security threats. We identify 

the types of interactions that can be present in 

collaborations, and discuss the security threats due to 

each type. We propose a model for representing the 

collaboration context so that a service can be made 

aware of the existing interactions.  We provide an access 

control model for a service participating in a collab-

oration. We couple our access control model with a 

policy model, so that the access requirements from 

collaborations can be expressed and evaluated.  

 

 

KEYWORDS:  access control, collaboration context, 

web services, workflow planning 

 

 

1. INTRODUCTION 
 

In service-oriented architectures (SOA), a collaboration 

involves multiple services 

working together to achieve 

a common goal. Services are 

expected to cooperate and 

interact with each other. 

Through these interactions, 

each service exchanges 

information and accomplish-

es its own part in the 

collaboration. Our work 

focuses on collaborations 

that include services drawn 

from different security do-mains that may or may not trust 

one another.  

 

A collaboration can be realized via many technologies, 

from mash-ups [10] to scientific workflows [5][6]. All of 

these technologies use the same SOA principle: defining 

web services as autonomous end points that partake in a 

complex application. 

 

Although collaborations are beneficial for tackling 

difficult problems, they lead to important security issues. 

One of them is managing access to a participant service. 

By joining a collaboration, a service agrees to interact 

with several peer services. Due to these interactions, the 

service would become subject to varying security threats 

(described below and in Section 3.1). 

 

The fundamental component of collaboration is an 

interaction: a data transfer between two services, a sender 

and a recipient, that is triggered by an action taken by the 

sender service and is ended by an action taken by the 

recipient service (Figure 1). The action refers to execution 

of a specific operation of the service (as defined by Web 

Services Description Languages (WSDL) [18]). 

 

A collaboration includes several interactions among 

multiple services. These interactions are not isolated from 

one another; instead, they follow one another to 

disseminate data and ultimately achieve the 

collaboration’s goal. A specific interaction is affected by 

other interactions. For example, in Figure 1, the order 

information sent by the buyer service in Interaction 1 

Figure 1. Web Service Collaboration. 
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Figure 2. IBAC Framework. 

affects the outcome of the 

seller service, which later 

uses this information to 

invoke the shipper service 

(Interaction 3). As a result, 

the execution of the 

initShipment operation is 

also affected by the buyer 

service.  

 

An interaction introduces 

security threats to both 

sender and recipient 

services. From the recip-

ient’s view, the sent data 

may include viruses or 

Trojan horses, or performing the requested action can 

expose the recipient’s domain to the sender. From the 

sender’s view, the transferred data may be confidential, or 

the sender’s operation may expose the sender’s business 

logic to the recipient. Moreover, a recipient may refuse to 

interact with a sender which had previously interacted 

with an un-trusted service. Likewise, a sender may refuse 

to interact with a recipient that will later interact with an 

un-trusted service. (In Section 3.2, we will explain how a 

sender can learn about future interactions of its recipient.)  

 

Consider the seller service in Figure 1, and Interactions 1 

and 3, where the seller service acts first as a recipient and 

then as a sender. For its security, the seller service must 

evaluate both interactions. The evaluation of each 

interaction must consider the differences in the roles 

played by the seller service, the data transferred, and the 

interacting peer services. The seller service may have 

different security requirements for allowing invocation of 

the processOrder operation than for sending some of its 

output to shipping service.  

 

Our work aims to protect a service in collaboration by 

managing access control decisions for the service. To 

achieve this, we propose an interaction-based access 

control model (IBAC). We model a collaboration in terms 

of interactions, and define a collaboration context. By 

evaluating the collaboration context, the IBAC model can 

determine the access decisions for a service. Our work 

enables a service to evaluate a proposed collaboration 

context before deciding to join the collaboration. If the 

access decision returned by the IBAC engine is deny, the 

service refuses the collaboration, because the collab-

oration contains insecure interactions.  

 

Figure 2 illustrates an overview of our work from the 

Seller Service’s perspective. The collaboration engine 

(responsible for planning the collaboration) sends 

invitations (the proposed collaboration context) to three 

services. Each service has an IBAC engine (PEP+PDP) 

and a collaboration policy to evaluate a proposed 

collaboration in terms of security. During the evaluation, 

each service requests and receives credentials of its peer 

services and determines its policy decision. Our main 

contributions are the IBAC model (implemented in the 

IBAC engine) and the collaboration policy model. 

 

Prior work [2] has introduced context-awareness into the 

access control models. The context was defined as any 

information characterizing an object and surrounding 

environment, such as the time, location or the load over 

the object. We define a collaboration context as an 

ordered collection of interactions. We first study the 

interaction types that can occur in collaborations and 

discuss the security threats due to each type (Section 3.1). 

Then, we use the interaction types in order to develop a 

model for the collaboration context (Section 3.2).  

 

IBAC model (Section 3.3) is designed to evaluate a 

collaboration context against the access requirements. It 

has a comprehensive approach: it evaluates the entire 

context to reach an access decision, instead of evaluating 

each interaction individually. This is to understand the 

security consequences of combined interactions. There-

fore, a deny decision from IBAC engine means denial of 

the entire proposed collaboration.  

 

Based on our access control model, we develop a new 

policy model (Section 4), that is designed to express 

access requirements for joining collaborations. A 

collaboration policy is prepared even before a service is 

advertised for collaborations. Therefore, the access 

requirements are expressed in a generic fashion, such that 

arbitrary collaboration proposals can be evaluated against 

a policy. To achieve this, we express the access 

requirements based on interaction types. At evaluation 

time, the policy evaluation engine dynamically selects the 

access requirements that match the proposed collaboration 



context and only evaluates those requirements to reach a 

policy decision. In addition, the selected access 

requirements are not uniformly applied to all of the peer 

services; different subjects (i.e. peer services) can be 

applied to different access requirements based on their 

interaction types. In order to ease the adoption of our 

policy model, we implemented it as an enhancement of a 

widely-adopted access control language, XACML [11]. 

We implemented components to evaluate and enforce our 

access control and policy models (Section 5).  

 

2. BACKGROUND & RELATED WORK 
 

2.1. Background and Assumptions 
 

We define a collaboration as a directed acyclic graph, a 

collaboration graph.1  Each node of the graph indicates a 

service with one or more operations. An edge indicates the 

data transferred between two operations. The direction of 

the edge is same as the direction of the dataflow. When 

we refer to an interaction, we mean a specific data transfer 

(i.e. an edge) between two service operations.  

 

A service is the provision of any kind of facility to the 

public, such as computing power, storage, or remote code 

invocation. A service is not limited to its domain 

boundaries; it is exposed over a network, and utilizes 

Web-Service standards such as WSDL [18] and SOAP 

[15]. Each service’s security policy is private, and is not 

divulged to other services, or to the collaboration. Each 

service has credentials (such as X.509 service certificates) 

that can be evaluated by its peers for authorization and 

authentication purposes.  

 

We do not limit ourselves to any specific collaboration 

technology; the collaboration can be executed in any 

manner. We assume that there is a collaboration engine 

that is responsible for managing the collaboration, such as 

defining the choreography (i.e. order of interactions) and 

selecting suitable services for the interactions. Selected 

services are bound in the resulting choreography 

document (e.g., a WS-CDL [19] document -- see Section 

5.1.1). We do not assume that the selection process has 

taken any security aspects into consideration. Thus, 

services may be drawn from different security domains, 

and they may or may not trust one another. 

 

The collaboration engine invites selected services to join 

the collaboration. The proposal message includes a 

collaboration context, based on which services make their 

decisions to join the collaboration. We assume that the 

                                                 
1 The model is not limited to acyclic graphs, but our current 

implementation does not support cycles. 

services trust the collaboration engine in creating accurate 

collaboration contexts. (An untrusting service can decline 

the invitation.) For added security, the collaboration 

engine should sign its messages. It is also expected that 

services will check the collaboration context against the 

run time accesses made by their peers, but such checking 

is beyond the scope of this paper. 

 

2.2. Related Work 
 

Kang’s work [7] and the WAS framework [8] both assume 

a multi-domain security model. A central engine acts as a 

trusted third party, consults with the services’ domains 

and determines which services can interact with one 

another. The main drawback of these frameworks is that 

the central engine requires prior knowledge about the 

security policies of services. Our work assumes that each 

service’s policy is private and is not divulged to the 

collaboration enginer, nor to the peer services. 

 

In Koshutanski’s work [9], only the service that initiates a 

collaboration is evaluated by its peer services: the first 

service is authorized by the second one, and when the 

second service interacts with a third service, the second 

one is evaluated by the third service, and so on. 

Koshutanski assumes that since the first service caused all 

of the interactions, it is sufficient to evaluate the first 

service by all other services. Unlike our approach, he 

omits the interactions among other services.  

 

Shehab [14] introduces the secure access path, which 

represents the access history of a user. He assumes 

multiple security domains and cross-domain role-

mappings between the domains: a role in one domain can 

have the privileges of another role in the mapped domain. 

However, he does not discuss the generation of role- 

mappings, which requires pre-established trust relation-

ships among the domains and a central agreement over the 

role-mappings. Each domain is assumed to be aware of 

which mappings are forbidden or authorized. An access 

decision involves checking the access path of an access 

request to see if there are any unauthorized mappings (i.e. 

interactions).  

 

This work is similar to ours, in that an access path can 

represent an interaction between two domains. Shehab’s 

work assumes each domain knows which role mappings 

are allowed. In our model, each service has a separate 

private policy and autonomously evaluates the 

collaboration context from its own view  it is not 

dependent on any centrally agreed mappings. An 

interaction deemed secure by one service may be deemed 

insecure by its interacting peer.  

 



Toninelli [17] and Shafiq [13] propose a model for 

collaborative environments; however, a dynamic 

collaboration consists of a requestor and an object that do 

not know each other. Toninelli’s access control model 

dynamically changes the access requirements based on the 

collaboration context. She achieves this by reasoning over 

the context and policies. Shafiq uses trust negotiation and 

trust management to map unknown users into the 

GTRBAC model.   

 

3. AN INTERACTION-BASED ACCESS 

CONTROL MODEL (IBAC) 
 

A subject, or a requestor, is an entity that requests access. 

An object is a resource that is being requested. An action 

is an activity that is to be performed on the object. A 

collaborative peer is a service. In a collaboration, a 

service can act both as a subject and as an object. 

  

3.1. Interaction Types 
 

The IBAC model manages access to a service based on 

the types of interactions that are present in a proposed 

collaboration.  An interaction between two services is 

classified along two dimensions: the proximity of the 

services (direct vs. indirect) and the direction of dataflow 

between them (upstream vs. downstream).    

 

A direct interaction occurs when the first service transfers 

data to the second, without relaying it through other 

services. For example, seller and shipper in Figure 1 have 

a direct interaction. Any direct interaction between 

services is a bilateral relationship, even when the 

dataflow seems to be one-sided. To illustrate this,  the 

seller service presents a shipping request to the shipper 

service and the shipper determines if it trusts the buyer for 

invoking initShipment operation. However, there are 

actually two relationships: (1) the seller determines that it 

trusts the shipper to send its request, and (2) the shipper 

determines that it trusts the buyer to process the request. 

 

Both seller and shipper access requests involve risk. From 

the seller’s perspective, the shipper could be a rival 

company with whom the seller is not willing to do 

business; from the shipper’s perspective, the seller could 

be a malicious user who sends a Trojan horse. Existing 

access control models such as TrustMaker [3], RBAC 

[12] or ACL-based schemes, are geared towards assessing 

the trustworthiness of the requestor. The reverse trust 

evaluation – i.e., the trustworthiness of the requested 

object from the subject’s viewpoint – is not explicitly 

modeled. Instead, it is assumed that the subject implicitly 

makes a trust evaluation before launching its request. This 

implicit modeling does not work in a multi-party 

collaboration, where services do not have a say in the 

selection of other services, nor may not have established 

trust among each other. The collaboration engine selects 

services to interact with each other; this does not 

guarantee that services do not possess any security threats 

to one another. IBAC model, on the other hand, allows the 

reverse trust evaluation: the seller can evaluate the 

shipper’s trustworthiness by evaluating its downstream 

interaction, whereas, the shipper can evaluate the seller’s 

trustworthiness by evaluating its upstream interaction.  

 

An indirect interaction occurs when data is relayed 

through one or more intermediate services. The buyer and 

the shipper services in Figure 1 have an indirect 

interaction. There are several reasons why indirect 

interactions must be carefully evaluated. Confidential 

documents or the results of a sensitive service are 

typically passed among several peers throughout the 

collaboration; thus even an indirect neighbor might have 

access to confidential data, or a modified version or a 

portion of the confidential data. The original owner and 

the final recipient of the data are subject to security threats 

introduced by the intermediate parties that handled and 

processed the data. An intermediate domain with security 

breaches may unknowingly expose other domains to these 

threats. Furthermore, partnership agreements and 

competition among businesses may prevent them from 

doing business with certain organizations. Even when 

such interactions are safe from a security standpoint, the 

higher-level business logic may forbid them.  

 

We refine direct and indirect interactions with respect to 

the direction of the dataflow: upstream and downstream 

interactions. A service has an upstream interaction with 

another service when it is the recipient of the data. When a 

service is the sender of the data, it has a downstream 

interaction. For example, the seller has a direct-upstream 

interaction with the buyer in Figure 1, and the buyer has a 

direct-downstream interaction with the seller.  

 

Refining an interaction with respect to its dataflow is 

important. Although two services participate in the same 

interaction, their roles, i.e. sender and recipient, and their 

actions are different. Thus, the security threats introduced 

to the services are different. The sender, for example, is 

concerned about revealing its data to the recipient. The 

recipient is concerned about allowing the data flow into its 

domain. Informing a service only about the interaction 

type such as direct or indirect is not sufficient. The service 

must also be informed about its role in the interaction 

because, based on its role, a service’s access requirements 

from an interaction may change.  
 

3.2. The Motivation for IBAC Model  
 



At the heart of our work is IBAC’s ability to express 

access requirements based on interaction types.  A service 

owner defines the security requirements for her service 

even before advertising the service for collaborations. 

Therefore, the requirements are not specific to a given 

collaboration. The service owner considers the 

functionalities that her service offers and the collaboration 

scenarios that her service would likely to participate.  

 

For example, if a service provides loan approval for 

purchases, it is likely that it will be used in scenarios 

where it interacts with banks, car dealers, lenders and 

buyers services. Obviously, the service owner cannot 

predict each and every collaboration scenario, nor should 

she have to. Instead, she defines security requirements for 

possible interactions that may involve her service.  

 

To achieve this, she does a risk vs. threat analysis by 

answering several questions. For example, is the service 

sensitive enough to be protected against indirect peers? If 

so, what security requirements must be requested from 

such peers? Is the direction of indirect peers affects the 

requirements – downstream or upstream peers should be 

subjected to same requirements?  Does the exact distance 

between two peers affect the security requirements – 

should the policy set different requirements for varying 

distance, instead of subjecting all indirect peers to the 

same rules? Should direct peers be subjected to access 

requirements that are designed for traditional one-to-one 

interactions or new requirements must be written? If so, 

what should be the requirements with respect to the 

direction?  

 

For each interaction type, the owner analyzes the risk vs. 

threat factors and the resulting requirements constitute the 

service’s collaboration policy. Our work does not include 

how risk vs. threat analysis must be done for a service. 

Our work aims to enable a service owner to express its 

requirements in a policy model and evaluate them. In the 

next section, we explain how our policy model expresses 

such requirements.  

 

3.3. Collaboration Context 
 

The collaboration context of a service is the collection of 

interactions that affects the security of the service. A 

collaboration context is specific for each service, even in 

the same collaboration. The context indicates the dataflow 

from and into the service throughout the collaboration. 

Formally, the collaboration context of service V is a 

collection of directed walks Wm such that Wm begins or 

ends with V. The directed walk Wm can have an upstream 

or downstream direction.  

 

 A collaboration engine generates a context for each 

service of the collaboration. Since the collaboration 

engine has a global view of the graph, a context includes 

both preceding and succeeding interactions affecting a 

service. This allows the service to make access decisions 

based not only on the past access history (as in Chinese 

Wall [4] and Shehab’s work [14]), but also on future 

accesses -- i.e., interactions with downstream services. 

 

3.4. Access Control Model 
 

IBAC model has four entities defined: interaction, subject, 

object and action. The object represents the service that is 

protected by the model.  

 

Our access control model has an interaction-based view; 

each access requirement is stated for an interaction type. 

Each subject (peer service) is distinguished by its 

interaction type and evaluated against the access 

requirements specified for that interaction type. For 

example, in Figure 3, both Service 1 and 2 request 

invocation of Service 3; Service 2 has an upstream-direct 

interaction, whereas Service 1 has an upstream-indirect 

interaction. As a result, 3 can apply different access 

requirements to 2 and 1.   

  

Since existing access control models aim to evaluate a 

single interaction between a subject and an object, a single 

access request represents a single interaction. This is 

insufficient for IBAC model; therefore, we define a 

collaboration request in lieu of an access request. A 

collabora-tion request is generated from the collaboration 

context and represents mul-tiple interactions. It conveys 

information about all of the accesses (direct/in-direct, 

upstream/down-stream) that will be performed by the peer 

services once the collaboration is executed.  

 

The collaboration re-quest, generated by the IBAC PEP,  

Figure 3. Sample Collaboration and Collaboration Request. 



includes four pieces of information: the interaction types, 

subjects, the actions, and the object (see Figure 3). The 

collaboration request maintains the association among a 

subject, its interaction type with the object, and the 

requested action. The interaction type can either include 

direct/indirect keywords, or it can specify the exact 

number of edges between two services. There are multiple 

subjects, actions, interaction types; however, there is only 

a single object: the requested service and its operations.    

 

There are two actions defined in our model: invoke and 

consume. The invoke action is requested by an upstream 

service (subject) in order to invoke an operation over the 

requested service, while the consume action is requested 

by a downstream service (subject) that will access the data 

out of the protected service.   

 

4. COLLABORATION POLICY MODEL 
 

4.1. Policy Requirements 
 

First, a policy must be able to express access requirements 

that are designed for specific interaction types. These 

requirements must be expressed in a generic way to 

evaluate arbitrary collaborations. Second, a collaboration 

policy must be easily integrated into an existing access 

control system. It must coexist with policies that are 

traditionally used to evaluate one-to-one access requests. 

A collaboration policy (1) must not disrupt any existing 

access control system, (2) must be easily augmented to the 

existing system, and (3) may make use of existing policies 

whenever desirable. The third requirement promotes 

policy reuse among the collaboration policies and 

underlying policies.  

 

A collaboration policy is the smallest unit that manages 

access decisions for a service. For each service that 

participates in 

collaborations, there 

must be a separate 

collaboration policy. 

Within a 

collaboration policy, 

an access rule is the 

smallest building 

block that states the 

access requirements 

sought from a subject 

that exhibits a spe-

cific interaction type.  

 

4.2. Access Rules 
 

An access rule has three elements: Tar-get, Type and Con-

ditions. The Target element consists of the designated 

inter-action type, subject, object and action entities. In 

addition to using direct/indirect keywords, the interaction 

type can indicate the number of edges between a subject 

and an object. In a rule that specifies an upstream 

interaction, the action must be set to invoke. In a rule that 

targets downstream interactions, the action is set to 

consume. The object is the service being protected by the 

policy. Since a service can have multiple operations, 

different rules of the service’s policy can be stated for 

different operations. Then, the rule target includes the 

service operation in addition to the service name. (See 

Figure 4.)  

 

The Type of a rule indicates whether it is evaluated by the 

local collaboration policy, or an existing underlying policy 

(external to the collaboration policy.)  This allows for rule 

reuse. (Both types of rule are shown in the policy for 

Figure 4.) 

 

The Conditions element contains the access requirements 

of a rule. An access requirement is represented as a 

predicate, whose evaluated result will be either true or 

false. A true evaluation is associated with “permit”, and 

false evaluation is associated with “deny”.  

 

The result of each rule is combined with respect to a 

combination algorithm. The result of the combination 

algorithm constitutes the policy decision. A policy writer 

can specify a custom-made combination algorithm; using 

Boolean operators AND and OR.  

 

4.3. Policy Evaluation 

 

After the IBAC PEP generates the collaboration request, 

the request is matched against all of the collaboration 

policies stored at the IBAC PDP. The matched policy 

Figure 4. Policy Evaluation. 

 



starts evaluating its rules against the collaboration request. 

Each rule is matched against a subject, the subject’s 

interaction type with the object, and the requested action. 

If there is no match, the rule result is “inapplicable”. If the 

rule target matches, the rule evaluates the subject.  

 

In Figure 5, we show a proposed collaboration and 

Service 3’s collaboration policy. The LocalRule1 is 

specified for the Op31 and targets any peers with an direct 

interaction type: Service 4 and Service 6 both match and 

they are separately evaluated against this rule. In order for 

a rule to return permit decision, all matching subjects must 

satisfy the rule; thus, both 4 and 5 must meet this rule’s 

requirements. Each rule’s result is combined with respect 

to the policy combining algorithm, which determines the 

policy decision. A policy decision can either be permit or 

deny.  

 

5. IMPLEMENTATION 
 

Due to the difficulties involved with developing a new 

policy language, we enhanced a widely-adop-ted 

language, XACML [11].  Sun Microsystems’ 

implementation of the XACML framework [16] is used as 

the foundation for our prototype.   

 

We also implemented the collaboration engine and the 

IBAC engine that has a Policy Enforcement Point (PEP) 

and a Policy Decision Point (PDP).  A detailed discussion 

of the implementation can be found elsewhere [1]; here 

we briefly discuss the collaboration engine, and changes 

to the XACML language and evaluation framework. 

 

5.1. Collaboration Engine. We implemented the 

collaboration engine as a standalone web service. The 

prototype collaboration engine only manages the access 

control issues within the collaboration; it does not handle 

service selection and discovery, execution, fault recovery, 

etc. We anticipate that our code would be incorporated 

into a fully-fledged collaboration engine that handles the 

missing aspects.  

 

The collaboration engine has a repository of 

collaborations, described in WS-CDL (Web Services 

Choreography Description Language) [19]. We chose 

WS-CDL because (1) it is an XML-based language, (2) it 

describes the collaboration as a collection of interactions 

among multiple parties, and (3) it maintains a global view 

of the collaboration. A WS-CDL document includes the 

service bindings, where each binding points to the WSDL 

of a selected service.   

When a service is selected for a collaboration and notified 

by the collaboration engine, the service’s PEP informs the 

engine about the interaction types required by its 

collaboration policy. Note that the PEP does not divulge 

its collaboration policy entirely, only the interaction types 

required.  The collaboration engine creates the 

collaboration context, identifies and informs the peer 

services that have interactions with the evaluating service.. 

Each peer’s PEP sends its credential to the authorizing 

service’s PEP.  If a peer does not have the requested 

credential type, the collaboration is denied. The 

evaluating service’s PEP collects the peers’ credentials 

with the collaboration context, and creates the 

collaboration request.  

 

The collaboration engine repeats the above steps for each 

service proposed for the collaboration and allows each to 

evaluate its peers.  The results of these evaluations are 

collected to determine whether the collaboration is 

allowed. 

 

5.2. XACML Enhancements. Since a collaboration 

request represents multiple interactions, we implemented 

it as a collection of XACML requests, each containing an 

interaction, a subject, an action and a resource (i.e. an 

object). Each XACML request represents a single 

interaction from the collaboration context.  

 

We also modified the XACML policy-matching logic. 

Since a collaboration request has multiple XACML 

requests embedded inside, we ensured that a selected 

collaboration policy simultaneously matches all of the 

embedded XACML requests. Otherwise, the collaboration 

request could be evaluated against a policy that is not 

designed for all of the interaction types within the 

collaboration request. Each rule checks for each XACML 

request whether it matches the rule and, if so, it evaluates 

the XACML request. Moreover, we modified the native 

XACML policy-matching and rule-matching algorithms to 

consider interaction entity.  

 

XACML rules do not have any types; we enhanced this by 

introducing two rule types.  For Local rule type, we did 

not make any modifications.  For Underlying rule type, we 

modified the XACML rule evaluation logic by inserting a 

software hook.  When the hook is executed, it converts the 

portion of the collaboration request that is being evaluated 

back into a plain-XACML request format, and sends this 

to the underlying enforcement agent. (The hook can create 

requests based on the policy language of the underlying 

system; current implementation assumes it is native 

XACML.) The policy decision returned from the 

underlying system is treated as the result of the 

Underlying type rule.  

 

6. CONCLUSION 
 



Managing access to a service in collaborative   

environments is more challenging than in traditional one-

to-one settings. The number of peers and the multiplicity 

of the interactions between the peers complicate the 

access management.  

 

In this paper, we studied the consequences of peer-to-peer 

interactions over the access management of a service. We 

modeled an interaction as dual access request between two 

peers. This allowed each peer to evaluate the security 

risks from their own perspective. Moreover, we found that 

due to the continuous flow of interactions, peers interact 

with one another directly or indirectly. This made us 

realize that accesses among the peers occur at different 

levels. Different interaction types leads to different 

accesses between the peers. Nevertheless, each interaction 

type, hence each access, introduces its unique security 

threats.  

 

This situation motivated us to design an interaction-based 

access control model that considers the interaction types 

as an integral element of its decision logic. Different 

interaction types, hence different accesses, may be applied 

to different access requirements. In addition, we found 

that an interaction originally deemed secure may become 

a security threat when combined with another interaction. 

Therefore, we developed a model for representing the 

collaboration context and designed our access control 

model to evaluate this context comprehensively. Overall, 

our work aims to increase services’ willingness to 

collaborate by enabling them to address the security issues 

in a policy-driven and collaboration-agnostic manner. 
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