

An Interaction-based Access Control Model (IBAC) for Collaborative Services

 Mine Altunay Gregory T. Byrd, Doug E. Brown, Ralph A. Dean

 Fermi National Laboratory North Carolina State University

 maltunay@fnal.gov {gbyrd, debrown, ralph_dean}@ncsu.edu

ABSTRACT

A collaboration is a collection of services that work

together to achieve a common goal. Although collab-

orations help when tackling difficult problems, they lead

to security issues. First, a collaboration is often per-

formed by services that are drawn from different security

domains. Second, a service interacts with multiple peer

services during the collaboration. These interactions are

not isolated from one another -- e.g., data may flow

through a sequence of different services. As a result, a

service is exposed to multiple peer services in varying

degrees, leading to different security threats. We identify

the types of interactions that can be present in

collaborations, and discuss the security threats due to

each type. We propose a model for representing the

collaboration context so that a service can be made

aware of the existing interactions. We provide an access

control model for a service participating in a collab-

oration. We couple our access control model with a

policy model, so that the access requirements from

collaborations can be expressed and evaluated.

KEYWORDS: access control, collaboration context,

web services, workflow planning

1. INTRODUCTION

In service-oriented architectures (SOA), a collaboration

involves multiple services

working together to achieve

a common goal. Services are

expected to cooperate and

interact with each other.

Through these interactions,

each service exchanges

information and accomplish-

es its own part in the

collaboration. Our work

focuses on collaborations

that include services drawn

from different security do-mains that may or may not trust

one another.

A collaboration can be realized via many technologies,

from mash-ups [10] to scientific workflows [5][6]. All of

these technologies use the same SOA principle: defining

web services as autonomous end points that partake in a

complex application.

Although collaborations are beneficial for tackling

difficult problems, they lead to important security issues.

One of them is managing access to a participant service.

By joining a collaboration, a service agrees to interact

with several peer services. Due to these interactions, the

service would become subject to varying security threats

(described below and in Section 3.1).

The fundamental component of collaboration is an

interaction: a data transfer between two services, a sender

and a recipient, that is triggered by an action taken by the

sender service and is ended by an action taken by the

recipient service (Figure 1). The action refers to execution

of a specific operation of the service (as defined by Web

Services Description Languages (WSDL) [18]).

A collaboration includes several interactions among

multiple services. These interactions are not isolated from

one another; instead, they follow one another to

disseminate data and ultimately achieve the

collaboration’s goal. A specific interaction is affected by

other interactions. For example, in Figure 1, the order

information sent by the buyer service in Interaction 1

Figure 1. Web Service Collaboration.

FERMILAB-PUB-08-100-CD

Figure 2. IBAC Framework.

affects the outcome of the

seller service, which later

uses this information to

invoke the shipper service

(Interaction 3). As a result,

the execution of the

initShipment operation is

also affected by the buyer

service.

An interaction introduces

security threats to both

sender and recipient

services. From the recip-

ient’s view, the sent data

may include viruses or

Trojan horses, or performing the requested action can

expose the recipient’s domain to the sender. From the

sender’s view, the transferred data may be confidential, or

the sender’s operation may expose the sender’s business

logic to the recipient. Moreover, a recipient may refuse to

interact with a sender which had previously interacted

with an un-trusted service. Likewise, a sender may refuse

to interact with a recipient that will later interact with an

un-trusted service. (In Section 3.2, we will explain how a

sender can learn about future interactions of its recipient.)

Consider the seller service in Figure 1, and Interactions 1

and 3, where the seller service acts first as a recipient and

then as a sender. For its security, the seller service must

evaluate both interactions. The evaluation of each

interaction must consider the differences in the roles

played by the seller service, the data transferred, and the

interacting peer services. The seller service may have

different security requirements for allowing invocation of

the processOrder operation than for sending some of its

output to shipping service.

Our work aims to protect a service in collaboration by

managing access control decisions for the service. To

achieve this, we propose an interaction-based access

control model (IBAC). We model a collaboration in terms

of interactions, and define a collaboration context. By

evaluating the collaboration context, the IBAC model can

determine the access decisions for a service. Our work

enables a service to evaluate a proposed collaboration

context before deciding to join the collaboration. If the

access decision returned by the IBAC engine is deny, the

service refuses the collaboration, because the collab-

oration contains insecure interactions.

Figure 2 illustrates an overview of our work from the

Seller Service’s perspective. The collaboration engine

(responsible for planning the collaboration) sends

invitations (the proposed collaboration context) to three

services. Each service has an IBAC engine (PEP+PDP)

and a collaboration policy to evaluate a proposed

collaboration in terms of security. During the evaluation,

each service requests and receives credentials of its peer

services and determines its policy decision. Our main

contributions are the IBAC model (implemented in the

IBAC engine) and the collaboration policy model.

Prior work [2] has introduced context-awareness into the

access control models. The context was defined as any

information characterizing an object and surrounding

environment, such as the time, location or the load over

the object. We define a collaboration context as an

ordered collection of interactions. We first study the

interaction types that can occur in collaborations and

discuss the security threats due to each type (Section 3.1).

Then, we use the interaction types in order to develop a

model for the collaboration context (Section 3.2).

IBAC model (Section 3.3) is designed to evaluate a

collaboration context against the access requirements. It

has a comprehensive approach: it evaluates the entire

context to reach an access decision, instead of evaluating

each interaction individually. This is to understand the

security consequences of combined interactions. There-

fore, a deny decision from IBAC engine means denial of

the entire proposed collaboration.

Based on our access control model, we develop a new

policy model (Section 4), that is designed to express

access requirements for joining collaborations. A

collaboration policy is prepared even before a service is

advertised for collaborations. Therefore, the access

requirements are expressed in a generic fashion, such that

arbitrary collaboration proposals can be evaluated against

a policy. To achieve this, we express the access

requirements based on interaction types. At evaluation

time, the policy evaluation engine dynamically selects the

access requirements that match the proposed collaboration

context and only evaluates those requirements to reach a

policy decision. In addition, the selected access

requirements are not uniformly applied to all of the peer

services; different subjects (i.e. peer services) can be

applied to different access requirements based on their

interaction types. In order to ease the adoption of our

policy model, we implemented it as an enhancement of a

widely-adopted access control language, XACML [11].

We implemented components to evaluate and enforce our

access control and policy models (Section 5).

2. BACKGROUND & RELATED WORK

2.1. Background and Assumptions

We define a collaboration as a directed acyclic graph, a

collaboration graph.1 Each node of the graph indicates a

service with one or more operations. An edge indicates the

data transferred between two operations. The direction of

the edge is same as the direction of the dataflow. When

we refer to an interaction, we mean a specific data transfer

(i.e. an edge) between two service operations.

A service is the provision of any kind of facility to the

public, such as computing power, storage, or remote code

invocation. A service is not limited to its domain

boundaries; it is exposed over a network, and utilizes

Web-Service standards such as WSDL [18] and SOAP

[15]. Each service’s security policy is private, and is not

divulged to other services, or to the collaboration. Each

service has credentials (such as X.509 service certificates)

that can be evaluated by its peers for authorization and

authentication purposes.

We do not limit ourselves to any specific collaboration

technology; the collaboration can be executed in any

manner. We assume that there is a collaboration engine

that is responsible for managing the collaboration, such as

defining the choreography (i.e. order of interactions) and

selecting suitable services for the interactions. Selected

services are bound in the resulting choreography

document (e.g., a WS-CDL [19] document -- see Section

5.1.1). We do not assume that the selection process has

taken any security aspects into consideration. Thus,

services may be drawn from different security domains,

and they may or may not trust one another.

The collaboration engine invites selected services to join

the collaboration. The proposal message includes a

collaboration context, based on which services make their

decisions to join the collaboration. We assume that the

1 The model is not limited to acyclic graphs, but our current

implementation does not support cycles.

services trust the collaboration engine in creating accurate

collaboration contexts. (An untrusting service can decline

the invitation.) For added security, the collaboration

engine should sign its messages. It is also expected that

services will check the collaboration context against the

run time accesses made by their peers, but such checking

is beyond the scope of this paper.

2.2. Related Work

Kang’s work [7] and the WAS framework [8] both assume

a multi-domain security model. A central engine acts as a

trusted third party, consults with the services’ domains

and determines which services can interact with one

another. The main drawback of these frameworks is that

the central engine requires prior knowledge about the

security policies of services. Our work assumes that each

service’s policy is private and is not divulged to the

collaboration enginer, nor to the peer services.

In Koshutanski’s work [9], only the service that initiates a

collaboration is evaluated by its peer services: the first

service is authorized by the second one, and when the

second service interacts with a third service, the second

one is evaluated by the third service, and so on.

Koshutanski assumes that since the first service caused all

of the interactions, it is sufficient to evaluate the first

service by all other services. Unlike our approach, he

omits the interactions among other services.

Shehab [14] introduces the secure access path, which

represents the access history of a user. He assumes

multiple security domains and cross-domain role-

mappings between the domains: a role in one domain can

have the privileges of another role in the mapped domain.

However, he does not discuss the generation of role-

mappings, which requires pre-established trust relation-

ships among the domains and a central agreement over the

role-mappings. Each domain is assumed to be aware of

which mappings are forbidden or authorized. An access

decision involves checking the access path of an access

request to see if there are any unauthorized mappings (i.e.

interactions).

This work is similar to ours, in that an access path can

represent an interaction between two domains. Shehab’s

work assumes each domain knows which role mappings

are allowed. In our model, each service has a separate

private policy and autonomously evaluates the

collaboration context from its own view it is not

dependent on any centrally agreed mappings. An

interaction deemed secure by one service may be deemed

insecure by its interacting peer.

Toninelli [17] and Shafiq [13] propose a model for

collaborative environments; however, a dynamic

collaboration consists of a requestor and an object that do

not know each other. Toninelli’s access control model

dynamically changes the access requirements based on the

collaboration context. She achieves this by reasoning over

the context and policies. Shafiq uses trust negotiation and

trust management to map unknown users into the

GTRBAC model.

3. AN INTERACTION-BASED ACCESS

CONTROL MODEL (IBAC)

A subject, or a requestor, is an entity that requests access.

An object is a resource that is being requested. An action

is an activity that is to be performed on the object. A

collaborative peer is a service. In a collaboration, a

service can act both as a subject and as an object.

3.1. Interaction Types

The IBAC model manages access to a service based on

the types of interactions that are present in a proposed

collaboration. An interaction between two services is

classified along two dimensions: the proximity of the

services (direct vs. indirect) and the direction of dataflow

between them (upstream vs. downstream).

A direct interaction occurs when the first service transfers

data to the second, without relaying it through other

services. For example, seller and shipper in Figure 1 have

a direct interaction. Any direct interaction between

services is a bilateral relationship, even when the

dataflow seems to be one-sided. To illustrate this, the

seller service presents a shipping request to the shipper

service and the shipper determines if it trusts the buyer for

invoking initShipment operation. However, there are

actually two relationships: (1) the seller determines that it

trusts the shipper to send its request, and (2) the shipper

determines that it trusts the buyer to process the request.

Both seller and shipper access requests involve risk. From

the seller’s perspective, the shipper could be a rival

company with whom the seller is not willing to do

business; from the shipper’s perspective, the seller could

be a malicious user who sends a Trojan horse. Existing

access control models such as TrustMaker [3], RBAC

[12] or ACL-based schemes, are geared towards assessing

the trustworthiness of the requestor. The reverse trust

evaluation – i.e., the trustworthiness of the requested

object from the subject’s viewpoint – is not explicitly

modeled. Instead, it is assumed that the subject implicitly

makes a trust evaluation before launching its request. This

implicit modeling does not work in a multi-party

collaboration, where services do not have a say in the

selection of other services, nor may not have established

trust among each other. The collaboration engine selects

services to interact with each other; this does not

guarantee that services do not possess any security threats

to one another. IBAC model, on the other hand, allows the

reverse trust evaluation: the seller can evaluate the

shipper’s trustworthiness by evaluating its downstream

interaction, whereas, the shipper can evaluate the seller’s

trustworthiness by evaluating its upstream interaction.

An indirect interaction occurs when data is relayed

through one or more intermediate services. The buyer and

the shipper services in Figure 1 have an indirect

interaction. There are several reasons why indirect

interactions must be carefully evaluated. Confidential

documents or the results of a sensitive service are

typically passed among several peers throughout the

collaboration; thus even an indirect neighbor might have

access to confidential data, or a modified version or a

portion of the confidential data. The original owner and

the final recipient of the data are subject to security threats

introduced by the intermediate parties that handled and

processed the data. An intermediate domain with security

breaches may unknowingly expose other domains to these

threats. Furthermore, partnership agreements and

competition among businesses may prevent them from

doing business with certain organizations. Even when

such interactions are safe from a security standpoint, the

higher-level business logic may forbid them.

We refine direct and indirect interactions with respect to

the direction of the dataflow: upstream and downstream

interactions. A service has an upstream interaction with

another service when it is the recipient of the data. When a

service is the sender of the data, it has a downstream

interaction. For example, the seller has a direct-upstream

interaction with the buyer in Figure 1, and the buyer has a

direct-downstream interaction with the seller.

Refining an interaction with respect to its dataflow is

important. Although two services participate in the same

interaction, their roles, i.e. sender and recipient, and their

actions are different. Thus, the security threats introduced

to the services are different. The sender, for example, is

concerned about revealing its data to the recipient. The

recipient is concerned about allowing the data flow into its

domain. Informing a service only about the interaction

type such as direct or indirect is not sufficient. The service

must also be informed about its role in the interaction

because, based on its role, a service’s access requirements

from an interaction may change.

3.2. The Motivation for IBAC Model

At the heart of our work is IBAC’s ability to express

access requirements based on interaction types. A service

owner defines the security requirements for her service

even before advertising the service for collaborations.

Therefore, the requirements are not specific to a given

collaboration. The service owner considers the

functionalities that her service offers and the collaboration

scenarios that her service would likely to participate.

For example, if a service provides loan approval for

purchases, it is likely that it will be used in scenarios

where it interacts with banks, car dealers, lenders and

buyers services. Obviously, the service owner cannot

predict each and every collaboration scenario, nor should

she have to. Instead, she defines security requirements for

possible interactions that may involve her service.

To achieve this, she does a risk vs. threat analysis by

answering several questions. For example, is the service

sensitive enough to be protected against indirect peers? If

so, what security requirements must be requested from

such peers? Is the direction of indirect peers affects the

requirements – downstream or upstream peers should be

subjected to same requirements? Does the exact distance

between two peers affect the security requirements –

should the policy set different requirements for varying

distance, instead of subjecting all indirect peers to the

same rules? Should direct peers be subjected to access

requirements that are designed for traditional one-to-one

interactions or new requirements must be written? If so,

what should be the requirements with respect to the

direction?

For each interaction type, the owner analyzes the risk vs.

threat factors and the resulting requirements constitute the

service’s collaboration policy. Our work does not include

how risk vs. threat analysis must be done for a service.

Our work aims to enable a service owner to express its

requirements in a policy model and evaluate them. In the

next section, we explain how our policy model expresses

such requirements.

3.3. Collaboration Context

The collaboration context of a service is the collection of

interactions that affects the security of the service. A

collaboration context is specific for each service, even in

the same collaboration. The context indicates the dataflow

from and into the service throughout the collaboration.

Formally, the collaboration context of service V is a

collection of directed walks Wm such that Wm begins or

ends with V. The directed walk Wm can have an upstream

or downstream direction.

 A collaboration engine generates a context for each

service of the collaboration. Since the collaboration

engine has a global view of the graph, a context includes

both preceding and succeeding interactions affecting a

service. This allows the service to make access decisions

based not only on the past access history (as in Chinese

Wall [4] and Shehab’s work [14]), but also on future

accesses -- i.e., interactions with downstream services.

3.4. Access Control Model

IBAC model has four entities defined: interaction, subject,

object and action. The object represents the service that is

protected by the model.

Our access control model has an interaction-based view;

each access requirement is stated for an interaction type.

Each subject (peer service) is distinguished by its

interaction type and evaluated against the access

requirements specified for that interaction type. For

example, in Figure 3, both Service 1 and 2 request

invocation of Service 3; Service 2 has an upstream-direct

interaction, whereas Service 1 has an upstream-indirect

interaction. As a result, 3 can apply different access

requirements to 2 and 1.

Since existing access control models aim to evaluate a

single interaction between a subject and an object, a single

access request represents a single interaction. This is

insufficient for IBAC model; therefore, we define a

collaboration request in lieu of an access request. A

collabora-tion request is generated from the collaboration

context and represents mul-tiple interactions. It conveys

information about all of the accesses (direct/in-direct,

upstream/down-stream) that will be performed by the peer

services once the collaboration is executed.

The collaboration re-quest, generated by the IBAC PEP,

Figure 3. Sample Collaboration and Collaboration Request.

includes four pieces of information: the interaction types,

subjects, the actions, and the object (see Figure 3). The

collaboration request maintains the association among a

subject, its interaction type with the object, and the

requested action. The interaction type can either include

direct/indirect keywords, or it can specify the exact

number of edges between two services. There are multiple

subjects, actions, interaction types; however, there is only

a single object: the requested service and its operations.

There are two actions defined in our model: invoke and

consume. The invoke action is requested by an upstream

service (subject) in order to invoke an operation over the

requested service, while the consume action is requested

by a downstream service (subject) that will access the data

out of the protected service.

4. COLLABORATION POLICY MODEL

4.1. Policy Requirements

First, a policy must be able to express access requirements

that are designed for specific interaction types. These

requirements must be expressed in a generic way to

evaluate arbitrary collaborations. Second, a collaboration

policy must be easily integrated into an existing access

control system. It must coexist with policies that are

traditionally used to evaluate one-to-one access requests.

A collaboration policy (1) must not disrupt any existing

access control system, (2) must be easily augmented to the

existing system, and (3) may make use of existing policies

whenever desirable. The third requirement promotes

policy reuse among the collaboration policies and

underlying policies.

A collaboration policy is the smallest unit that manages

access decisions for a service. For each service that

participates in

collaborations, there

must be a separate

collaboration policy.

Within a

collaboration policy,

an access rule is the

smallest building

block that states the

access requirements

sought from a subject

that exhibits a spe-

cific interaction type.

4.2. Access Rules

An access rule has three elements: Tar-get, Type and Con-

ditions. The Target element consists of the designated

inter-action type, subject, object and action entities. In

addition to using direct/indirect keywords, the interaction

type can indicate the number of edges between a subject

and an object. In a rule that specifies an upstream

interaction, the action must be set to invoke. In a rule that

targets downstream interactions, the action is set to

consume. The object is the service being protected by the

policy. Since a service can have multiple operations,

different rules of the service’s policy can be stated for

different operations. Then, the rule target includes the

service operation in addition to the service name. (See

Figure 4.)

The Type of a rule indicates whether it is evaluated by the

local collaboration policy, or an existing underlying policy

(external to the collaboration policy.) This allows for rule

reuse. (Both types of rule are shown in the policy for

Figure 4.)

The Conditions element contains the access requirements

of a rule. An access requirement is represented as a

predicate, whose evaluated result will be either true or

false. A true evaluation is associated with “permit”, and

false evaluation is associated with “deny”.

The result of each rule is combined with respect to a

combination algorithm. The result of the combination

algorithm constitutes the policy decision. A policy writer

can specify a custom-made combination algorithm; using

Boolean operators AND and OR.

4.3. Policy Evaluation

After the IBAC PEP generates the collaboration request,

the request is matched against all of the collaboration

policies stored at the IBAC PDP. The matched policy

Figure 4. Policy Evaluation.

starts evaluating its rules against the collaboration request.

Each rule is matched against a subject, the subject’s

interaction type with the object, and the requested action.

If there is no match, the rule result is “inapplicable”. If the

rule target matches, the rule evaluates the subject.

In Figure 5, we show a proposed collaboration and

Service 3’s collaboration policy. The LocalRule1 is

specified for the Op31 and targets any peers with an direct

interaction type: Service 4 and Service 6 both match and

they are separately evaluated against this rule. In order for

a rule to return permit decision, all matching subjects must

satisfy the rule; thus, both 4 and 5 must meet this rule’s

requirements. Each rule’s result is combined with respect

to the policy combining algorithm, which determines the

policy decision. A policy decision can either be permit or

deny.

5. IMPLEMENTATION

Due to the difficulties involved with developing a new

policy language, we enhanced a widely-adop-ted

language, XACML [11]. Sun Microsystems’

implementation of the XACML framework [16] is used as

the foundation for our prototype.

We also implemented the collaboration engine and the

IBAC engine that has a Policy Enforcement Point (PEP)

and a Policy Decision Point (PDP). A detailed discussion

of the implementation can be found elsewhere [1]; here

we briefly discuss the collaboration engine, and changes

to the XACML language and evaluation framework.

5.1. Collaboration Engine. We implemented the

collaboration engine as a standalone web service. The

prototype collaboration engine only manages the access

control issues within the collaboration; it does not handle

service selection and discovery, execution, fault recovery,

etc. We anticipate that our code would be incorporated

into a fully-fledged collaboration engine that handles the

missing aspects.

The collaboration engine has a repository of

collaborations, described in WS-CDL (Web Services

Choreography Description Language) [19]. We chose

WS-CDL because (1) it is an XML-based language, (2) it

describes the collaboration as a collection of interactions

among multiple parties, and (3) it maintains a global view

of the collaboration. A WS-CDL document includes the

service bindings, where each binding points to the WSDL

of a selected service.

When a service is selected for a collaboration and notified

by the collaboration engine, the service’s PEP informs the

engine about the interaction types required by its

collaboration policy. Note that the PEP does not divulge

its collaboration policy entirely, only the interaction types

required. The collaboration engine creates the

collaboration context, identifies and informs the peer

services that have interactions with the evaluating service..

Each peer’s PEP sends its credential to the authorizing

service’s PEP. If a peer does not have the requested

credential type, the collaboration is denied. The

evaluating service’s PEP collects the peers’ credentials

with the collaboration context, and creates the

collaboration request.

The collaboration engine repeats the above steps for each

service proposed for the collaboration and allows each to

evaluate its peers. The results of these evaluations are

collected to determine whether the collaboration is

allowed.

5.2. XACML Enhancements. Since a collaboration

request represents multiple interactions, we implemented

it as a collection of XACML requests, each containing an

interaction, a subject, an action and a resource (i.e. an

object). Each XACML request represents a single

interaction from the collaboration context.

We also modified the XACML policy-matching logic.

Since a collaboration request has multiple XACML

requests embedded inside, we ensured that a selected

collaboration policy simultaneously matches all of the

embedded XACML requests. Otherwise, the collaboration

request could be evaluated against a policy that is not

designed for all of the interaction types within the

collaboration request. Each rule checks for each XACML

request whether it matches the rule and, if so, it evaluates

the XACML request. Moreover, we modified the native

XACML policy-matching and rule-matching algorithms to

consider interaction entity.

XACML rules do not have any types; we enhanced this by

introducing two rule types. For Local rule type, we did

not make any modifications. For Underlying rule type, we

modified the XACML rule evaluation logic by inserting a

software hook. When the hook is executed, it converts the

portion of the collaboration request that is being evaluated

back into a plain-XACML request format, and sends this

to the underlying enforcement agent. (The hook can create

requests based on the policy language of the underlying

system; current implementation assumes it is native

XACML.) The policy decision returned from the

underlying system is treated as the result of the

Underlying type rule.

6. CONCLUSION

Managing access to a service in collaborative

environments is more challenging than in traditional one-

to-one settings. The number of peers and the multiplicity

of the interactions between the peers complicate the

access management.

In this paper, we studied the consequences of peer-to-peer

interactions over the access management of a service. We

modeled an interaction as dual access request between two

peers. This allowed each peer to evaluate the security

risks from their own perspective. Moreover, we found that

due to the continuous flow of interactions, peers interact

with one another directly or indirectly. This made us

realize that accesses among the peers occur at different

levels. Different interaction types leads to different

accesses between the peers. Nevertheless, each interaction

type, hence each access, introduces its unique security

threats.

This situation motivated us to design an interaction-based

access control model that considers the interaction types

as an integral element of its decision logic. Different

interaction types, hence different accesses, may be applied

to different access requirements. In addition, we found

that an interaction originally deemed secure may become

a security threat when combined with another interaction.

Therefore, we developed a model for representing the

collaboration context and designed our access control

model to evaluate this context comprehensively. Overall,

our work aims to increase services’ willingness to

collaborate by enabling them to address the security issues

in a policy-driven and collaboration-agnostic manner.

References

[1] Altunay, M., COLLABORATION POLICIES: ACCESS

CONTROL IN SOA-BASED DYNAMIC COLLABORA-

TIONS, PhD Thesis, North Carolina State University, 2007.

[2] Ardagna, C.A., M. Cremonini, E. Damiani, S. De Capitani di

Vimercati, and P. Samarati, “Supporting Location-based

Conditions in Access Control Policies,” ACM Symposium on

Information, Computer and Communications Security

(ASIACCS '06), 2006.

[3] Blaze, M., J. Feigenbaum, J. Ionaddis, and A.D. Keromytis,

“The Role of Trust Management in Distributed Systems

Security,” In SECURE INTERNET PROGRAMMING: THE

SECURITY ISSUES FOR MOBILE AND DISTRIBUTED

OBJECTS, Springer-Verlag, 1999, pp. 185-210.

[4] Brewer, D.F.C., and M.J. Nash, “The Chinese Wall Security

Policy,” IEEE Symp. on Security and Privacy, 1989.

[5] Deelman, E., G. Singh, M.-H. Su, J. Blythe, Y. Gil, C.

Kesselman, G. Mehta, K. Vahi, G.B. Berriman, J. Good, A.

Laity, J.C. Jacob, D.S. Katz, “Pegasus: a Framework for

Mapping Complex Scientific Workflows onto Distributed

Systems,” Scientific Programming Journal, 13(3), 2005, pp.

219-237.

[6] Hull, D., K. Wolstencroft, R. Stevens, C. Goble, M.R.

Pocock, P.Li, and T. Oinn, “Taverna: a Tool for Building and

Running Workflows of Services,” Nucleic Acids Research, Vol.

34, 2006.

[7] Kang, M.H., J.S. Park, and Y. Peng, “Access-Control

Mechanisms for Inter-Organizational Workflow,” ACM Symp.

on Access Control Models and Technologies, 2001, pp. 66-74.

[8] Kim, S.-H., J. Kim, S.-J. Hong, and S. Kim, “Workflow-

based Authorization Service in Grid” Intl. Workshop on Grid

Computing (GRID’03), 2003, pp. 94-100.

[9] Koshutanski, H. and F. Massacci, “An Access Control

Framework for Business Processes for Web Services,” ACM

Workshop on XML Security, 2003, pp. 15-24.

[10] Murray, G., “Asynchronous JavaScript Technology and

XML (AJAX) with the Java Platform,” http://java.sun.com/-

developer/-technicalArticles/J2EE/AJAX/, Oct. 2006.

[11] Organization for the Advancement of Structured

Information Standards (OASIS), “Extensible Access Control

Markup Language (XACML),” http://docs.oasis-open.org/-

xacml/2.0/-access_control-xacml-2.0-core-spec-os.pdf, Feb.

2005.

[12] Sandhu, R., “Role-Based Access Control Models,” IEEE

Computer , 29(2), 1996, pp. 34-47.

[13] Shafiq, B., E. Bertino, and A. Ghafoor, “Access Control

Management in a Distributed Environment Supporting Dynamic

Collaboration,” Workshop on Digital Identity Management,

Nov. 2005.

[14] Shehab, M., E. Bertino, and A. Ghafoor, “Secure

Collaboration in Mediator-Free Environments,” ACM Conf. on

Computer and Communication Security (CCS), Nov. 2005.

[15] “Simple Object Access Protocol (SOAP) 1.2,”

http://www.w3.org/TR/soap12, April 2007.

[16] Sun Microsystems, http://sunxacml.sourceforge.net

[17] Toninelli, A., R. Montanari, L. Kagal, and O. Lassila, “A

Semantic Context-Aware Access Control Framework for Secure

Collaborations in Pervasive Computing Environments,” Intl.

Semantic Web Conference, 2006.

[18] W3C, “Web Services Description Language (WSDL) 1.1”,

http://www.w3.org/TR/wsdl, March 2001.

[19] W3C, “Web Services Choreography Description Language

(WS-CDL) Version 1.0,” http://www.w3.org/TR/2005/CR-ws-

cdl-10-20051109/, Nov. 2005.

