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I. INTRODUCTION

An important application of lattice gauge theory is to céée hadronic matrix elements rele-
vant to experiments in flavor physics. With recent advaneéatiice calculations with; = 2+ 1
flavors of dynamical quarks [1-4], we now have an excitingspext of genuine QCD calcula-
tions. To match the experimental uncertainty, availabl noin the short term, it is essential to
control all other sources of theoretical uncertainty ad welpossible. An attractive target is to
reduce the uncertainty, from any given source, to 1-2%. fBingget will be hard to hit if one relies
on increases in computer power alone: methodological ingnents are needed too.

Many of the important processes are electroweak transitidrheavy charmed drflavored
quarks. A particular challenge stems from heavy-quarkrdtszation effects, becausega « 1.
The key to meeting the challenge is to observe that heavykgwae non-relativistic in the rest
frame of the containing hadron [5, 6]. The scale of the heawarkimassin, can (and should) be
separated from the soft scales inside the hadron and tresiedn effective field theory instead
of computer simulation. Even so, at available lattice spg&i{l], many calculations aD-meson
(B-meson) properties suffer from a discretization error otiad 7% (5%) [2, 3]. Thus, it makes
sense to develop a more accurate discretization.

In this paper we extend the accuracy of the “Fermilab” mefloodheavy quarks [7] to include
in the lattice action all interactions of dimension six. Weaainclude certain interactions of
dimension seven. Because heavy quarks are non-relatjwisély are commensurate with related
dimension-6 terms, in the power counting of heavy-quar&aiVe theory (HQET) for heavy-light
hadrons [5] or non-relativistic QCD (NRQCD) for quarkoni(iéj.

The Fermilab method starts with Wilson fermions [8] and thever action [9]. With these
actions lattice spacing effects are bounded for lange:, thanks to heavy quark symmetry. They
can be reduced systematically by allowing an asymmetry é&etvspatial and temporal interac-
tions. Asymmetry in the lattice action compensates for thie-relativistic kinematics, enabling
a relativistic description through the Symanzik effecfitd theory [10]. Alternatively, one may
interpret Wilson fermions non-relativistically from theutset [7], and set up the improvement
program matching lattice gauge theory and continuum QCDatth ether through HQET and
NRQCD [11, 12]. The Symanzik description makes it possiblddsign a lattice action that be-
haves smoothly as.ya — 0, converging to the universal continuum limit. The HQET dgstoon,
on the other hand, makes semiquantitative estimates akdization errors more transparent.

The new action introduced below has nineteen bilinearastesns beyond those of the asym-
metric version of the clover action, as well as many fourrguateractions. Several of these
couplings are redundant, and many more vanish when mate¢bingntinuum QCD at the tree
level. We study semiquantitatively how many of the new ofmegaare needed to achieve 1-2%
accuracy. We find, in the end, that ordix new interactions are essential for such accuracy. The
action is designed with some flexibility, so that one may deothe computationally least costly
version of the action.

This paper is organized as follows. Section Il considersdésxription of lattice gauge theory
via continuum effective field theories. Then, in some deved identify a full set of operators de-
scribing heavy quark discretization effects. We then deitee how many of these are redundant,
and which redundant directions should be used to preseevgaibd high-mass behavior. We have
two goals in this analysis. One is to design the new, morelyigiproved, action; for this step a
Symanzik-like description is more helpful, and the reswjtaction is given in Sec. lll. The other
is to estimate the discretization errors of the new actiene the HQET and NRQCD descriptions
are more useful, and our error estimates are in Sec. V. To eraeestimates, and to use the new



action in numerical work, we need matching calculationsythare in Sec. IV. Section VI con-
cludes. Some of the material is technical and appears imaligess: Feynman rules needed for the
matching calculation are in Appendix A; some details of tloenPton scattering amplitude used
for matching are in Appendix B; a discussion of improvemdrthe gauge action on anisotropic
lattices (which one needs only if the heavy quarks are noncjusd) is in Appendix C. Some of
these results have been reported earlier [13].

II. EFFECTIVE FIELD THEORY

In this section we discuss how to understand and controtetigation effects using effective
field theories. We start with a brief overview, focusing osuiss that arise for heavy quarks, those
with massmg > A. For more details, the reader may consult earlier work [7,1P1 14, 15]
or a pedagogical review [16]. Here we catalog all interaxgiof dimension 6 and also certain
interactions of dimension 7 that, for heavy quarks, are afgarable size whemga £ 1.

A. Overview

Cutoff effects in lattice field theories are most elegantlydged with continuum effective field
theories. The idea originated with Symanzik [10] and wasmedéd to gluons and light quarks by
Weisz and collaborators [9, 17—19]. One develops a relsitign

Elat = ESym; (21)

where= means that the two Lagrangians generate the same on-shetliep and matrix elements.
The lattice itself regulates the ultraviolet behavior of timderlying (lattice) theory,.;. On the
other hand, a continuum scheme, which does not need to bédisgen detail, regulates (and
renormalizes) the ultraviolet behavior of the effectivedty Lg,.,.

In lattice QCD (with Wilson fermions), the local effectivagrangian (LE) is

1 = imL;—
Lsym = 22 tr[F, F*"] — qu(lp+ my)qy + Zad 5K (g2 ma; e pa) L, (2.2)
f i

where g> andm, are the gauge coupling and quark mass (of flafjprrenormalized at scale
< a~t. The (continuum) QCD Lagrangian appears as the first twogeithe sum consists of
higher dimension operatots, multiplied by short-distance coefficienks. These terms describe
cutoff effects. The short-distance coefficients dependhenrénormalization point and on the
couplings, including couplings; of improvement terms irC,,;. Equation (2.2) is fairly well-
established to all orders in perturbation theory [20, 21 helieved to hold non-perturbatively
as well. If a is small enough, the term§, may be treated as operator insertions, leading to a
description of lattice gauge theory as “QCD + small cormudi’.

In heavy-quark physics:p > A, whereA is the QCD scale, so one is led to consider what
happens whemga 4« 1. The short-distance coefficients depend explicitly on tlassn Time
derivatives of heavy quark or heavy antiquark fields in fh@lso generate mass dependence of
observables. With field redefinitions—or, equivalentlythwthe equations of motion—these time
derivatives can be eliminated. Focusing on a single heavgiflg, the result of these manipula-
tionsis [7, 14, 15]

Lsym =+ — Q (74D4 +my+ ﬂ’)’ : D) Q+ Zadimgi_4ki(927 maa; MCL)ED (2.3)
™o p
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where the ellipsis denotes the unaltereddf6r gluons and light quarks. By construction the
do not have any time derivatives acting on quarks or antlcuar

The advantage of Eq. (2.3) is that all dependence on the kepaank mass is in the short-
distance coefficients:,, \/m,/ms, andK;(msa). Matrix elements of th&,; generate soft scales.
The heavy-quark symmetry of Wilson quarks (with either thds@n [8] or Sheikholeslami-
Wohlert [9] actions) guarantees that the coefficigiitém,a) are bounded for al,a. This fea-
ture can be preserved by improving the lattice Lagrangiah discretizations of the;, thereby
avoiding higher time derivatives [7, 11]. For such improeations, Eq. (2.3) neatly isolates the
potentially most serious problem of heavy quarks into théad®n of the coefficient,/m; /ms
from 1.

Fortunately, the problem can be circumvented in two sim@gsvOne is a Wilson-like action
with two hopping parameters [7], tuned so that = ms. Then Eq. (2.3) once again takes the
form “QCD + small corrections”. The new lattice action irdueed in Sec. 11l has two hopping
parameters for this reason.

Another solution is to interpret Wilson fermions in a notat®&istic framework. One can
replace the Symanzik description with one using a noniwsat effective field theory for the
quarks (and antiquarks) [11]. For the leadipg? term in Eq. (2.3)

= / = D? 3 - B
Q(’Y4D4+m1+ %’)"D)Qih(H <D4—|—m1— + zp(maa, pa)i B o
2

2m2
(2.4)
where z is a matching coefficient, antf™) is a heavy-quark field satisfying(*) = ++,h(),
Another set of terms appears for the antiquark, with fiéld satisfyingh(~) = —~,h(7). The

non-relativistic effective theory conserves heavy quakd heavy antiquarks separately. As a
consequence, the rest mass has no effect on mass splittings and matrix elemérfsr lattice
gauge theory this implies that the bare quark mass (or hggmnameter) should not be adjusted
viam,. Instead, the bare mass should be adjusted to normalizértgdenergyD? /2ms..

One can develop the non-relativistic effective theory Far lattice artifactL; by using heavy-
quark fields instead of Dirac quark fields [11]. Higher-dirsiem operators in the heavy-quark
theory receive contributions from the expansions of E¢t)(@nd of thel,. Coalescing the coeffi-
cients of like operators obtains a description of latticeggatheory with heavy quarks

Ligg = -+ — B(+)(D4 + ml)h(+) + chat(g% Ma; Maa, ¢j; 1/ ma)O;, (2.5)

(2

where the operator®; on the right-hand side are those of a (continuum) heavykgetective
theory, of dimension 5 and higher, built out of heavy-quaekdi /), gluons, and light quarks.
(The leading ellipsis denotes term for the gluons and ligfatrgs only.) TheZ; are short-distance
coefficients, which depend gy, the heavy quark mass, the ratio of short distanees, and also
all couplingsc; in the lattice action. The logic and structure is the samenasbn-relativistic
description of QCD,

Lacp = -+ = Dy +mo)h™ + 3 €™ (g%, mags 1/mq) O (2.6)

Thus, improvement of lattice gauge theory is attained bystdjg couplings; until C;*(¢;) —Cso"*
vanishes (identically, or perhaps to some accuracy) fofitsteseveral?,.

L A simple proof can be found in Ref. [11].



TABLE I: Bilinear interactions that could appear in the Syrni& LEL through dimension 6.

dim w/ axis-interchange symmetry w/o axis-interchange reytiny HQETA* NRQCDuv!

3 aq QQ
4 a1 Q(vaDy +m1)Q 1 v?
Qv - DQ A v?
5 qD%*q €1 QD3Q €1
QD?Q 01 A v?
— %40 Fuq QiX - BQ A vt
Qo - EQ A2 v
6 quDq QviD}Q A3 vt
q{p, D*}q €2 QD3 €2
Q{74D4, D*}Q 02
Q{Di Y- D}Q '192
Q{~v D,D*}Q A3 vt
—2{D.owFu}q e Q{v-D,a-E}Q e A2 vl
Q{14D4, i3 - B}Q 0B
Q{y D,i¥-B}Q A3 v8
QD4 - E|Q A3 0°
@Dy, Fuva Qru(D-E —E-D)Q A2 vt
Qv (D x B+ B x D)Q A3 o

It does not matter whether one carries out the improvemegram by adjusting<;(c;) = 0
or C*(¢;) = C°™ [12]. The results for the; are the same, provided one identifieg with m..
The matching assumes thatt < 1, but at the same timew,a <« 1. One is thus led to
non-relativistic kinematicsg/m, < 1) in the matching calculation, where both descriptions—
Egs. (2.3) and (2.5)—are valid. Kinematics are encodedtimtcoperators; or O; and are not
transferred to the short-distance coefficients. Hencerkatics cannot influence matching condi-
tions on the:;. In particular, when indeegh,a < 1 (which may be impractical, but is conceivable
theoretically) relativistic kinematicgp( ~ m5) are possible, and it follows from the Symanzik
effective field theory that the solution df;(c;) = 0 yields the same; for both relativistic and
non-relativistic kinematics.

B. Quark bilinears in the LE £

In the rest of this section we construct the L. Bppropriate to heavy quarks. The two main
steps are first to list all of th€; that can appear, and second to decide which should be coegdide
redundant. In part it is a generalization of the dimensi@nélysis of Ref. [9] to the case without
axis-interchange symmetry. At dimension 6 there are quiirielars, four-quark interactions, and
interactions that contain only the gauge field. We shalt stdh the bilinears and turn to the others
further below. In each case, we first consider completeditgperators, and then consider which
can be chosen to be redundant.

Table | contains a list of all quark bilinears through dimenss that can appear in the effective
Lagrangian. The second column contains interactions #saiact axis-interchange symmetry; the



fourth column contains the extension to the case withowtaterchange symmetry. The meaning
of the other columns is explained below. Covariant denvegtiact on all fields to the right,

D,FQ = (0,F +[A,, F)Q + F D,Q. (2.7)

This notation is convenient for the interactions with contators and anti-commutators. To arrive
at the lists we exploit identities such as

ZDZ = D2 - %UuyFuw (28)
294Dy - DyyDy = {74D4, « - E} - {Di, v D}7 (2.9)
2v-DvDyy-D = {~v -D,a- E} — {uDs, (v - D)*}. (2.10)

Some interactions are omitted, because the underlyingdaauge theory is invariant under cubic
rotations, spatial inversion, time reflection, and chamgjugation?

The fourth column is arranged so that its entries are pahteotbrresponding interactions in the
second column. It is easy to show that the list is completaytiyng out all independent ways to
have three covariant derivatives, expressingfihand B fields as anti-commutators of covariant
derivatives. One finds 11 possibilities, and then one camndesdities to manipulate this list to that
given in the fourth column of Table I.

The LEL contains several redundant directions. The equation ofomatf the leading LEE
plays a key role in specifying which operator insertions rbayconsidered redundant. Let us
assume, for the moment, that = m,, so that the equation of motion in the Symanzikd_[s the
Dirac equation. Below we shall use the non-relativistieefifze field theory to address the case
my 7& my.

The quark fields are integration variables in a functionggnal, so an equally valid description
is obtained by changing variables

e’Q, (2.11)
Qe’, (2.12)

—
—

K1 O

where

J =agi(PD+m) + adiy - D+ a’*ex(P+ m)? — a’Lepioy, Fl + a’d(vy - D)?
+ a*0pi% - B + a*Uy[y4Dy, 7y - D] (2.13)

and similarly for.J with separate parametefs ¢;, andv,. If the § parameters (andh, 1J,) vanish,
then.J and.J preserve invariance under interchange of all four axes.

One can propagate the change of variables to thé,laad trace which coefficients of dimen-
sion 5 and 6 are shifted by amounts proportional to the paemia./ and./. To avoid generating
terms that violate charge conjugation one chogses+«;, §; = +94;, U, = —J,. We then see that
there are two redundant directions at dimension 5, and fidenansion 6. That means that two
couplings in the dimension-5 lattice action may be set byenience, and five in the dimension-6
lattice action. The third and fifth columns show the corregfgnce between parameters in the
change of variables and the interactions that we chooseredomdant. As expected from general

2 Reference [9] included the dimension-6 interactioR, D?|q. Reference [7] included the dimension-5 interaction

Q[y4D4,~ - D]Q. Both are odd under charge conjugation and, thus, may beezit



arguments [7, 14, 15], all interactions in whighD, acts onQ or (after integration by parts)
are redundant.

There is quite a bit of freedom here. One could chogséo eliminateQ[Dy,~ - E]Q =
Q{uD,, a - E}Q instead ofQ{~ - D,« - E}Q. But the former is suppressed, relative to the
latter, in heavy-quark systems. Moreover, in HQET and NRQ@P has

Qa-EQ = W~ -D o - E}h) /2my + -, (2.14)
Q{v -D,a-EXQ = h'P{y-D,a-E}h") +..., (2.15)

which mean thaQa - EQ andQ{~ - D, « - E}(Q generate nearly the same effects in heavy-quark
systems. Thus, we prefer to talgg~ - D, o - E}Q to be redundant.

To understand the general pattern of redundant interagtien us introduce some notation.
Let 5 (£) be a combination of gauge fields, derivatives, and Diracioes that commutes (anti-
commutes) withy,. An example of53 (£) isiX - B (« - E). Also, let us writeB,. (and&..) when
QB.Q (or Q€.Q) has charge conjugatioftl. Because we wish to eliminate time derivatives
of quark and antiquark fields, we would likg{~,D,, B, }Q andQ[v,D,, £_]Q to be redundant.
That is always possible: simply add toin Eq. (2.13) terms of the formiz, B, andvds £_. As
a consequence, neithé@{~ - D, B, }Q nor Q[v - D, £_]Q is redundant. On the other hand, in
Q[v4Dy, B_1Q andQ{~,Dy4, £, }Q the time derivative acts only on gauge fields. Thus, by adding
to J terms of the formis_B_ anddg, £, itis possible to choos@[v-D, B_]Q andQ{~-D. £, }Q
to be redundant. Instead &fv - D, B_]|Q or Q{~ - D, £, }(Q it may be convenient to choose an
operator related through an identity.

C. Power counting

The small corrections of an effective field theory are snmause the product of the short-
distance coefficients and the operators yield a ratio of atghistance scale to a long-distance
scale. For light quarks in the Symanzik effective field tlyetie essential ratio ig/A~! = Aa,
and dimensional analysis reveals the powenafto which any contribution is suppressed. In
particular,B- and&-type interactions of the same dimension are equally ingpoort

For heavy quarks the physics is different, becaugé is a short distance. The ratlixjmél =
mga should not be taken commensurate with [7]. Instead, interactions should be classified in
a way that brings out the physics. It is natural to turn to HGEHO NRQCD. Let us start with
heavy-light hadrons and HQEZ-type interactions of given dimension atgm times smaller
than B-type interactions of the same dimension. Becalse,, < 1 andAa < 1, it makes to
count powers of\, where\ is either of the small parameters [11, 12, 15]

A~ al, A/mg. (2.16)

This power counting pertains whetheg, < a, mq ~ a, ormg > a. Writing the corrections in
the Symanzik fashion (with Dirac quark field@sand(), eachZ; is suppressed by°, with

s =dim L — 4+ nr. (2.17)

Herenr = 0 or 1 for interactions of the fornf)B.,.Q or Q&, Q, respectively. The sixth column
of Table | (labelled HQET) shows the suppression of eachracten, relative to the (leading)
contribution from the light degrees of freedom. In the faling we call the power counting for
heavy-light hadrons, based on Eq. (2.17), “HQET power dogtit
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TABLE II: Dimension-(7,0) bilinear interactions that areromensurate, for heavy quarks, with those of
order\? (in HQET) orv?, v% (in NRQCD).

dim w/0 axis-interchange symmetry HQBET NRQCDuv!
7 QDLQ 3 vl
> iz Q2D BiD;Q S[>2;viD}] A3 v
zi;Aj Q{Df—, i%;B;}Q A3 0
Q(D??Q A3 ot
Q{D?ix-BlQ A3 V8
Qv -DiX - By - DQ S[{v-D,i¥ - B}| A3 V8
QD;i¥ - BD;Q A3 00
QD - (B x D)Q S[y- (D x B+ B x D)] A3 v
Q(iz - B)*Q 5l{~ - D,D?}] A3 o8
QB - BQ A3 v8
Qa- E)*Q 6[[Ds,~ - E] A3 v’
QE - EQ A3 V8

Now let us recall how to classify interactions in quarkoniaotording to the power of the rel-
ative internal velocityp. Because color source and sink are both non-relativistigrooelectric
fields carry a power ofi*, and chromomagnetic fields a powendf[22]. £-type interactions are
suppressed by a power pfmg = v, analogously to their suppression in heavy-light hadrons.
Thus, bilinears are suppressed:dywhere now

t:dimﬁ—?)—i-nE—i—QnBJrnp, (218)

andng (ng) is the number of chromoelectric (chromomagnetic) fieldae eventh column of
Table | (labelled NRQCD) shows the suppression of eachantem. In the following we call the
power counting for quarkonium, based on Eq. (2.18), “NRQ@®gr counting.”

Glancing down the sixth and seventh column of Table I, ons segeral terms of ordey®
andv®, from Egs. (2.17) and (2.18) one realizes that some dimarimteractions are of the
same order. They are listed in Table Il. There are two inteyas with four derivatives, six with
the chromomagnetic field and two derivatives, and four with # or two B fields. A third
combination of four derivatives is omitted, using the idgnD,; D>D; = (D?*)?+ D - (B x D) —
B?2. Other dimension-7 operators carry powérin HQET power counting, or® (or higher) in
NRQCD power counting. Five combinations are redundant lfas/s), and we shall see below
how they and the others arise in matching calculations.

The(d,nr) = (7,1) operatorQ{ D? « - E}( and severald, nr) = (8, 0) operators, all have
np = 1 andnp + nr = 3, have NRQCD power-counting®. Reference [22] includes spin-
dependent ones, to obtain the next-to-leading correctimspin-dependent mass splittings. We
have not included these operators in our analysis, but gistfarward extension of the matching
calculation in Sec. IV B 1 would suffice to determine their plgs.

Although this description of cutoff effects is somewhat ciarsome, it provides a valuable
foundation for our new action, given in Sec. lll. To obtaime thew action, we simply discretize
the interactions in Tables | and I, except those with higimee derivatives. The discretization of
Q~ - DQ is needed to obtain a lattice action that behaves smoothiy;as— 0 [7], reproducing
the universal continuum limit of QCD. Similarly, discredizons of the€-type interactions, such
asQa - EQ andQ{~ - D, D*}Q, are needed to retain that feature here.
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TABLE llI: Bilinear interactions that could appear in theawy-quark LEC through dimension 7.

dim w/o axis-interchange symmetry HQBET NRQCDv!
3 R(E) p(E)
4 B(i)74D4h(i)
5 A D2R(E) €1
h&) D2 ) A v?
h®)ix . Bh(F) A v
6 h(H)yy DR €2
hH) {y4Dy, D*}hF) 5o
)~ - D, a- E}h®) A2 vt
hE) 44Dy, i% - B}hE) o
(D - E — E - D)hF) A2 v
7 hE) DEp(F) A3 v
Zi# E(i){DJZ-, % B; Yh(F) A3 G
iz WD B; Db &) A3 00
R (D2)2p) 23 vl
A D? i - B}hF) A3 V0
¥~ . Dix - By - D) A3 08
rF) D;i% - BD;h™) A3 0
A D - (B x D)h®) A3 V0
A (% - B)2h™) A3 V8
h#) B . Bh) A3 V8
hE) (o - E)?h&) A3 v
W& E . Er&) A3 v8

D. Heavy-quark description

For understanding the size of heavy-quark discretizatitetts, it is simpler to switch to a
non-relativistic description. (Whein; # m., it is also necessary to see the connection to QCD.)
The list of interactions is much shorter, because the caimsty,h*) = +r(*) removes thet-
type interactions. It is given in Table Ill, including thenaiension-7 interactions related to those in
Table Il. Also, fewer changes of the field variables are guesi

hE) — eh, (2.19)
RE) — he’, (2.20)

where now
J = 0,61(’)/4D4 + ml) + a252(74D4 + m1)2 + CI,252D2 + a25BiE : B, (221)

and similarly for.J. To avoidC-odd interactions, one should choose equal parametersumd.J.
Thus, there are four redundant directions of interest—ah fime derivatives of the (anti-)quark
field. In the end, just as many non-redundant interactiomsne as in the Symanzik description.
The heavy-quark description provides a good way to estitha&size of remaining discretization
effects, as in Sec. V.



E. Gauge-field and four-quark interactions in the LEL

We now turn to interactions in the gauge sector of th&€ | &nd also to four-quark interactions.
The two are connected when one considers on-shell impravelmecause in quark-quark scatter-
ing short-distance gluon exchange generates the sameitbeasyour-quark contact interactions.
Here we give a cursory sketch of the gauge action. Then wadenihe four-quark interactions,
including details mostly for completeness. In practice(Sec. V), we find the four-quark correc-
tions to be smaller than those of the bilinear interactioredyezed in the preceding subsection.

The gauge sector of the LZHs the same as for anisotropic lattices, where one adjusiaton
so that the temporal lattice spacimgdiffers from the spatial lattice spacing. The short-distance
coefficients are different; here asymmetry between spatidtemporal gauge couplings arise only
from heavy-quark loops. Improved anisotropic actions Haeen discussed in the literature [23],
but full details remain unpublished [24]. We present thaiietn Appendix C.

We are most concerned here with effects that survive on,st@ellve study here the possible
changes of variables for the gauge field. With axis-intengieessymmetry one has [9, 19]

Ay Ay +d’ea[DY Fu) +a’g® Y ept* (@t ay), (2.22)
f

with a color-adjoint vector-current term for each flayaof quark (heavy or light). The appearance
of ¢> multiplying the currents is a convenient normalization\aartion. When one now considers
giving up axis-interchange symmetry, one has

Ay — Ay+a’ca(D-E - E- D) +d*g? Zsjf t* (Gryatqy), (2.23)
I
A A—d*(es+0p)[Ds, El +a*(c4+ 64)(D x B+ B x D)
+CL2922(5J]“ —|—(5Jf)ta(q]c")/taqjv), (224)
!

which reduce to Eq. (2.22) when ths vanish.

For a moment, let us set;; = J;; = 0 in Egs. (2.23) and (2.24), and focus on the gauge
fields alone. As discussed in Appendix C, there are eighpeddent gauge-field interactions that
arise at dimension six. There are three independent waysamedrized by 4, 64, anddz—to
transform the gauge field, yielding three redundant dioesti Similarly, there are eight distinct
classes of six-link loops, shown in Fig. 1, that can be usethirmproved lattice gauge action. In
Appendix C, we show that three of them—all three classes eftibectangles” in the bottom row
of Fig. 1—may be omitted from an on-shell improved gaugeoacti

The transformations involving the curremtgy,t“q; are more interesting. They shift the LE
[cf. EqQ. (2.2)] by

Lsym = Loy — @° Y _es57(D-E—E-D)gy+a* Y (55 +0,7)d[Ds, v - Ela
/ j
— a*) (es;+0650)3v- (D x B+ B x D)g;
/

— &Y (@t an) (@t as) — a*9” Y 655(a75tas) (@551 d), (2:25)
fg f9.3
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FIG. 1: Six-link loops available for improving the gaugeianton anisotropic lattices: rectangles (top row);
parallelograms (middle); bent rectangles (bottom). Noctetnre from Ref. [19].

where the derivatives act only on the gauge fields. The sitleesie shifts—of ordey? for four-
quark operators and of ordg! for bilinears—is commensurate with the respective terras dh
ready appear if’s,,,. Thus, then; parameters ;; andd;; could be used to eliminate bilinears or
four-quark operators. For simulations it is preferablestmove the latter, namedyv4t*q,q;v4t%q;
andqpyt“qs - gryt*qs-

We now list the dimension-six four-quark interactions ie thEL. For a single flavor, the
complete listis in Table IV, which also indicates that therent-current interactions are redundant.
Interactions with the color structufgl’q)*> may be omitted, because they can be related to those
listed through Fierz rearrangement of the fields.

When considering several flavors of quark, we must keep wéft&vor indices as well as color
and Dirac indices. The Fierz problem becomes more intrjeate we shall find that color-singlet
and color-octet structures should be maintained. Let ubsith Fierz rearrangement of the Dirac
indices. The four-quark terms in the ICHake the form

> KxGral xqos@nTxtis = — > Kx Fxy@ral'y GisGn Ty dgs, (2.26)
X Xy

where K y denotes short-distance coefficients, the Greek (Latinge@wdlabel color (flavor)F is
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TABLE IV: Four-quark interactions that could appear in tHed (for a single flavor).

dim w/ axis interchange w/o axis interchange
6 (qt°q)? (Qt°Q)?
(qy5t°q)* (Q 51" Q)?
(@t q)? €J (Qat*Q)? €7
(Qit"Q)? 0y
(@vus5tq)* (Qra5t°Q)*
(Qri5t°Q)?
(Giouwt®q)* (QixitQ)?
(Qat*Q)?

TABLE V: Four-quark interactions that remain when Fierarangement is taken into account. A sum over
Dirac matriced x in each of the set§l}, {4}, {7}, {iZ}, {a}, {v15}, {145} {75} is assumed. (With
axis-interchange symmetry, the sets would(bg, {~,}, {iow}, {775} {15}

quarks color octet color singlet
heavy-heavy QT xt*Q QI xt*Q -
heavy-heavy Qi xt"Q1 Q2 x Q2 Qil'xQ1 Q2T'x Q2
heavy-light QUxt*Q > 4;T xtqy QTxQ > dsTxaqy
|Ight-|lght Zf erxtaqu Zg ngXt“qg Zf q_fI‘qu Zg q_gFqu

the Fierz rearrangement matrix (wifff = 1), and the minus sign comes from anti-commutation
of the fermion fields. Equation (2.26) leaves the flavor aridraadices uncontracted, but to get
terms in the LEE, the color indices must be contracted (one way or anothed)tlze flavor labels
must yield a flavor-neutral interaction. Without loss, wa& choose the side of Eq. (2.26) such
that the Dirac matrices contract quark fields of the same flaMoen one can use Fierz identities
for SU(V) generatorst(f = —t%)

Ntostls = —tostss — (N? — 1)8450,5/2N, (2.27)
Sag0ns = Oaslng/N — 2184125, (2.28)

so that the color indices are contracted across the sams éelthe Dirac and flavor indices.

After using Fierz rearrangement to bring quarks of the samilnext to each other, one
is left with the interactions in Table V. To be concrete, weasidern, flavors of light quarks
(with m, < A) and two flavors of heavy quarks (charm and bottom). We neghecdependence
of the coefficients on the light quark masses, because foarkgnteractions are already small
corrections (of dimension six). In that case, the four-guateractions can be arranged so that
only the SU(y) flavor singlets) _ , ¢;I'xt“q; and} _ ; g;I'xq; appear.

The parameters;; andj,;; may be used to eliminate color-octet current-current aggons.
For each heavy flavor, one find®+,t°Q)* and",(Q7;t"Q)? to be redundant. For light quarks,
we may neglect the differences in the mass, so they have conpa@meters, and the flavor-
singlet combination{Ef dryut“qr)? is redundant. For the light flavors, our list of operators is a
Fierz rearrangement of the list in Ref. [9].

The leading HQET power counting for heavy-light four-quaperators follows from dimen-
sional analysis and Eq. (2.17)?*"r, just as if the light-quark part were replaced by three deriv

12



tives. Heavy-heavy four-quark operators will be suppréssace matrix elements are taken, by a
heavy-quark loop, leading @ \**"r.

In quarkonium, the size of heavy-light four-quark operatéollows similarly from and
Eg. (2.18):0v%""r. The valence heavy-heavy operators are more interestingy fnust contain
two contributions, one to improviechannel gluon exchange, and another to impreehannel
annihilation. The former have NRQCD power countigig®*r ~ 04" (sinceg? ~ v [22]).
The latter arey? times smaller, because thechannel gluon is far off shell, but the Dirac-matrix
suppression is now! ", leading tog?v®~"r ~ v""r in all. In practice, thes-channel contribu-
tions are suppressed further, when treated as an insemticalor-singlet quarkonium state. At
the tree level, the only color structure that can arise isther-octet. Its matrix elements vanish in
the QQ-color-singlet Fock state of quarkonium, leaving tiesuppresse@ QA color octet [25].
Color-singlet four-quark operators arise at one loop, &ittadditional factor of? ~ v.

. NEW LATTICE ACTION

In this section we introduce a new, improved lattice actmmheavy quarks, designed to yield
smaller discretization errors than the action in Ref. [7r@esign is based on several lessons
from the preceding section and Refs. [7, 11, 12]. First, important to preserve the natural
heavy-quark symmetry of Wilson fermions, so that the coieffits X; stay bounded for alha.
(This feature is spoiled in the standard improvement progdasigned for light quarks, which
introduces several new terms that grow with.) Second, the new lattice action is flexible enough
to match cleanly onto both the Symanzik description and trenelativistic description.

Let us write the action as follows

00 1
S = Spzp2 + Sy + Z Z S(d,nr‘) + Sqqqq, (3.1)

d=5 nr‘:(]

whereSp:p2 is the improved gauge action [Eq. (C7J)}, is the basic Fermilab action, tig, ..
consist of the bilinear terms added to improve the quarkoseend.S;,;, denotes four-quark
interactions. S,y consists of (discretizations of) interactions of dimensip with nr as in
the discussion of power counting, Egs. (2.16)—(2.18).udiclg the interactions i, ;) couples
“upper” and “lower” components, but allows a smooth limit— 0.3 Our aim is to improve the
action to include all interactions of dimension six. Thea plower counting requires us to include
S0y as well. Finally,S;,4, consists of discretizations of four-quark operators, atetision six,
those of Table V.

The basic Fermilab action [7] is a generalization of the @laction [8]:

So = m0a421/_)(93) +G4Z¢ )YaDarah(z Z¢ ) At ()
+Ca4Z¢ )7 - Dt () — dryCd® Zw YA (@ (3.2)

We denote lattice fermions fields with to distinguish them from the continuum quark fields
in Sec. Il. The dimension-five Wilson terms are includedsinto remove doubler states. The

3 Lattice NRQCD, which directly discretizes the continuunawequark action, can be thought of as omittityg ;)
in favor of (41,0

13



remaining dimension-five interactions are [7, 9]
5(5,0) =S = —chCa5 Ziz iE : Blatw( )7 (3.3)

Se1) =S = —zcp¢a® Zw ) - Byyth(z), (3.4)

(3)
Hlat? Alatl Blat)

where the notatioyz and Sy is from Ref. [7], and the discretizations, ., A
E,,. are defined below.

The new interactions in Eqg. (3.1) introduced in this paper ar

lat’

S0y = rea® Yy (x){y - D, o - By} ()

+ zpa® ii}(ﬂsm (Diat * Erat — Bt - Diat) ¥(2), (3.5)
S = c1a6i¢ Z%Dnatﬁuatw ) + 2 Z@b {7 * Dia, A} ()

+ cwﬁilﬁ (@){7 - Dhat, 1% - Buat }t()

+ za Z¢ - (Dhat X Biag + Biay x Diay) ¥()

- cEEaﬁzwa:)mDma - B J(x), (36)
S = aa’ Y (@) Z Nipgtb(@) +esa” Y (@) DY {iSiBirars Ly Jo(2)

+ TS&?Z@b(I)Z;iZi [D;BiDjl,, () ’
ey
N z6a72w ) (20 0@) + 20" 3 DAL IS Bui)
n Z7a72¢ )[Dii% - BDi|iath(x) w
N 7’7a7§:@5 2)7y - DtiS - Biaey - Diagth(z)
. T7Q7Z¢ (B x D)]iah(x)
+ ropo Zw ) (2 - Bu)* $(2) + 255" 3 () B - Buaet (1)

— TEEQ Z¢ Ot Elat (Z’) + ZEECL7 Z IE(«T)Elat . E]atw(l’). (37)

All couplings in Egs. (3.2)—(3.7) are real; explicit facdaf i are fixed by reflection positivity [26]

of the continuum action. Some of the improvement terms ekéerer more than one timeslice, so
there are small violations of reflection positivity for tlagtice action. We expect that the associated
problems are not severe, as with the improved gauge acti€jn [2
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Equations (3.5)—(3.7) contain 19 new couplings. The cotwerior couplingse;, r; and z; is
as follows. In matching calculations we find that couplingsanish at the tree level, while the
couplingse; do not. Couplings; are redundant and, for this reason, could be omitted. But the
result of the analysis in Sect. Il is tmimberof redundant interactions, rather than the specific
choices of interactions themselves. The possibilitiestferdimension-7 redundant directions are
as follows. One ofcy, cs, r5) is redundant; we chooseg. Furthermore, one dfz, 27,77, 758),
another of(z;, 77, 75g), and another ofz;, r7, r’,, rgp) are redundant; we choosg r’, andrgp.
But because pragmatic considerations could motivate atheices, we keep all of them in our
analysis. This strategy also provides a good way for the mragacalculations to verify the formal
analysis of the LEE. In future numerical work, we recommend choosifjgas usual, to solve the
doubling problem (in practice, > 1). The others may be chosen to save computer time, which
presumably means choosing the couplings of computatipdathanding interactions to vanish.

The difference operators and fields with the subscript ‘&€’ taken to be

D,.. = (IT,-T-,)/2a (3.8)
3
Doy = (Lo +T-p — 2)/a*, Al(jt) = Z Aitags (3.9)
i=1
1 L
Fooray = 302 Z Z sign psign o [T15T_;T_5 — T5T,1-5T- ], (3.10)
p=tpo==to

where the covariant translation operat@ts, translate all fields to the right one site in the
direction, and multiply by the appropriate link matrix [28]hese discretizations are conventional
for Sy + S + Sg. For the new interactions, we have re-used the same ingrtsdie
For the interactions with couplings andz’. one can consider
[DjBiDj]lat =D; BilatD' (311)

Jlat Jlat?

or

[D; BiDj] (1= T)Bipae(Tj — 1) + (Tj — 1) Biyar (1 = T15)]. (3.12)

lat — 2&2

In tree-level matching calculation, both lead to the sanmeddence on; andz;,. Equation (3.11)
has the advantage that is re-uses elements that are alrefaayd(in a computer program, say) for
the dimension-4 and -5 action. Equation (3.11) is more |deahever, and may have other advan-
tages. A FermiQCD [29] computer code of the new action indg#hat Eq. (3.11) is faster [30].
This code also indicates that it is advantageous to choesetiundant directions so that one may
setry; =r; = 0.

The improved gluon actiofp2 = is defined in Appendix C. The four-quark actidh,;, con-
tains the obvious discretization of the (continuum) opmsaexplained in Sec. Il E and listed in
Tables IV and V: simply substitute lattice fermion fields tbe continuum fields, and assign
each a real coupling. When matching to continuum QCD, thelaugs in S;,;, Start at ordep?,
making them commensurate with ordgrmatching effects i 6,1) + S0, such as tree-level
guark-quark scattering.

IV. MATCHING CONDITIONS

In this section we derive improvement conditions on the newuptings at the tree level. We
calculate on-shell observables for smadl without any assumption omga. We look at the
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energy as a function of 3-momentum, which is sensitive,ta,, ¢,, andzg. We then look at
the interaction of a quark with classical background chrelactric and chromomagnetic fields.
The former is sensitive toeg, rg, andzg; the latter to all butgg, reg, 258, TBE, @ANd2zgE. TO
ensure that these results are compatible with the improeedey action, we next compute the
amplitude for quark-quark scattering. This step also nmedhe four-quark interactions, which
are not written out explicitly in Sec. Ill. Finally, we comiathe amplitude for Compton scattering
to matCthE, T"EE, ?EE> "BB) andZBB.

A. Energy

The energy of a heavy quark on the lattice is defined througlexiponential fall-off in time of
the propagator. For small momentynthe energy can be written

2 2\2
_ p 1, 3 ., (P)
E—m1+2m2—6w4a ;pi— Smd +oe, (4.1)

where the coefficients:,, m», m4 andw, depend on the couplings in the action. Appendix A con-
tains the Feynman rule for the propagator and recalls thergeformula for the energy, Eq. (A4).
By explicit calculation we find

mia = In(1+ moa), 4.2)
1 2(2 rsC
= 4.3
maa moa(2 + moa) * 1+ mpa’ (4.3)
2¢(¢C + 6¢1) ro¢ — 24cy
— 4.4
Y a2 T mea) | A1+ moa)’ (44)
I 8¢? 4¢ + 8r,C3(1 + mopa) r2¢?
mia3 [moea(2 + moa)]3 [mea(2 + moa)]? (1 + moa)?
32<02 82}6

— : 4.5
moa(2 +moa) 1+ mpa (4.5)
The dimension-6 and -7 couplings, c4) and(cs, z) modify w, andmya, but notm;a or msya.
To match Eq. (4.1) to the continuum QCD, one requirgs= m, andw, = 0. Frommy = mo
one obtains the tuning condition
16¢e, = 4¢H¢2 - 1) B C312¢ + 4ry(1 4+ moa) — 67,C%/(1 + moa)]
27 Tmoa(2 4+ moa))? moa(2 4+ moa)
3r2¢t moa(2 + moa) r3¢3 r2¢?

(14+moa)? " 2(1+ mopa) (1+mea)® 1+ mga

826 +

(4.6)

which (at fixedmya) prescribes a line in thé, z) plane. Fromw, = 0 one obtains the tuning

condition

moa(2 + mpa)
8(1 + mpa)

which (at fixedmga) prescribes a line in théc;, ¢;) plane. Asmga — 0, both lines become

vertical: the coefficients; andc, of dimension-6 operators are fixed, whereas the coefficants

¢4 andzg dimension-7 operators are undetermined. At this stageenigpting to choose; andz4

to be two of the redundant couplings, but below we shall sattttere are better choices.

0= C246Cc; + (¢ — 24cy) (4.7
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B. Background Field

To compute the interaction of a lattice quark with a contmubackground field, we have to
compute vertex diagrams with one gluon attached to the direekThe Feynman rules are given
in Egs. (A23) and (A24). Our Feynman rules introduce a gaugernial via

Uu(z) = exp [goAu(z + e a)] (4.8)

wheree,, is a unit vector in the: direction, and take the Fourier transform of the gauge fielokt

Au(z) = / (gﬁl; e AL (k). (4.9)

A background field would, however, lead to parallel transgrsr

U,(z) =Pexp [go /01 A (x + seua)ds} : (4.10)

Equation (4.8) is a convention. If we use Eq. (4.10) insteadjces, propagators, and external line
factors for gluons would change, in such a way that Feynmagrdims for on-shell amplitudes
end up being the same.

To use the interaction with a background classical field asa&ching condition, we must
compute the current, that couples to the background field in Eq. (4.10). Current conservation
requires

k- J(k) =0, (4.11)

wherek is the external gluon’s momentum. The usual convention4pfk), from Egs. (4.8)
and (4.9), yields a curren?}u satisfying

k- J(k) =0, (4.12)

wherek, = (2/a) sin(k,a/2). One sees, therefore, that a classical gluon line with Ltarienlex:
must be multiplied by

by kaa?

I

One should think of., (k) as a wave-function factor for the external line. Its appeeeehas been
noted previously by Weisz [17].

In the rest of this section we match the lattice gauge thedtyour new action to the expression
for the continuum gauge theory. The incoming quark’s momnens p, the outgoing)’, and the
gluon's K = p’ — p. The current is given by (no implied sum g

Ju =, (KN @) a(€, p ) A0 p)u(&, p)N (p), (4.14)

whereA,(p, p) is the vertex function derived in Appendix A. The externahrs take normal-
ization factors\" as well as spinor factors [7].
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1. Chromoelectric fieldy = 4

For the interaction with the chromoelectric backgroundifiele use the time componesit.
To O(p?/m?) the current in continuum QCD is

K?-2i%. (K x P)
8m?
whereP = (p’ + p)/2. After a short calculation with the new lattice action we find
K? -2 (K x P) N 2pK?a?
8m3, 1+ mga

Ji = u(¢',0) [1 - } u(€,0), (4.15)

Jy = (e, 0) [1 - } u(€. 0), (4.16)
where

1 ¢? C*cp 2rg
= ) 4.17
dmia®  [moa(2 4+ mea))? * moa(2 + moa) * 14+ mga ( )

The correct (tree-level) matching is achieved if one agjust

2p =0 (4.18)
and(cg, rg) such thatng = ma:
2moa(2 + mpa) (¢t —1) re¢3 r2¢*moa(2 + moa)
2 0 0 G Mo 0
= . 4.19
et 14+ moa moa(2 + moa) * 1+ mga + 4(1 4+ moa)? ( )

At fixed mpa the latter prescribes a line in tlies, ) plane. As before, this line becomes vertical
atmga = 0, fixing cx = 1 and leaving -z undetermined.

To obtain conditions orgg, rre, andzgg, we shall have to turn to Compton scattering in
Sec. IVD.

2. Chromomagnetic fieldz = 4

For the interaction with the chromomagnetic backgroundifige use the spatial compo-
nentsJ;. To O(p*/m?) the current in continuum QCD is

1 P?+1iK? K;P-K
i = —iu(g,0)¢ P | — — - - —
J (g’ ){ <m 2m3 )

8m3

. 1  P*+:iK? P K
_ gijlllej <_ — 74) -+ giﬂzElem} U(é, O) (420)

2m 4m3
After another short calculation we find

1 P’+1IK? K, P-K K, P-K

Ji = —iu(¢,0){P [ — — i) - — + =2

mo 2m; 8mam7, ma(1 + mopa)
+ twp,d® [PK? — K; P- K| — twp,a’e; K;i% K*
— Ywp,ale K;PiY - P+ twxd®X;
— §w4a3B(PZ-2 + iK?) + %wgagaiﬂiZlKj(Kf + Kf)
+ & (wy + wh)a’e S K [(3PF + LK?) + (3P7 + 1K7)]
1 P?4+iK?

2mB 4m33/

P K
— &2 K < ) + 5ijl"'2lpjiz} u(€0), (4.21)

dmoms,
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wherems,, m3, w,, andm? have been introduced already, and
4 E

1 N (cg —15)C
mpa moa 14+ mea ’
1 ro(rs —cp)C®  8(z6 — 27) + 4(r7 — 24)
md,a®  mia® (14 moa)? 1+ mea ’
o — 4(ry — eg)C3(1+moa)  16(cy — c3)C 8r;
? [moa(2 + moa)|? moa(2 +mea) 1+ mea’
1623¢ 82,
We, = Wp, T+ moa(2 + moa) 1+ mea’
/ /
Wp, = Wy, — 81(:7_777;27
W)y = cgC —4(cs —r3)
14 mpa
W, = 1sQ—24es + 16(2c5 + 7’5).
4(1 4+ mopa)

The termwa® X is discussed below.

(4.22)
(4.23)
(4.24)
(4.25)
(4.26)
(4.27)

(4.28)

Comparing Egs. (4.20) and (4.21), one sees that the firsttéwaors match the continuum if
mo = my = mgr = m. The other terms do not match unless one adjusts: r, [7] andzz = 0

[as in Eq. (4.18)] and, furthermore, demands= w) = wp, = wp, = wp, = wx = 0:

C3

z3

Cq

Cs

zZ7 =

/
27:

r7 moa(2 + moa)

Co + —

2T 21+ moa)
rL moa(2 + moa)

¢ 2(1+moa)

= 53¢ + ¢ + 215,

iCBC+7’5>
26 + %(7’7 —rh),

/
T7.

(4.29)

(4.30)

(4.31)
(4.32)
(4.33)
(4.34)

Taken with Egs. (4.6) and (4.7), these tuning conditionseigitit constraints on the nine (non-
redundant) couplings for interactions made solely out atigpderivatives (and, hence, chromo-
magnetic fields). To eliminate; from the right-hand side of Eq. (4.33), and to obtain coodsi

onrgp andzgg, we shall have to turn to Compton scattering in Sec. IV D.

Equations (4.29)—(4.34) make concrete several abstraitirés of Sec. II. If one would like to

takec, to be redundant in Eq. (4.6), then one cannot tak® be redundant here, and similarly
for z¢ andr; or r,. Also, a mistuned; — r5 leads tow); # 0 and a spin-dependent contribution
[1+ gwhmaea(K? 4+ K7)a?le;jii% K /2m,. The mismatch here is suppressed\Byn the HQET

counting—as expected from Table ll—but b¥/in the usual Symanzik counting.

The only undesired term in Eq. (4.21) not yet discusséldd,sai"Xi, where

X = (iSxK)P?—(iSxP)P-K—P[i$ (K x P)]+ (K x P)iX- P, (4.35)

4r,C3(1 + moa)

1602(

Wy =

[moa(2 +mpa)]?>  mea(2 + mea)’
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One cannot tunex = 0. Fortunately, howevetX = 0. A simple geometric proof is as follows:
if, by chance,P is parallel toK, then settingP « K one sees that the last two terms on the
right-hand side of Eq. (4.35) vanish and the first two cand¢elthe general case thd® is not
parallel toK, thenK, P, and K x P are three linearly independent vectors. But one easily sees
that

K- X=P-X=(KxP)-X=0; (4.37)

thus, X = 0. Such identities are very useful in simplifying expressitor the Compton scattering
amplitude.

C. Quark-quark scattering

To match the four-quark actiofy;,z,, one must work out the quark-quark scattering amplitude.
With the current/,, derived in the previous subsection, this is a relativelyéask. The main
new ingredient is the improved gluon propagator. Far* < 1, one finds [17]

Dy (k) = n, (k) DS (k)ny (k) [1 + za®k*] + O(a?), (4.38)

wherez is the redundant coupling of the pure-gauge action, cf. AgdpeC and Ref. [19]. This
approximation suffices for evaluatimgchannel gluon exchange. Once the bilinear action has been
matched correctly, the lattice amplitude (using, say, Fegmgauge) is clearly merely

Alat(12 - 12) = Acont<12 - 12) + xCLQta*]l ' J2ta7 (439)

where 1 and 2 label the scattered quark flavors, and #dtlave uncontracted color indices. We
find, therefore, that the tree-level couplings%f, are, at most, proportional to. They can be
eliminated, at the tree level, by setting= 0, with the added benefit of simplifying the gauge
actionSpzpe.

Note, however, that the approximation in Eq. (4.38) andstlig. (4.39), breaks down for
channel annihilation of heavy quarks. As discussed in $&G.these interactions are suppressed
for other reasons, so the four-quark operators needed teatdhem may be neglected.

D. Compton scattering

The matching of Secs. IV A-IV C leaves four non-redundantptiogs of the new action un-
determinedzg, crg, 2gE, andzgp. To find four more matching conditions, we turn to Compton
scattering. We shall proceed with the gauge-action recuraauplingz = 0.

The amplitude is

At (g9 — ag) =Y &, (K )n, (K) M e, (k)n,.(k), (4.40)

1%

whereé, ande, are continuum polarization vectors, a,naf}; denotes the sum of Feynman dia-
grams shown in Fig. 2. The factorg (k') andn, (k) appear in Eq. (4.40) to account for lattice
gluons. With them one can verify that

> eulk)nu(k)n, (k)é, (k) = =Dy (k), (4.41)

pol.
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as usual. We find it convenient to associate these factorsthétdiagrams and introducel%’, =
n, (K)M%n,, (k). Then

/

M = 7, (KN (p')u( (1, 0)S (@) Mg, p)u(&, p)N (p)nyu(k)
+ %, (K )N (p")a(€, p" )N (0, 4)S(¢)Au(d p)ulé, PN (p)n, (k)
— Y, (KN (p />u<£,p>axw<p,k: —KYu(&, PN (), (k) (4.42)
— 5[t "), (KN () a(€', p')aYu (p, k, =k u(€, )N (p)n, (k)
+ Ve (k, =K, = K) Dop(K)n, ()N (0)a(€', 2 ) A, (0", p)u(€, P)N (p)n, (k)
whereq =p+k=p'+k,¢/=p—kK =p —k, K=k — k' =p — p. The propagatof(q) and

vertex factors\,, X, andY, are defined in Appendix A. The gluon propagator, to the aayura
needed, is given in Eq. (4.38), and to the same accuracyiphe-gluon vertex is (withe = 0)

Y

§
gl

Ve (k, =K', —K) = i f™ [n,(k)n, (K )nq (K)] ™ {
Su[(k + K)o (1 — 56, K2a%) + 5Ky (k2 — K, *)a?]
— S|k — K)u(1 — £6,,k%%) + Lk, (K, — K2)a?]
S (K + k) (1 — 56,,ka?) — Sk (K2 —k2)a®] } . (4.43)

127V

Note that the factors, (K), etc, arise naturally. Note alsothaf - J = k-e =k -& = k* =
k> = 0, so most of the lattice artifacts in the vertex drop out. Témaining one is necessary to
cancel a similar lattice artifact from the other diagraniskEgs. (B10) and (B11).

We may choose the polarization vectors such that ¢, = 0. Then we need only focus on
M.,... We have verified that 1, is improved by (a subset of) the improvement conditions aded
for A(qg — qg) calculated with these polarization vectors.

The present the results, let us introduce some notatiorte\Wre momenta as

P = (p+p)/2, (4.44)
R = (k+k)/2, (4.45)
K=p—-p=k—FK, (4.46)

soq = P+ Rand¢ = P — R. Note that’, = —iP, = 2m; + --- is larger than the other
momenta, and(, = —iK, = (p’> — p*)/2m, is smaller. Next separate the diagrams according to
a color decomposition,

ML = L4 M, + L[t N, (4.47)
k,a,p kya, k,a, k. bv kya,p

FIG. 2: Feynman diagrams for Compton scattering in latteegg theory.
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where the second term would be absent in an Abelian gaugeyth&nally, write

3 9 n
My =D D RETTEMGE ), (4.48)

n=0 s=0

and similarly for\,,,, where the superscript, r) denotes the power ih/m andR,.
Most of these terms are well-matched with Eqgs. (4.18), (4.(029)—(4.34). New matching
conditions come froravi{, M52, MED, and N The(n,r) = (3,2) amplitudes are

3
ME2) = Omn | 2072EEOm, (4.49)
dmyp 14+ mopa
mni Zz
NGD = Zmniii (4.50)
dmyp
where
1 8¢+ scpCmoa(2 + moa))? 4¢?
mipad [moa(2 +mpa)|? [moa(2 + mpa)|?
16cgE(C 8(cerC + TEE). (4.51)
moa(2 + moa) (1 + moa) 1 +mpa
To match to continuum QCD one requires

and the adjustment @t g, 7pr) SO thatngr = m,y. As with, say,(cg, rg), at fixedmga the latter
prescribes a line in the:pp, 755) plane, which becomes vertical aya = 0, fixing cgp = —3
and leaving iz undetermined.

The(n,r) = (3,0) amplitudes are

2a°

MY = MED |, ietea = e (85 26 71 = T35 = 2) Mo, (4.53)

My = O (R* — 1K?) — (R, — 1K) (R, + K,), (4.54)
2a°

./\/;55’7;0) = Néfﬁo) }matched — %(26 +7r7 —Trpp — Z;)Nmn, (455)

Nom = Emnr(RiA2 - R — iK,niE - K) — %(iznsmm + 1% Enrs) R K, (4.56)

where “matched” denotes terms (spelled out in Appendix B) #iready match, if the conditions
derived so far are applied. Equations (4.53) and (4.55)yle¢ new conditions

ZpB + % — Zé = Trpp — T, (4.57)
2’6—2’,7 = T — I7. (458)

Solving these, and noting = 1, [Eq. (4.34)], we find

ZBB — 0, (459)
26 = B+ 1T — 717, (4.60)

which completes the set of conditions needed to match thdatéee action.
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E. Matching Summary

Equations (4.6), (4.7), (4.31)—(4.34), (4.59), and (4 &) now be combined to yield

moa(2 + moa)

6(c1 = —C*+ (cl +6r5) Tr—— (4.61)
16¢e, = 4¢H¢C% —-1) B C32¢ + 4ry(1 + moa) — 67,¢?/(1 + mpa)] (4.62)
27 Imoa(2 + moa))? moa(2 + moa) '
3ri¢t moa(2 + moa) , r3¢3 r2¢?

- (14 moa)? 2(1 + moa) S(rsp +r7 = re) + (1+moa)? 1+ ma

remoa(2 +moa)  (rs — c5)C3(1 + mpa)
= - 4.63
S ¢ 2(14mga) dmoa(2 + moa) (4.63)
c1 = 575¢ + sepC + 2, (4.64)
C5 = iCBC + Ts, (4.65)
rhmoa(2 + moa)

S et S 4.66
BT 21 mea) (4.66)
26 = rpp+ 15— T, (4.67)
Z7 = TBB — %(7“7 - 7’,7)7 (4.68)
2 =7 (4.69)
ZBB — 0, (470)

To run a numerical simulation, we would like to have as few r@wuplings as possible. The
matching calculations verified the presence of severalndalot directions. We may, therefore,
take

rs=r; =1, =rgg =0 (4.71)

to all orders in perturbation theory. Hence

cp = T, (4.72)
1 moa(2 + moa)
— 1 M2 T TMod) 4.73
“ 5 T 60+ moa) (4.73)
e Qa1 mo) — 3/t mya)
27T Rmea(2 + mea))? 8moa(2 + moa)
2,3 9 2
N 3r:¢ moa(2 + moa)r:¢ rs¢ ] (4.74)
16(1 + mpa)? 32(1 4+ moa)?> |14 mea
e = &+ denc, (4.75)
5 = icBC, (4.76)
and

23 =26 =27 = 2n = 2pp = 0. (4.77)

From the chromoelectric interactions we requite = m, andmggr = ms, whence

B 2—1 N rsC r2moa(2 + moa) _ 1E 2mpa(2 + mea)
 mea(2 +mea) 1+ mea 4(1 + moa)? 2 1+mpa

, (4.78)

CE
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(= 1) (1 +mpa) = cuC(¢*—1)(1+mpa)
[moa(2 + mpa)|? moa(2 4+ moa)

(i — 1= mou)
2moa(2 + mpa)

rsrpmoa(2 +mea)  Tgg

T+ o B moa(2 + mpa), (4.79)

cer(2 + moa(2 + moa)] =

+ %rscEﬁz +2rgC — ici{(l + mpa)

and we also find

Without loss one may set the redundapt = rzr = 0 to simplify the action and Eqgs. (4.78)
and (4.79).

In summary, of the nineteen new couplings in Eqgs. (3.5)3(3vé find onlysix that are non-
zero at tree-level matching. Moreover, once the bilineéioadas been matched, and the redun-
dant gauge coupling = 0, the only non-zero four-quark interaction would corregptm(highly
suppressed))@ annihilation. In the next section we shall examine the siz#® remaining un-
certainties, to justify that this level of matching suffices

V. ERRORS FROM TRUNCATION

In this section we give a semi-quantitative analysis of jegwvark discretization effects with
the new action. Our aim is to study the accuracy needed inhmagjdattice gauge theory to
continuum QCD. Several elements are needed. First, we rstieaages of the mismatch at short
distances. This is straightforward, because the calomsatf Sec. IV can be applied to work out
how large the mismatch is for the unimproved action. Secormneed estimates of the long-
distance effects, which is possible parametrically, byntimg powers of\ andv. Finally, the size
of discretization effects depends on the lattice spacibgi@usly) so we must note the range that
is tractable today and in the near future.

The error analysis is convenient using the non-relatwidéscription. Heavy-quark effects of
operators that are related as in Egs. (2.14) and (2.15) arpdd into one short-distance coeffi-
cientC}**. In Sec. IV the short-distance coefficients ag@ms,, 1/2mg, 1/4m%, 1/8m3, wy, wg,
etc. In the corresponding continuum short-distance coeffisC:™, these masses are replaced
with a single massng. To eliminate discretization effects from the kinetic egyerone should
identify m¢ with m..

Comparison of Egs. (2.5) and (2.6) then says that heavykgliacretization effects take the
form

error; = (C;** — Ci°™) (). (5.1)

See Refs. [11, 12] for further details, and Ref. [31] for tpplacation of this technique for com-
paring several heavy-quark formalisms. We estimate theixnaements(QO;) using the power
counting of HQET and NRQCD for heavy-light hadrons and qoaikm, respectively. The power
of A or v is listed in Table Ill. The coefficient mismatch is calcuthia Sec. 1V, where explicit
expressions show how the mismatch depends on the new cgsiplim particular, when the new
couplings vanish, we have the mismatch for the Wilson andeclactions.

Explicit calculations of the mismatch at higher orders aftpdation theory are not yet avail-
able. (They would be tantamount to higher-loop matchingyéitheless, the asymptotic behavior
remains constrained, by the Symanzikd @henmga < 1, and by heavy-quark symmetry even
whenmga « 1. It turns out that the most pessimistic asymptotic behafaoi /2m g, 1/4m%,
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etc., is the same at higher orders as in the tree level fosnnl&ec. 1V. It seems reasonable,
therefore, to multiply the tree-level mismatch with to estimate thé-loop mismatch. We do so
with oy, = 0.25, which is generously larger than the Brodsky-Lepage-Maziecoupling [32]
calculated for similar quantities. For example, for imgrdwcurrents one finds, (¢*) ~ 0.16 at
6.0 < B < 6.2 in the quenched approximation [33].

The resulting estimates for the mismatch of rotationallgnsetric operators are shown in
Fig. 3, as a function of the lattice spacing We show the relative error in mass splittings. The
left set of plots uses HQET power counting, for heavy-ligatltons, while the right set of plots
uses NRQCD power counting, for quarkonia. The red (blueyesishow the estimate for hadrons
containinge (b) quarks. The dotted curves show the error when the correlspgioorrection term
is omitted completely, i.e., the errors in the Wilson actidrne dashed (solid) curves show the
estimate of the error for tree-level (one-loop) matchinige Vertical lines highlight = 0.125 fm,
0.09 fm, 0.06 fm and0.045 fm, corresponding to the ensembles of gauge fields witk= 2 + 1
flavors from the MILC collaboration [34].

HQET for heavy-light NRQCD for quarkonia
. relative error relative error .
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FIG. 3: Relative truncation errors for the new action. Rewesi forc quarks; blue fob. Dotted curves show
the error when the contribution is unimproved. Dashed atid sarves show the error for tree-level and
one-loop matching, respectively, of the needed operators.1 GeV,m,. = 1250 MeV, m; = 4000 MeV,
v, =0.3, vgb = 0.1. Vertical lines show lattice spacings available with theL&lensembles [34].
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To drive the each contribution to heavy-quark discretaagffects below 1%, we find that one-
loop matching is necessary fog, the coupling of the chromomagnetic clover term. Treedleve
matching is sufficient for the chromoelectric clover congliz, though one-loop matching would
be desirable for charmonium and charmed hadrons. The IgMatst labeled “froml /8m;” are
for the relativistic correction terms, with couplingsandzs. They also apply td /8m3, and the
related chromomagnetic couplingsandz;. The one-loop mismatches of four-quark interactions
are suppressed not only by a loop factor, but alsa®gr 2, so they should fall below 1% too.

Similar results for operators that break rotational symmynate shown in Fig. 4. To drive these
contributions to heavy-quark discretization effects eld8b, we again find it sufficient to tune the
couplings of the new action at the tree level.

In tree level improvement, one should avoid choices whes&kitown that one-loop corrections
from tadpole diagrams will be large [35]. Therefore, we sion following some sort of tadpole
improvement. In the action, write each link matrixagU,, /u,] and absorb all but one pre-factor
of u, into a tadpole-improved coupling and7;. Then apply the conditions of Sec. IV &éandr;
instead ofc; andr;, and take they, factors in the denominator from the Monte Carlo simulation.

There are some other noteworthy features of Figs. 3 and 4mbar < 1, the discretization

HQET for heavy-light NRQCD for quarkonia
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FIG. 4. Relative truncation errors for the new action, froisceetization effects that break rotational sym-
metry. The curves have the same meaning as in Fig. 3.
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effects vanish as a power of as one would deduce from the Symanzik effective field theory
Because we identifyn, with the mass in th€:°"*, the powers of: are balanced by, notm,.
Had we identifiedn, with the continuum mass, errors of ordeta)™ would have appeared. For
mga ~ 1, the curves flatten out. The error cannot grow without bobedause of the heavy-quark
symmetries of the Wilson action and our improvements tonidekd, the curves for tlhequark are
usually lower than those for thequark, because the curve flattens at smalléCorrections from
1/8m3 and Fig. 4 are larger in bottomonium than charmonium.) Thides well for calculations
relevant to the CKM matrix.

VI. CONCLUSIONS

In this paper we have presented the formalism and explittations needed to define a new
lattice action for heavy quarks. Our aim was to obtain aroactthose discretization errors would
be < 1% at currently available lattice spacings. Combining ourchatg calculations, power
counting, and the heavy-quark theory of discretizatior@f, we have argued that the proposed
action should meet its target. Setting to zero the redunctaumlings and those that vanish when
matched at the tree level, our action can be wriiea Sy + S + Sg + Shew, Where

Snow == Cla6 Z 1Z<$) Z fViDilatAilathT) + c2a6 Z 1;(37) {7 ! Dlat; Af§3}¢(x)
+ c3a® Y P(@){y - Diats i - B}t (x) + copa® Y (@) {11 Daas, @ - Bra } ()
t+oeaa” Y (@) Y Aidytb(@) +esa’ Y (@) Y Y {iTiBi, Mgy (). (6.2)

)

The new action has six additional nonzero couplings, whaghethd on the couplings ity + Sz +
Sg according to Egs. (4.73)—(4.76) and (4.79). To achieve 1€@racy,Ss must be, and'z could
well be, matched at the one-loop level [36].

Another lattice action achieves similar accuracy for chednguarks, namely the highly-
improved staggered quark (HISQ) action [37]. Our approadomputationally more demanding
than HISQ. Its advantage, however, is the intriguing rebalt our discretization errors for bottom
guarks aresmallerthan for charmed quarks. That means that experience withngthhadrons
and charmonium can inform analogous calculation of progedfb-flavored hadrons.

Finally, we note that there is tension between the most atewalculation of thé), meson
decay constantfp. [38], which uses HISQ, and experimental measurements {39j.action is a
candidate for the charmed quark in a cross-check of the HiS(because its discretization errors
can be expected to be small enough to strengthen or dissifmatiksagreement, while possessing
different systematic errors.
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APPENDIX A: FEYNMAN RULES

In this Appendix we present Feynman rules for the new actemded to carry out the matching
calculations of Sec. IV. These are the quark and gluon prtpag and three- and four-point
vertices. The corresponding Feynman diagrams are showig.i® F

The quark propagator [Fig. 5(a)] is modified only throughc,, zg, andey. It reads

aS~(p) = ivssin(psa) + iy - K(p) + pu(p) — cos(psa) (A1)
where
Ki(p) = sin(pia) [C 20p°a” — 012%2 2} (A2)
w(p) = 1+ mea + pa [57’8@“ + zp? a + 4 Z(ﬁia)‘l (A3)
The tree-level mass shelljgs = i E/, where the energy satisfies
2 2
cosh Fa = M (A4)
211(p)
Incoming external fermion lines receive factcm(f p)N (p) orv(&, p)N (p), where
Np) = < ) sinh E) (AS)
L—l—sth 1y - K
,p) = ,0), A6
u.p) \/2L(L + sinh £) u&,0) (A6)
L+sinhE+ivy- K
p) = ,0), A7
N T =y 5 B (A7)

L = p(p) — cosh E; v4u(€,0) = u(&,0), v4v(€,0) = —v(&, 0). Outgoing external fermion lines
receive factorsV'(p)u(¢, p) or N (p)v(§, p), whereu(§, p) = u' (£, p)ys, v(€, ) = v'(§, p)ya.

The gluon propagator [Fig. 5(b)] is not easy to express isetdiodform. We refer the reader to
two papers of Weisz for details [17] and a correction [18]tfue propagator on isotropic lattices.
The improved vertex is in Ref. [18].

Now let us turn to vertices with one [Fig. 5(c)—(d)] or two ¢=b(e)—(g)] gluons attached to a
quark line. The new terms in the bilinear part of the actianall built from difference and clover
operators that already appeardn+ Sg + Sg. Consequently, the new terms in the Feynman rules
for these vertices can be obtained using the chain rule.

The difference operators are given in Egs. (3.8)—(3.10)sifplify notation, let us drop the
subscript “lat” in this Appendix. One-gluon vertices need

oD,

D, (P k) = o (F) = got*0,y cos[(P + 3k),al, (A8)
A,

Ao (PR) = aia (g = 90" 02/0) (P + ), (A9)

Fpo 5 (k) = 81841;?2) = got" cos 5k, 0,515, (k) — 8,y15x (k)] - (A10)
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It is convenient to write out the chromomagnetic and chrdeaigc cases of Eq. (A10):

a B 0B; e y
Bl,m(k> - aA%(kﬁ) - gOt COb(gk'rrLa)g'anZST(k); (All)
E; (k) = OB _ o (L) 8mii Sy (k) (A12)
im - OA%(k) = gol COS(5Rm@)0m;104 )
p P
I
J > J > > |
P
()
< >
k I
4, a 4, b
a “BCO000000> b
K (e)
(b)
p p'
> ! I
p pr J
i > i
4 .
A k |
K 4,a m, b
4, a
(c) ®
p P
P p j > > |
J ! ! I
< >
A
K K '
m, a n,b
m, a
(d) (9)

FIG. 5: Feynman rules for the actighgiven by Egs. (3.1)—(3.7).
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OE;

™ = = —got° 1 ' Q.
E; (k) A5 (F) got" cos(zksa)iS;(k), (A13)
sinceB; = %5iijjk andE; = F,; appear in Eq. (3.1). Two-gluon vertices need
D, (P, k1) = __®D, 2L 916,60 a0 sin[(P + 1K) ,a] (A14)
P v 8Aa(k:)8A,€(l) - J02 ) v O pp A S11L 2 nal;
N, (P, L, = g2 L% 1°}6,,0,u2 cos[(P + L K A15
p ) = m = 9oz {t", "} 0pu2 cos[(P + 5 K),al, (A15)
whereK = k + [. For the clover operator it is convenient to introduce
Couw(k, 1) = 2cos 5(k + 1) acos 5l,acos 5(k +1),acos 3k,a — cos 3k,acos 5l,a.  (ALB)
Thenone hasi =k + 1)
() = % = g3t tb]{(é Ovo — 0,00up)Clu (K, 1) (A17)
PU SV 8A“(k)8Al,j(l) oL> » pp~vo HOZVP )= PV AT
300K (8 (S5 (k) = S5(1) = 80 (S,(k) = 5,01}
b (k1) = OB, = g2t 1Y) {5 Cron (b, 1) — 16, mria® K [Sr (k) — S (1)]}
zmn aAa (k)@Al;L(l) 0 9 mni~mn ) 2Ymnemre m T T )
(A18)
B (k1) = O°E, = G2[t%, )26, Omi > Ky [Su(K) — Si(1)] (A19)
imn aA“ (k)@Al;L(l) 0 ) 2 Ymnbtmi m [FP4 4 )
Bty = — OB ye s o 6 (A20)
£ DAL (k)AL (1) — Jott T IOniantE L,
Bt = — OB e 12, 54k — Si(0) (A21)
a4 oA (k)oAL(y — ! il
The Feynman rules for one gluon are then
Fig. 5(c,d) = —goti;Au(p', ), (A22)
with
Ay(p',p) = ~acos[3(p" + p)aa) — isin[5(p' + p)aa] + scpCaoe - S(k) cos(3kaa)
+ irpa’uS - {S(k) x [S(') + S(p)]} cos(kaa)
— (rp — zp)a®uS(k) - [S() — S(p)] cos(3ksa)
+ cppa’y - S(k) [Sa(p) — Sa(p)] cos(3kaa), (A23)

A(p',p) = Cymcos[5(p' + p)mal — iryCsin[3(p + p)mal
— 3¢5Cagmi 25, (k) cos(3kpma) — scplac, Sy(k) cos(3kna)
— rpa*enn XiaSa(k) [Si(p) + S:(p)] cos(3kma)
+ (rp = 28)a*72S4(k) [Si (1) — Sm(p)] cos(5kma)
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20® { cos[3 (0 + phmal (P +8°) + - [S(W) + S@)] (7 + ), }
sera g {cos[3 0 + phmal (9, +52,) + [Sn(®) + Sw(®)] (7 + 7). }
302 mriaysSy (K) [Si(p) + Si(p)] cos(%kma)

(3 = z3)a’y - S(k) [Su(p) — S (p)] cos(5hma)

(s = z3)a*ymS(k) - [S(') — S(p)] cos(ghma)

crpa’ymSa(k) [Si(p') — Si(p)] cos(3kma)

i200* (7 + D), (P + D)

icsd® (7 + 1), (P/’\mz + ﬁi)

(27 + ¢5)a*emri i S, (k) (ﬁ’ +p ) cos(3kpa)

(p +pl> cos(lkma)

150°Emri 23Sy (k) [Si(0))S;(p)] cos( kpya)

(7“7—27—7“5)a3€mm2 5 (k) [S(p ) S(p)] cos(5kma)

170 i [Si(p") 32 - S(p) + Si(p)X - S(p)] S, (k) cos(3kma)

i(re = r7)a’ [Sp(p")S(p) - S(k) — Sm(p)S(p') - S (k)] cos(5kma). (A24)

c5a3€mM2iS ( )
)

In ther; andz’, terms, Eq. (3.11) has been assumed. If instead one prefe(8.E8) then replace

(95 (P)95(p)] = [cos(3k;a)pp;] -

Both choices have the same effect on Eq. (4.21).
The two-gluon rules are

Fig. 5(e,f,g) = —395{t* t*}i;a X (p, k, 1) — 395 [t*, t"];5aY 0 (p, K, 1), (A25)

with

an(p> k> l)

= 0O Ym SIN(58m@) — 750 COS(55m0a)

— 2 BAE i Va2 [cos(%sna) cos(%kna) cos(%k‘ma)&(k‘)
— cos(38ma) cos(3lma) cos(l,a)S4(1)]
+ i(rp — 25)@*Ya0mn SIN(55ma) [Sm (k) S1(k) + S (1) Sa(1)]
+ dicyym, [cos(38,a) cos(3lma) sin(s,a) cos($kna)
+ sin(3sm,a) sin(31,a) cos(3s,a) sin(3kya)]
+ dicyy, [sin(isya) cos(il,a) cos(5s,a) cos(k,a)
+ cos(isma) sin(il,a)sin(3s,a) sin(3k,a)]

+ 2ic2a8m, cos(3sma)y - [S(P') + S(p)]
— 1C2a* 8y Y SIN (L5 ,0) (2;'2 + 152)

1C1a0,0 YmSm [4 cos(% %kma) cos(%lma) — 1]

+ 2ic3Emnr Y475 [sin(la) cos(sy,a) cos(il,a) cos(3,a)

_|_

Sma) cos(
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— sin(k,a) cos(3

L5na) cos(3kna) cos(3knma)]

+ 2i(cs — z3)a {[Omny - S(l) VS (1)] sin(Ls,,a) sin(31,a) cos(31,a)
+ [6mny - S(k) = ¥ Sn (k)] sin(3s,a) sin( k,a) cos(3kma) b

— 8z [sin($s,a) cos( )sm( @) cos(skya)

— cos(2s,a) sin(3l,a) cos(ésn ) sin($k,a)]
— 226a%0,m cos(%sma) (1;’ +1§2)

— 2406y {cos( Sm@ (p . —|—pm) + cos[3(k — U)mals?, — l%mfm}
+ 2i(27 4 ¢5)a°S; [80EmriSr (k) cos($kma) cos(ik,a)

+ SmeEnriSr(1) cos(%lna) cos(;lma)}
+ 2ic5a°Emny [82 505, (k) cos(3kpna) cos(3kna)

— 355, (1) cos(Ll,a) cos(3lma)]
+ 1150 Emmnr {Z0Sn(8) S (k) — S Sin(8) S, (1)} cos(2kma) cos(3l,a)
+ ir7a* Sy i Sr (k) {[Si(p') + Si(p)] cos(3s,a) cos(Lk,a)

+ [S;(p) — Si(p)] sin(3sna) sin(3kna) } cos($knma)
+ ir7a* S Sr (1) {[Si(p') + Si(p)] cos(38ma) cos(3lma)

+ [Si(p") — Si(p)] sin(;sma) sin(3lma) } cos(5l,a)

— 1170 € Sy (k) - {[S(p') + S(p)] cos(3sna) cos(3kna)
+ [S() — S(p)] sm(lsna) sin(k,a)} cos(3kna)

+ 1170 S ()X - {[S(p') + S(p)] cos(5sma) cos(5lma)
+ [S(¥') — S(p)] sm( Sma) sin(1l,a) } cos(3,a)

+ i(27 4+ 15 — 17)a’EmriSn(8) DS, (k) cos(3kma) cos(31,a)

+ (2 + 15 — 77)a%Enri S (5) Si Sy (1 )cos( kpa) cos( lna)

— (r7 = 12)a* Sy (k) [Sm(p') = Sin(p)] cos(58na) cos(5kna) cos(5kma)
— (1 = r7)a®Su (1) [Su(p) — Sn(p)] cos(55ma) cos(5lma) cos(5lna)
— (15 —17)a* S, (k) [Sm(P) + Sim(p)] sin n(3s,a)sin(ik,a) cos(3kya)
— (5 —11)a S (1) [Sn(p) + Su(p)] sin(3sma) sin(3l,a) cos(3l,a)
(1t — 17)a*8,mS(k) - [S(p') — S(p)] cos( Sm@) COSQ(%kma)
(rf — r7)a*0, S(1) - [S(p') — S(p)] cos($sma) cos®(Ll,a)

1(r7 = 10)a" 0 { S (k) S (k) + Sm(DS ()} - [S(P) + S(p)]
2(rpp — 25)a” [6mnS(k) - S(1) = Sp(1) Sy (k)] cos(2kina) cos(5
(

+ 4+ 4+ +

l,a)
2 n
— 2(rge + 2EE)a 25mnS4(k)S4(l) cos(%kma) COS(%lna), (A26)

wherenowy =p+k+l,ands=p +p=2p+k+1;

Xu(p, k1) = in sm[ (P + p)aa] — cos[5(p' + p)ad]
+ icppa® [y - S(k)Si(k) +~ - S(1)S4(1)] sin[3(p + p)aal
— 2(rgp + zpp)a®S(k) - S(1) cos(3ksa) cos(3lsa), (A27)
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Xum(p, k, 1) = —2rpac,i742:S, (k) cos(%sma) cos(%/@la) cos(%kma)

Yo (p, K, 1)

— i(rp — zp)a* vk, sin(1s,,a) cos(3ksa) cos(3ka)
— icppa*yml? sin[3(p' + p)aa] cos(5l4a) cos(5l,a)
+ 2(rpe + z85)a* S (k)S4(l )cos(2k4a) cos(%lma), (A28)

—icpCiCrnni(k, 1) — Le5Ca%0mmtn Ko [Sa(k) — Su(D)]
Irpa’e nnivaS; [énicn&(k:) cos(iky,a) + Sl Sa (1) cos(llna)]
5780 S mri V4 S Ko [S: (1) + S, (p)][Sa(k) — Sa(D)]
2i(rp — 2)a0mna [Sa(k) cos*(kma) — Si(1) cos®(2l,a)] cos($sma)
5(rp — 28)0* 140 Ko [Sa (W) — S (p)][Sa(k) — Sa(D)]
Aicy Y [cos(38ma) cos(3lma) cos(3s,a) sin($k,a)

+ sin(Lsy,a) sin(l,a) sin(3s,a) cos(Lk,a)]
dicyy, [cos(sna) cos(3k,a) cos(sy,a) sin(il,a)

+ sin(is,a) sin(3k,a) sin(2s,a) cos(il,a)]
2010 1Y c0s[(p' + p)mal sin[3 (k — 1)na]
2ic5077sCmni (K, DISi(P) + 5:(p)]

icgagm%amm [/Afrl%n@1 cos(%kma) + 1S cos(%lna)]

2i(cs — z3)a (Cmn(ka DA{vm[Sn(P) = Su(p)] = 1n[Sm(P") = Sm ()]}
+ 30mn0® Kin[S (0') = Sm(p)]y - [S () — S(1)]

= 10mnVm@* Kn[S(p) = S(p)] - [S(k) — S(01)]

+ [Bmny - S(1) = ¥0Sm(1)] cos(3 5ma) cos(3lma) cos(3l,a)

— [8mny - S(k) — YmSn (k)] cos(Ls,a) cos(2k,a) cos(%kma)>

2 eEB0* Ym0 Ko [Sa(p) — Sa(p)] [Sa(k) — Sa(1)]

22607 [cos(%sma) mn CO8(5kna) — cos(28na)l%n§m cos(%lma)]
[l

4C40pmn sin[(p + p)ma) sin[; (k — 1)mal
m@+%mz[%“4kn 5(15,a) cos(Lkma)

)
— &?miSr(l)lAm cos( Sm@) cos( Iha) + Croni (K, 1) ( ~ ﬁz)]
205G s [EnSr(k)kn cos(%sna) cos(%kma)
+ 2 S (Dl cos(1sma) cos(%lna)}
2icsa’y; <];’,2 +]5Z2) Coami(k, 1)
i@ mmr Sn [K’n cos(%lna) —1, sinz(%sna)} S, (k) cos(%kma)

Irsa2e mmr Sm [Km cos(%k:ma) —k,, sin2(%sma)} S,(1) cos(%lna)
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+ 2ir5a®2:Si(p) Si(p) Crni (K, 1)

+ ir7a* S, S (k) {[Si(p') — Si(p)] cos(3spa) cos(2kya)
+ [Si(p) + Si(p)] sin(3sna) sin(3kna) }COS (5kma)

— ir70”S 0 Sr (1) {[Si(0)) — Si(p)] cos(55ma) cos(3lma)
+ [S:(p) + S; (p)] Sm(% a) sin(l,a)} cos(3l,a)

— 70 € Sy (k) {2 S(p)] cos(38ma) cos(5kma)

+ 3 [S(p)+ S( )] sm(23ma) sin($kma) } cos(3kna)
— 170 € Sr (1) {Z - [S() — S(p)] cos(Lsna) cos(3l,a)
+ 3 [S(Y) + S(p)]sin(3s,a) sin(3l,a) } cos(5,a)

— 2ir:a®% - [S(p)Si(p) + S(0)Si(V)] Conni(k, 1)
+ (2 + r5 — r7)a’emri Sy (k {Kn cos(3l,a) — L sin2(%sna)} cos(3kma)

)%

(21 -+ 75 = 72)0%0riSy ()54 { Ko c05(5in) = b sin? (b5) } cos(bla)
i(2h 415 — 17)a*Y; S’( ") - S(p)Crmi(k, 1)
L —10)a? [Sp (D)) + S (p)] Sn(k )cos(%sna) COS(l]{? a) cos(%kma)
(1t — 1r7)a* [Sn(p)) + Sn(p)] Sm(l )cos( Sma) cos(;lma) cos(%lna)
(r7 = r7)a’ [Sm(p) = S (p)] Su(k) sin(3sna) sin(5kna) cos(3kma)
(r; = r7)a’ [Sa(p ) (p)

7—17) /

I
— [\D

] Sin (1) sin(3spma) sin(31,a) cos(31,a)
) + S(p)] cos(is,a) cos®(3kna)
(rh — r7)a25mn5( ) - [ (p') + S(p)] cos(;sma) cos®(2lna)

L+ o+ L+

377 = 17)a" S { S (k) S (k) — S (1)S(1)} - [S() — S(p)]
2(r% = 17)a” [S(P)) Sn(p) — S (P)Su (1)) Crn (K, 1)

3 (77 —7“7)a Sun Ko [ m(P)S(p) = Sm(p)S@)] - [S(k) — S(1)]
irBBA* Emny [Sr (k)X - S(1) + S, ()% - S(k)] cos(3kpa) cos(3,a)
A (SmEnri + Enamm)

Sr(k)Si(l) cos(;kma) cos(3l,a)
201 A% i $:51 (k) Sa(1) cos(kpma) cos(3,a), (A29)
whereC,,,.;(k,1) = niCon (K, 1) — 5mn5mma2 mSr(k) — S (D)];
Yiu(p, k,1) = 3epCaa - [S(k) — S(1)] sin[3(k + 1)4a]

rpa* X - {[S(p') + S(p)] x [S(k) — S()]} sin[5(k + {)a]
(s = s#)lSW) ~ S S6) = S
2icppa [y - S(k) cos*(kaa) — a)
2icppay - [S(k) — S(1)] sin®[3

— 2irgpa®y - [S(k) x S(1)] cos(
Yim(p, k, 1) = —cpCamCun(k,1)
= 2rpagmriaZilSe (p) + S (p)]Cam (K, 1)
— TRA%EmriYa Y sm(%sma) S, (k) cos( ksa)
= 2i(rp — 2p)ayalSin(p) = Sm(p)]Cam (k. 1)

I+ + |

(k + 1)aa] cos[5(p" + ) ]
Lkya) cos(lya), (A30)
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— 2i(rg — 25)a71Sm (k) cos(58ma) cos(5kia) cos(Skna)

+ 2icgpaym[Si(p') — Sa(p)|Cam(k, 1)
+ 2icppaymSi(l) cos[3(p" + p)aa) cos(3lsa) cos(3l,a)

— 2irgpa*e XS, (k)S.(1) cos(%kqa) cos(%lma). (A31)

APPENDIX B: DETAILS OF COMPTON AMPLITUDES

The parts of the Compton scattering amplitude not exhibitekec. IV D are shown here. First
the color-symmetric contributions:

5mn
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4

The color-antisymmetric contributions from Fig. 2(a):(c)
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TABLE VI: Dimension-6 gauge-field interactions that coujghbaar in the LE.

w/ axis-interchange w/o axis-interchange
> (D ) (D Fpuy )] tr[(DsE) - (D4E)]
> (D E;)(Di ;)]
> 2k t2[(Dj Bi)(D; By)]

tr[Fp FypF oyl tr[B - (E x E)]
tr[B - (B x B)]
tr{(DyFu ) (DpFp)] ea tr[(D-E)(D-E)]  ea

(D x B)- (D x B)] 64
tr[(D4E) . (D X B)] o)

[y

T2 2
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APPENDIX C: IMPROVED GAUGE ACTION

38

—a ngl} (PnK, — P,K,,)

—2K?[25,,R-J — (K — K),J, — (k+ K),J,] +ia*s6,, R, J,

:| (ianmrs + 'L.ngnrs)RrKs

(B10)

The terms on the last line do not match, but we still must adgi®. (B6)—(B10) the contribution
of the diagram with the three-gluon vertex [Fig. 2(d)], whis

(B11)

and noM,,, contribution. HereJ, is the current of Sec. IV B. The first lattice artifact candéls
last line of Eq. (B10). The second lattice artifact vanisingsn contraction with the external-gluon
polarization vectors.

In this Appendix we outline how to improve the gauge actionewaxis-interchange symmetry
is given up. The improvement program is the same as for aojsiotlattices, which has been
worked out [24] and summarized [23]. Since it has not beerighdd, we give the main details

Table VI lists the interactions in the Symanzik LEwith and without axis-interchange symme-
try. Without axis-interchange symmetry there are eightratoes. Other operators can be written
as linear combinations of the operators in the table and detavatives. For example, previous
work [17-19] usedr[(D,F,,)(D,F,, )], but we find it easier to use[F), F,,F,.|. With the



Bianchi identityD, F,,, + D,F,,, + D, F,, = 0, one can show that
%tr[(Dquy)(Dﬂpr)] = tr[(DuFw) (DpFoy)] = 2 tr[Fu FypFpy + 0, (C1)

whereo denotes the omission of total derivatives that make no tmriton to the action. Thus,
only two of these three operators are needed.

Table VI is laid out in a suggestive way: operators in the trigflumn clearly descend from
those in the left. It is a little harder to show that there avemore [24]. When parity and charge
conjugation are taken into account there Hr@perators with twa)s and twoEs and anothet(
where the twaE's are replaced with tw#s. Of these x 6 may be eliminated in favor of total
derivatives and others, leavirzgx 4 = 8 of this type. Three of these may be eliminated with the
Bianchi identities

D-B =0, (C2)
D x E = D,B. (C3)

One application of the second Bianchi identity is less tHawiaus:
tr[(DyB) - (DyB)] =2tr[B - (E x E)| — tr[(D4E) - (D x B)] + 0. (C4)

To find Eq. (C4) one uses Eq. (C3) for one factofnfB, and then integrates by parts. In the end,
there are 5 independent operators with ti® and twoFE's or two BS.

In addition, there aré operators with one each @i, D, E, and B; 4 may be eliminated in
favor of total derivatives, and another may be eliminatetth @iBianchi identity, leaving 1. Finally,
there are the two operators B - (E x E)] andtr|B - (B x B)]. Thus, the total is 8, and the list
in Table VI is complete.

There are three redundant interactions, correspondingetdransformations in Eqgs. (2.22)—
(2.24) that only involve gauge fields. They change th&lldy

Loym +— Lsym + a2% {eatr[(D- E)(D-E)] + (¢4 + 64) t2[(D x B) - (D x B)]
— (264 + 64+ 6p) tr[(D4E) - (D x B)] + (64 + 0p) tr[(D4E) - (D4E)]}.  (C5)

By appropriate choice of the parameters ¢4, andég, one can remover[(D - E)(D - E)]
and two of the other three induced interactions from th& LBelow we shall see that it is most
convenient to choose the redundant directions as showr ilasihthree lines of Table VI.

To construct an improved gauge action, it is enough to cengltke eight classes of six-link
loops shown in Fig. 1, as well as plaquettes. Generaliziogn fRef. [19], we label sets of unori-
ented loops as in Table VII. Then let

Si =Y 2Retr[l - U(C)], (C6)

CeS;

whereU (C) is the product of link matrices around the cuBieThe gauge action is
1
SD2F2 = ? ZCZ‘SZ‘, (C7)
0

where the;; are chosen so thaty:2 > 0 and so that classical continuum limit is correct.
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TABLE VII: Unoriented loops on the lattice, up to length 6.

seti type of loop

0t temporal plaquettes

0s spatial plaguettes

1t rectangles with temporal long side

1t' rectangles with temporal short side

1s spatial rectangles

2t “parallelograms” with two temporal sides
2s spatial “parallelograms”

3t bent rectangles with temporal bend edge
3t’ bent rectangles with temporal sides, but spatial bend edge
3s spatial bent rectangles

The classical continuum limit is needed not only to detesrthne normalization of the;, but
also to deduce which terms in the lattice action corresportidd redundant operators of the LE
The classical continuum limit of thg; is easy to find with the procedure given in Ref. [19]. For
the plaquette terms we find

3
Qg a ata's
Su = ~2 [ulp B+ 12 [uloiE)- (0:8) + 22 [ > ullDENDE) (€O
a a;
S =y, BBl g, /E tr[(D; Bi) (D By)], (C9)

T jk

wherea; anda, are temporal and spatial lattice spacings, respectivedye H

/x — 0y = / d'z. (C10)

It is convenient to express the six-link loops througgh and S, plus further terms of order?.
The rectangles yield

3
Sy = 45y + % / tr[(D4E) - (D,E)], (C11)
Sy = 4Su + asa, / Ztr [(D;E;)(D;E;)], (C12)
Sis = 8Sps + = / > " wr[(D;By)(D;By)); (C13)
J#k

the “parallelograms”
Sor = 8Sos + 4S0s — 4dasas /tr (E x E)] — 2aa; /tr[(D4E) (D x B)]

+ atas/tr (D-E)D-E)] - atas/Ztr (D;E;)(D;E;)],  (Cl4)
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4a? a?
Sos = 4S50 — —/tr[B-(B><B)]+—/tr[(D><B)-(D><B)]
BCLt m at Jg
- = Ztr D;By)(D;By)); (C15)
and the bent rectangles
Sgt = 8SOt + aia, /tr[(D : E)(D . E)] — Qg / Ztr[(DZEZ)(DZEZ)], (C16)
Ssy = 850t + 8Sps — 2a.a / Ztr[(D4E) - (D x B)], (C17)
3
Sss = 8Sos + %/tr[(D x B) - (D x B)] /Ztr (D;By)(D;By)).  (C18)
073 -

We see immediately that the bent rectangles are the onl flaat the redundant interactions
appear, so one may set, cs, andes, at will, without sacrificing on-shell improvement. Indeed,
the bent rectangles may be completely omitted from the inga@ction.

To normalize the lattice gauge action to the classical ocontn limit, one must choose

cot +4(cre + cw) + 8car + 8(ca + cav) = o, (C19)
Cos -+ 8013 + 4(C2t + Cgs) + 8(033 -+ Cgt/) = 50_1, (CZO)

whereg, is the bare anisotropy. At the tree le¥gl= a,/a;. The essence of Egs. (C19) and (C20)
is to tradery; andcy, for the bare coupling? and the bare anisotrogy.

To derive on-shell improvement conditions (at the treel)ewme must allow for the transfor-
mations in Egs. (2.23) and (2.24). We find on-shell improvetye the tree level, when

fo_lcm = g — 12y — 4z — 4(1 + EO_Q)xt, (C21)
ocos = 5 — 4wy — 44+ &)z, (C22)
&lew = —15 +an, (C23)
&law = —15 +aw, (C24)
fo1s = —15 + Ts, (C25)
Cot = €25 =0, (C26)

& ey = ay, (C27)
& losw = (s + &%), (C28)
ocss = s, (C29)

wherezx,, z, andz, are free parameters.

In the main text of the paper, we consider isotropic lattideg allow for the possibility that
heavy-quark vacuum polarization requires some asymmetitye couplings, starting at the one-
loop level. Thus, we considé€y = 1 andz; = xy = x, = x and recover [19]

Cot = Cos = g — 24z, (C30)
Clt = Clp = C1g = —% +x, (C31)
Cop = Co5 = 0, (032)
C3t = C3p = C3s = . (C33)
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Positivity of the action requires < 5/72 and is guaranteed ji:| < 1/16 [19]. Beyond the tree
level asymmetry in these couplings may indeed arise. Bufuih&eedom of the three redundant
directions remains, so one may still choege= z; = 0, c3» = v = 0, andczs = x4, = 0.
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