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ABSTRACT

We present an empirical method for estimating the underlying redshift distribution
N(z) of galaxy photometric samples from photometric observables. The method does
not rely on photometric redshift (photo-z) estimates for individual galaxies, which
typically suffer from biases. Instead, it assigns weights to galaxies in a spectroscopic
subsample such that the weighted distributions of photometric observables (e.g., multi-
band magnitudes) match the corresponding distributions for the photometric sample.
The weights are estimated using a nearest-neighbor technique that ensures stability
in sparsely populated regions of color-magnitude space. The derived weights are then
summed in redshift bins to create the redshift distribution. We apply this weighting
technique to data from the Sloan Digital Sky Survey as well as to mock catalogs for the
Dark Energy Survey, and compare the results to those from the estimation of photo-z’s
derived by a neural network algorithm. We find that the weighting method accurately
recovers the underlying redshift distribution, typically better than the photo-z re-
construction, provided the spectroscopic subsample spans the range of photometric
observables covered by the photometric sample.

Key words: distance scale – galaxies: distances and redshifts – galaxies: statistics –
large scale structure of Universe

1 INTRODUCTION

On-going, wide-field surveys are delivering photometric
galaxy samples of unprecedented scale. Optical and near-
infrared surveys planned for the next decade will increase the
sizes of such samples by an order of magnitude. Much of the
utility of these samples for astronomical and cosmological
studies rests on knowledge of the redshift distributions of the
galaxies they contain. For example, surveys aimed at prob-
ing dark energy via clusters, weak lensing, and baryon acous-
tic oscillations (BAO) will rely on the ability to coarsely bin
galaxies by redshift, enabling approximate distance-redshift
measurements as well as study of the growth of density per-
turbations. The power of these surveys to constrain cosmo-
logical parameters will be limited in part by the accuracy
with which the galaxy redshift distributions can be deter-
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mined (Huterer et al. 2004, 2006; Zhan & Knox 2006; Zhan
2006; Ma et al. 2006; Lima & Hu 2007).

Photometric redshifts (photo-z’s, denoted zphot below)
– approximate estimates of galaxy redshifts based on their
broad-band photometric observables, e.g., magnitudes or
colors – offer one technique for approaching this problem.
Photo-z’s have the advantage that they provide redshift es-
timates for each galaxy in a photometric catalog; such in-
formation is useful for certain studies (Mandelbaum et al.
2007). However, in many applications we do not need such
galaxy-by-galaxy information – instead, we only require an
estimate of the redshift distribution of a sample of galaxies
selected by some set of photometric observables. For exam-
ple, cosmic shear weak lensing or angular BAO measure-
ments rely on relatively coarse binning of galaxies in red-
shift, and it suffices to have an accurate estimate of the red-
shift distribution N(z) for galaxies satisfying certain color
or magnitude selection criteria (Sheldon et al. 2004, 2007a;
Jain et al. 2007). Photo-z estimators are not typically de-
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2 Lima et al.

signed to provide unbiased estimates of the redshift distri-
bution: N(zphot) is biased by photo-z errors.

Although deconvolution (Padmanabhan et al. 2005) or
other techniques (Sheth 2007) can be used to obtain im-
proved estimates of the redshift distribution from photo-z
measurements, this problem motivates the development of a
method optimized to directly estimate the underlying red-
shift distribution N(z) for a photometric sample. In addition
to its direct utility, a precise, unbiased estimate of the red-
shift distribution is useful even for probes that do require
individual galaxy redshifts, since it provides a template for
characterizing photo-z errors.

In this paper we present an empirical technique to es-
timate N(z) for a photometric galaxy sample that is based
upon matching the distributions of photometric observables
of a spectroscopic subsample to those of the photometric
sample. The method assigns weights to galaxies in the spec-
troscopic subsample (hereafter denoted the training set, in
analogy with machine-learning methods of photo-z estima-
tion), so that the weighted distributions of observables for
these galaxies match those of the photometric sample. The
weight for each training-set galaxy is computed by compar-
ing the local “density” of training-set galaxies in the multi-
dimensional space of photometric observables to the density
of the photometric sample in the same region. We estimate
the densities using a nearest neighbor approach that ensures
the density estimate is both local and stable in sparsely occu-
pied regions of the space. The use of the nearest neighbors
ensures optimal binning of the data, which minimizes the
requisite size of the spectroscopic sample. After the training-
set galaxy weights are derived, we sum them in redshift bins
to estimate the redshift distribution.

As we will show, this method provides a precise and
nearly unbiased estimate of the underlying redshift distribu-
tion for a photometric sample and does not require photo-
z estimates for individual galaxies. Moreover, the spectro-
scopic training set does not have to be representative of the
photometric sample, in its distributions of magnitudes, col-
ors, or redshift, for the method to work. We only require
that the spectroscopic training set cover, even sparsely, the
range of photometric observables spanned by the photomet-
ric sample. The method can be applied to different combina-
tions of photometric observables that correlate with redshift
– in this paper, we confine our analysis to magnitudes and
colors. In a companion paper (Cunha et al., in preparation),
we compare this weighting technique to the deconvolution
method of Padmanabhan et al. (2005) and show that the
weights can be used to naturally regularize and improve the
deconvolution.

The paper is organized as follows. In § 2 we present
the simulated and real galaxy catalogs used to test the
method. In § 3 we describe the algorithm for the calculation
of the weights of training-set galaxies using a nearest neigh-
bor method. In § 4 we define simple statistics to assess the
quality of the reconstructed distributions. In § 5 we present
N(z) estimates derived from the weighting method and com-
pare with results using photo-z’s for individual galaxies de-
rived from a neural-network algorithm. We discuss the re-
sults and present our conclusions and perspectives in § 6.
In Appendix A, we provide a brief description of the neural
network photo-z algorithm that we use for comparison with
the weighting method.

2 CATALOGS

We use two sets of catalogs to test the method. The first is
based upon simulations of the Dark Energy Survey (DES).
The second derives from photometry for galaxies in the
Sloan Digital Sky Survey (SDSS). We describe them in turn.

2.1 DES mock catalogs

The Dark Energy Survey is a 5000 square degree survey in
5 optical passbands (grizY ) with an AB-magnitude limit of
i ≈ 24 (the approximate 10σ limit for galaxies), to be car-
ried out using a new camera on the CTIO Blanco 4-meter
telescope. The goal of the survey is to measure the equation
of state of dark energy using several techniques: clusters of
galaxies, weak lensing, BAO and supernovae. The DES opti-
cal survey will be complemented in the near-infrared by the
VISTA Hemisphere Survey (VHS), an ESO Public Survey
on the VISTA 4-meter telescope that will cover the survey
area in three near-infra-red (NIR) bands (JHKs). For sim-
plicity we will only use the optical DES bands in our results
and analysis presented below.

Our fiducial simulated DES catalog contains 500,000
galaxies with redshift z < 2 and with 20 < i < 24,
and will serve as the photometric set we will be attempt-
ing to recover. The magnitude and redshift distributions
were derived from the galaxy luminosity function mea-
surements of Lin et al. (1999) and Poli et al. (2003), while
the galaxy Spectral Energy Distribution (SED) type dis-
tribution was obtained from measurements of the HDF-
N/GOODS field (Capak et al. 2004; Wirth et al. 2004;
Cowie et al. 2004). The galaxy colors were generated using
the four Coleman et al. (1980) templates – E, Sbc, Scd, Im –
extended to the UV and NIR using synthetic templates from
Bruzual & Charlot (1993). These templates are mapped to
a galaxy SED type t as (E, Sbc, Scd, Im) → t = (0, 1, 2, 3).
To improve the sampling and coverage of color space, we
created additional templates by interpolating between ad-
jacent templates and by extrapolating from the E and Im
templates, such that the SED type t ranges over [−0.5, 3.5]
continuously, with t = −0.5 (3.5) corresponding to very
early-type (very late-type) galaxies. The magnitude errors
were modelled as sky-background dominated errors approx-
imated as uncorrelated Gaussians. This implementation of
the DES mock catalog is similar to the one employed in
Banerji et al. (2007).

In order to vary the parameters of this fiducial DES
catalog and to create spectroscopic training sets from it,
we adopt an equivalent analytic description of this sample
that is easier to work with. The photometric sample can be
fully specified by providing the distributions of i magnitude,
redshift z, and SED type t. That is, the catalog can be con-
structed by repeated sampling from a probability distribu-
tion P (i, z, t), since the “pre-noise” magnitudes in the other
passbands are uniquely determined by these three quanti-
ties.

We can write the probability P (i, z, t) as a product of
conditional probabilities

P (i, z, t) = P (i)P (z|i)P (t|i, z) , (1)

where P (i) is the probability that a galaxy in the sample has
i-band magnitude i, P (z|i) is the probability that a galaxy
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Estimating the Redshift Distribution of Faint Galaxy Samples 3

Figure 1. Distributions of: i magnitude (left panel); redshift z given i-magnitude for i = 20, 22, 24 (middle panel); and galaxy type t

(right panel) for the fiducial DES mock catalog. Lower (higher) values of t correspond to early (late) spectral types, and the t distribution
shows evidence of bimodality.

of that magnitude has redshift z, and P (t|i, z) is the proba-
bility that a galaxy of that magnitude and redshift has SED
type t. The galaxy i-magnitudes, redshifts z and SED types
t have the ranges specified above, i.e. the conditional prob-
ability distributions are truncated sharply at those values
and normalized by
∫ 24

20

P (i)di =

∫ 2

0

P (z|i)dz =

∫ 3.5

−0.5

P (t|i, z)dt = 1 , (2)

which implies that P (i, z, t) is properly normalized. For the
DES sample generated according to the observed luminosity
function and SED type distributions noted above, we find
that the magnitude and redshift distributions can be accu-
rately parametrized by

P (i) = A exp

[

(

i − 20

a

)0.5
]

, (3)

P (z|i) = Bz2 exp

[

−

(

z − zd(i)

σd(i)

)2
]

, (4)

where the functions zd(i) and σd(i) are defined by

zd(i) = b1 + b2(i − 20) + b3(i − 20)2 , (5)

σd(i) = c1 + c2(i − 20)c3 . (6)

Here A = A(a) and B = B(zd, σd) are normalization factors
determined once the constants a, bj , cj are specified. For
the photometric sample of the mock DES catalog, we find
good fits with a = 0.29, (b1, b2, b3) = (−0.2, 0.75,−0.28),
and (c1, c2, c3) = (0.39, 0.012, 3.2). We therefore use these
parametric distributions to generate the mock DES sam-
ples for our analysis. The resulting analytic distributions
are shown in the first two panels of Fig. 1.

For simplicity, we assume that the SED type distribu-
tion is independent of magnitude and redshift,

P (t|i, z) = P (t) , (7)

and has the bimodal shape given in the third panel of Fig. 1,
which comes from the original construction of the catalog in
terms of luminosity functions and the HDF-N/GOODS type
distribution.

In § 5 we explore how well the redshift distribution N(z)

of the DES mock photometric sample created by this pre-
scription, shown in the right panel of Fig. 5 below, can be
recovered from spectroscopic training sets that have differ-
ent P (i, z, t) distributions from the photometric sample.

2.2 SDSS Data Catalogs

While the mock catalogs are useful for study of parameter
dependencies and to gain insight into the efficiency and re-
quirements of the N(z) reconstruction method, they do not
capture all the degeneracies and features of real catalogs.

Therefore, we also test the weighting procedure using
a combination of spectroscopic catalogs with SDSS DR6
photometry in ugriz bands. The derived spectroscopic sam-
ple is similar to the one we used in constructing the DR6
galaxy photo-z catalog (Oyaizu et al. 2008), and we apply
the same redshift quality and photometry cuts as were used
there. Together these catalogs contain 288, 456 galaxies with
r < 22. We use 200, 000 galaxies from the SDSS DR6 main
and LRG spectroscopic samples, 20, 381 from the Cana-
dian Network for Observational Cosmology (CNOC) Field
Galaxy Survey (CNOC2; Yee et al. 2000), 1, 541 from the
Canada-France Redshift Survey (CFRS; Lilly et al. 1995),
11, 040 color-selected galaxies from the Deep Extragalac-
tic Evolutionary Probe (DEEP; Davis et al. 2001) and the
DEEP2 surveys (Weiner et al. 2005)1, 2, 078 galaxies from a
roughly flux-limited sample from the Extended Groth Strip
in DEEP2 (DEEP2/EGS; Davis et al. 2007), 654 from the
Team Keck Redshift Survey (TKRS; Wirth et al. 2004), and
52, 762 from the 2dF-SDSS LRG and QSO Survey (2SLAQ;
Cannon et al. 2006) 2. The numbers of galaxies used from
each catalog are smaller than those in Oyaizu et al. (2008),
because we cut the samples at r < 22, as opposed to the
r < 23 limit adopted in that work. Also, the numbers above
include repeat objects due to repeat imaging in the SDSS
BestRuns database, which was used to positionally match
the galaxies.

In Fig. 2, we show the distributions of r magnitude,

1 http://deep.berkeley.edu/DR2/
2 http://lrg.physics.uq.edu.au/New dataset2/
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4 Lima et al.

Figure 2. Distributions of r magnitude (left panels), r− i color (middle panels), and spectroscopic redshift zspec (right panels) for each

spectroscopic catalog used with SDSS photometry. Also shown in the left panels are the total numbers of galaxies in each spectroscopic
sample, counting repeated objects.

r − i color, and spectroscopic redshift zspec for each spec-
troscopic catalog. In combination, these data sets span a
large range of magnitude, color, and redshift. We use these
catalogs as a test case for our reconstruction methods of
the redshift distribution below. In Cunha et al. (in prepa-
ration), we use simulations to investigate the effectiveness
of the weighted N(z) estimation on the SDSS DR6 Photoz2
sample described in Oyaizu et al. (2008).

3 THE WEIGHTING METHOD

The weighting method for reconstructing N(z) for a photo-
metric sample relies on the fact that a spectroscopic subsam-
ple of the galaxies with precisely measured redshifts is usu-
ally available. However, due to observational constraints, the
spectroscopic subsample typically has different distributions
of magnitudes, colors, and therefore redshift than the par-
ent photometric sample, e.g., the spectroscopic sample may
contain galaxies that are mostly much brighter than the flux
limit of the photometric sample or the spectroscopic sample
may be selected to lie within certain windows of color space.
The weighting technique compensates for this mismatch by
weighting galaxies in the spectroscopic sample so that the
weighted sample has the same distribution of photometric
observables (colors, magnitudes) as the parent photometric
sample. The key assumption behind the method is that two
samples with identical distributions of photometric observ-
ables will have identical distributions of redshift N(z), so
that the redshift distribution for the weighted spectroscopic
sample serves as an estimate of the redshift distribution for

the photometric sample. In § 6, we discuss the conditions
that are required for this assumption to hold and the sys-
tematic errors that can arise for the N(z) estimate if those
conditions are not met.

In the remainder of this Section, we describe the con-
struction of the weighting method.

3.1 Matching Distributions: Redshifts

We are interested in estimating N(z) for a photometric set of
interest. In practice, to estimate this distribution, we need
to bin galaxies and compute the binned redshift distribu-
tion. Consider first binning the photometric and spectro-
scopic samples by non-overlapping redshift bins, denoted i
below. We define the normalized redshift distributions in
the ith redshift bin [zi, zi + ∆zi] in the photometric sample
(superscript P) and in the spectroscopic training set (super-
script T) as

P (zi)P ≡
1

NP
tot

N(zi)P

∆zi
=

ρ(zi)P

NP
tot

, (8)

P (zi)T ≡
1

NT
tot

N(zi)T

∆zi
=

ρ(zi)T

NT
tot

, (9)

where Ntot is the total number of galaxies in each catalog,
N(zi) is the number of galaxies in the ith redshift bin, and
we have defined the redshift density

ρ(zi) ≡
N(zi)

∆zi
. (10)

In general, P (zi)T 6= P (zi)P. Using weights, we would
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Estimating the Redshift Distribution of Faint Galaxy Samples 5

like to transform P (zi)T into a new distribution, P (zi)Twei,
that provides an unbiased estimate of P (zi)P,

P (zi)P = 〈P (zi)T
wei〉 . (11)

To accomplish this, we weight objects in the spectroscopic
training set according to their local density in the space of
photometric observables.

To motivate the form of the weights, we first consider
the idealized case of weighting directly in redshift. We seek
a set of weights Wα for the spectroscopic training-set galax-
ies indexed by α such that the redshift distribution of the
weighted training set is given by

P (zi)Twei∆zi ≡

∑N(zi)T

α=1
Wα

∑NT
tot

α=1 Wα

, (12)

where the sum in the numerator is over objects in the ith

redshift bin and that in the denominator is over all objects
in the spectroscopic training set. The weights can be nor-
malized by

NT
tot

∑

α=1

Wα = 1 . (13)

Clearly, Eq. (12) reduces to Eq. (9) if all objects have
the same weight. We write the Eqs. above in terms of non-
overlapping redshift bins because that is what we will show
in our results after computing the galaxy weights Wα. Con-
sider now an alternate estimate of N(z) with overlapping
bins centered at individual galaxies, indexed by β, with cor-
responding bin sizes ∆zβ , possibly varying from galaxy to
galaxy. All Eqs. (8-12) apply after substituting indices i by
β. For sufficiently narrow bins ∆zβ, galaxies inside a given
bin will be roughly indistinguishable and will have approxi-
mately equal weights, labeled Wβ. In this case,

N(zβ)T
∑

α=1

Wα ∼ N(zβ)TWβ . (14)

Combining the results of Eqs. (8), (11)-(14) yields

1

NP
tot

N(zβ)P

∆zβ
=

N(zβ)TWβ

∆zβ
, (15)

from which it follows that the idealized weights are given by

Wβ =
1

NP
tot

ρ(zβ)P

ρ(zβ)T
. (16)

Of course, Eq. (16) is not useful in practice, since we do
not know how to estimate the redshift density ρ(z)P for the
photometric sample. In principle, one could do the matching
in photo-z space, but photo-z estimates are subject to bias.
Therefore we replace the redshift binning by an equivalent
aperture in the photometric observables.

3.2 Matching Distributions: Observables

For concreteness we take the photometric observables to be
the Nm magnitudes of each galaxy, where Nm is the number
of filter passbands in the survey: the magnitude vector of
the αth galaxy in a sample is mα = ma

α, with a = 1, ..., Nm.
This choice of observables is not unique: we could instead use
colors, morphological information, or any other photometric

observable. A cell in magnitude space of radius dm defines an
Nm-dimensional hypervolume, Vm = dNm

m . The magnitude
density in multi-magnitude space at point m within Vm is
defined as

ρ(m) ≡
N(m)

Vm
, (17)

where N(m) is the number of objects in the corresponding
magnitude region.

The redshift distribution of the photometric set can be
rewritten as

P (zi)P =
ρ(zi)P

NP
tot

=

∫

dmP (zi|m)P
ρ(m)P

NP
tot

. (18)

Similarly, the distribution of the weighted training is
given by

P (zi)Twei = ρ(zi)T Wα =

∫

dmP (zi|m)Tρ(m)TWα . (19)

Motivated by Eq. (16) and given our desire to set
P (zi)Twei = P (zi)P, we redefine the galaxy weights – now
as a function of magnitude densities – as

Wα =
1

NP
tot

ρ(m)P

ρ(m)T
. (20)

Therefore, the weighted training set distribution will
provide an unbiased estimate of the true distribution in the
photometric set if
∫

dmP (zi|m)Pρ(m)P =

∫

dmP (zi|m)Tρ(m)P . (21)

Notice that for a given magnitude m, there could be a
broad range of possible redshifts z due to degeneracies, and
the weighting method would still work as long as Eq. (21)
is satisfied. One obvious instance where this happens is if

P (zi|m)P = P (zi|m)T, (22)

i.e. if the training and photometric sets have the exact same
degeneracies between redshift and magnitudes. A training
set may violate this condition if it has selection effects that
are very different from those of the photometric set. The se-
lection effect can easily be accounted for if it happens in the
space of observables. However, effects due to spectroscopic
failure and large-scale structure (LSS) are more difficult to
model and control.

In the case where degeneracies are small, P (zi|m) ap-
proaches a delta function δ(zi|m) and we have ρ(zi) =
ρ(m), i.e. the magnitude hypervolume Vm specifies uniquely
a corresponding cell in redshift ∆z as indicated in Fig. 3.
The latter is typically the assumption of empirical photo-z
methods; violation of this condition leads to photo-z biases
and spurious peaks in the photo-z distribution. In contrast,
the weighting method works more generally, since the only
requirement is that the redshift distribution inside Vm must
be the same for training and photometric sets.

In order to calculate weights for training set galaxies us-
ing Eq. (20), we estimate the density ρ(m) using the nearest-
neighbor prescription described below.

3.3 Neighbors in Magnitude Space

A nearest-neighbor approach to calculating the density of
galaxies in magnitude space is advantageous, because it en-
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∆z

∆m1 

z(m1,m2)

∆m2

d
m

m2

m1

V
m 

Magnitude-Redshift
hypersurface

Figure 3. Idealized magnitude-redshift hypersurface for Nm = 2
magnitudes. Without degeneracies, the hypervolume in magni-
tude space surrounding a galaxy, Vm ∝ d

Nm
m , corresponds to

an approximate redshift interval ∆z. Whereas empirical photo-
z methods usually make this implicit assumption, the weighting
method works under more general conditions.

ables control of statistical errors (shot noise) while also en-
suring adequate “locality” of the cells in magnitude space.
The distance dαβ in magnitude space between the αth and
βth galaxies in a (photometric or spectroscopic) sample is
defined by

(dαβ)2 ≡ (mα − mβ)2 =

Nm
∑

a=1

(ma
β − ma

α)2 . (23)

We use this distance to find the set of nearest neighbors to
the αth object, i.e., the set of galaxies with the smallest dαβ.
The density in magnitude space around this object, ρ(mα),
is then estimated as the ratio of the number of nearest neigh-
bors Nnei to the magnitude hypervolume Vm that they oc-
cupy, cf. Eq. (17). For fixed Nnei, if we order the neighbors
by their distance from the αth galaxy, then we can define the
hypervolume by the distance from α to the (Nnei)

th (most
distant) neighbor, indexed by γ, Vm = (dαγ)Nm .

Estimating the local density in the spectroscopic train-
ing set using a fixed (non-zero) value for N(mα)T = Nnei

ensures that the density estimate is positive-definite and
that the resulting weight is well defined. To estimate the
corresponding density in the photometric sample, we sim-
ply count the number of galaxies in the photometric sample,
N(mα)P, that occupy the same hypervolume Vm around the
point mα. Since the densities are estimated in the spectro-
scopic and photometric sets using the same hypervolume,
the ratio of the densities is simply the ratio of the corre-
sponding numbers of objects within the volume, and the
weight for the αth training-set galaxy is therefore given by

Wα =
1

NP
tot

N(mα)P

N(mα)T
. (24)

The optimal choice of Nnei balances locality against

statistical errors. By locality we mean that the distance to
the (Nnei)

th nearest neighbor, dαγ , should ideally be smaller
than the characteristic scale in magnitude space over which
ρ(m) varies; this argues for small hypervolumes, i.e., small
values of Nnei. On the other hand, if Nnei is chosen too small,
the resulting estimate of the density, ρ(m) = Nnei/Vm, will
suffer from large shot-noise error. The resulting statistical
error on the weight is

δWα

Wα
=

[

1

N(mα)P
+

1

N(mα)T

]1/2

. (25)

The optimal value of Nnei will depend on the charac-
teristics of the photometric and spectroscopic samples at
hand and should be determined using mock catalogs. For
the DES and SDSS catalogs, we find in § 5 that the qual-
ity of the N(z) reconstruction is relatively insensitive to the
choice of Nnei. The results we present there use the optimal
values of Nnei determined by trial and error.

This implementation of the nearest-neighbor approach
to estimating the magnitude-space densities and weights is
not unique. For example, we could have instead used the
same number of neighbors in both the spectroscopic and
photometric samples, in which case the weights would be
given by the ratio of corresponding hypervolumes,

Wα =
1

NP
tot

[

(dαγ)T

(dαγ′)P

]Nm

, (26)

where γ′ indicates the (Nnei)
th nearest neighbor in the pho-

tometric sample. Our tests indicate that this produces sim-
ilar results to the fixed hypervolume method, but that the
latter is slightly more stable in sparsely occupied regions of
the spectroscopic and photometric samples. In a region of
magnitude space that is sparsely occupied in the photomet-
ric sample, using a fixed number of objects can result in a
non-local estimate of the density. Fixing the hypervolume
instead tends to avoid that problem. The results we present
in § 5 use the fixed hypervolume, Eq. (24), to estimate the
weights.

3.4 Weight Renormalization

If the spectroscopic training set has significantly different
distributions of photometric observables than the photomet-
ric sample, then there may be galaxies in the training set
that have very few or no neighbors in the photometric sam-
ple. Such galaxies will receive very small or zero weight and
therefore make no contribution to the estimate of N(z)P.
In this case, a recalculation of the weights may improve the
accuracy of the redshift distribution reconstruction.

The idea is to perform a recalculation similar to a
renormalization procedure. After an initial calculation of
the weights, we remove objects from the training set that
were assigned very small or zero weights. Using the objects
that remain, the weights are recalculated, possibly using a
smaller number of neighbors to achieve more locality of the
new weights. This procedure can be iterated until some con-
vergence of the weights is achieved.

As this renormalization procedure is iterated, the distri-
bution in photometric observables of the remaining training
set objects will approach that of the photometric sample,
and the weights become more homogeneous.

c© 0000 RAS, MNRAS 000, 000–000



Estimating the Redshift Distribution of Faint Galaxy Samples 7

We have found the renormalization to be useful if a large
fraction of the training set objects have very small or zero
weights. However, we do not expect to apply renormalization
in practical situations, since the training set will typically
be much smaller than the photometric set of interest. We
suggest the use of simulations to study if the renormalization
may help or not in each case. We present a case in which
the renormalization significantly improves the weighting in
§ 5.

3.5 Summary of the Algorithm

To summarize, we outline the steps of the algorithm used
to estimate the redshift distribution N(z) of a photometric
sample:

• For each galaxy α in the spectroscopic training set,
find a fixed number N(mα)T = Nnei of its nearest neigh-
bors in the training set according to the distance defined in
Eq. (23) and compute the cell radius dαγ as the distance to
the (Nnei)

th nearest neighbor.
• Find the number N(mα)P of objects in the photometric

sample that fall within the same cell radius (volume).
• Compute the weight Wα according to Eq. (24).
• Repeat the weight calculation for each galaxy in the

spectroscopic training set. Estimate the redshift distribution
P (zi)P by summing the weights for all training-set galaxies
in the ith redshift bin, cf. Eq. (12).

• If a large number of training-set galaxies have very low
or zero weight, the renormalization procedure of § 3.4 can
be implemented.

3.6 Weighting vs. Photo-z’s

It is worth contrasting the key assumption of the weighting
method–that samples with identical distributions of photo-
metric observables have identical distributions of redshift–
with the stronger assumption implicit in training-set based
photo-z estimates. Photo-z estimators assume that there is
(and try to find) a functional correspondence between a set
of photometric observables and redshift; degeneracies in that
correspondence lead to photo-z biases. For the weighting
method, all that is assumed is that values of the photometric
observables uniquely determine the redshift probability dis-

tribution of galaxies with those observables, a distribution
which may be multiply peaked, as long as these features
appear in both the training and photometric sets. More-
over, the weights from a number of training-set galaxies are
summed to estimate N(zi) in a given redshift bin. If that
number is reasonably large, this stacking will tend to cancel
out possible statistical errors in individual galaxy weights.
In Cunha et al. (in preparation), we show how the weight-
ing procedure can be used to estimate a redshift distribution
p(z) for each galaxy in the photometric sample and thereby
avoid the biases of photo-z estimates. Mandelbaum et al.
(2007) show that using this weighted p(z) in place of photo-
z’s is very effective in reducing calibration biases in galaxy-
galaxy weak lensing.

In § 5, we will present results for both the weighting
method and photo-z estimates for comparison.

4 MEASURES OF RECONSTRUCTION

QUALITY

We measure the quality of the estimated redshift distribu-
tion reconstruction using two simple metrics. The first is the
χ2 statistic (per degree of freedom and per galaxy), defined
as

(χ2)X =
1

Nbin − 1

Nbin
∑

i=1

[

P (zi)X − P (zi)P
]2

P (zi)P
, (27)

where Nbin is the number of redshift bins used, and P (zi)X

is equal to P (zi)Twei if the weighting procedure is used or
to P (zi

phot)
P if the redshift distribution is instead estimated

using photo-z’s. The usual definition of χ2 uses the num-
bers N(zi) of objects in given bins instead of the normalized
probability P (zi); multiplying our χ2 by ∆zNtot gives the
usual definition. We chose the above version so the resulting
quantity is independent of the number of galaxies and the
number of redshift bins. The definition allows us to more
fairly compare reconstruction qualities across different data
sets. Because the probabilities are normalized, the number
of degrees of freedom is Nbin − 1.

The second metric we employ is the Kolmogorov-
Smirnov (KS) statistic, defined as the maximum difference
between the two cumulative redshift distributions being
compared, for example, the cumulative distributions corre-
sponding to P (zi)Twei∆z and P (zi)P∆z. The KS statistic is
more sensitive to the changes in the median of the two com-
pared distributions whereas the χ2 tends to stress regions
of the distribution that are least well sampled, i.e. regions
where P (zi) is small. In our implementation, we use binned
cumulative distributions instead of unbinned cumulative dis-
tributions, and therefore our metric is not strictly the KS
statistic.

It is important to stress that we do not associate any
fundamental meaning to the absolute values of the metrics
introduced above. They are used solely to compare the qual-
ities of different reconstructions relative to each other.

For the DES mock catalogs, we use Nbin = 50 redshift
bins covering the redshift interval z = 0 − 2. For the real
catalogs based on SDSS photometry, we use Nbin = 30 bins
over z = 0−1.2. In both sets of catalogs, the bins are equally
sized in redshift.

5 RESULTS

In this section, we test the methods of reconstruction of the
redshift distribution on several simulated and real data sets.

5.1 DES mock catalog

We first consider the DES mock photometric catalog of
500,000 galaxies described in § 2.1. We test the recon-
struction using two spectroscopic training sets comprising
100, 000 galaxies each. Each of them have different distri-
butions of magnitude, redshift, and galaxy type from the
photometric sample.

For the first training set, the magnitude and type distri-
butions P (i) and P (t) differ from those of the photometric
sample (recall the latter are given by Eq. (3) and Fig. 1),
but the conditional redshift probability P (z|i) is identical

c© 0000 RAS, MNRAS 000, 000–000



8 Lima et al.

Figure 4. Distributions of magnitudes grizY and colors g− r, r− i, i− z, z−Y , for the DES mock photometric catalog and for the first
spectroscopic training set. Grey regions indicate the distributions in the photometric sample, horizontal hatched regions indicate those
for the spectroscopic training set, and the solid black histograms are those for the weighted training set.

to that of the photometric sample, Eq. 4. In particular, the
spectroscopic i-magnitude distribution, shown as the hori-
zontal hatched region in Fig. 4, is skewed toward brighter
magnitudes (and therefore lower redshift) than that of the
photometric sample, with a peak at i ≃ 20.5, though it does
include galaxies to the photometric limit, i = 24. The spec-
troscopic type distribution P (t) is chosen to be flat over the
interval t = −0.5 to 3.5, in contrast to the bimodal photo-
metric type distribution shown in Fig. 1. The spectroscopic
type distribution may differ from that of the photometric
sample due to, e.g., color selection in spectroscopic targeting
or higher spectroscopic efficiency for certain galaxy types.

The weights were computed from Eq. 24, using the near-
est neighbors in a fixed hypervolume in the space of all col-

ors and i magnitude. The hypervolume for each training set
galaxy was defined by the Nnei = 16 nearest neighbors in
the training set. Our tests indicated that this value of Nnei

yields the lowest value for χ2 for the reconstruction in this
case. However, as noted earlier, the results are not sensi-
tive to this choice. Increasing Nnei to 64 causes a negligible
change in χ2, while decreasing it to 4 causes an increase of
less than 20% in χ2.

Figs. 4 and 5 display the reconstruction results for this
case using the weighting method. Fig. 4 shows the distribu-
tions of magnitudes and colors for the photometric sample
(solid grey), the spectroscopic training sample (horizontal
hatched), and the weighted training set (black line). The
coincidence of the grey and black regions demonstrates that
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Estimating the Redshift Distribution of Faint Galaxy Samples 9

Figure 5. Left panel: Photometric redshift zphot vs. spectroscopic redshift zspec for a random sampling of galaxies in the DES mock
catalog. Photo-z’s were computed using the neural network algorithm described in Appendix A, using the first spectroscopic training set
described in the text. The dashed and dotted curves are the contours containing 68% and 95% of the galaxies in narrow bins of zspec.
Also indicated are the overall rms photo-z scatter σ and 68% confidence region σ68 (see their definition in the text). Right panel: Redshift
distributions. The shaded grey region shows the redshift distribution of the photometric sample that we are aiming to reconstruct. The
horizontal hatched distribution shows the redshift distribution of the spectroscopic training set corresponding to the magnitude and color
distributions shown in Fig. 4. The solid black histogram shows the reconstructed redshift distribution using the weighting method. The
dotted lines show the neural network photo-z distribution of the photometric set, showing peaks due to photo-z biases. Also indicated
are the χ2 and KS statistics for both the weighting method and the photo-z distribution.

the weighted training set distributions in magnitudes and
colors are excellent matches to those of the photometric
sample. The right panel of Fig. 5 shows that the weighted
training-set redshift distribution also provides a precise esti-
mate of the redshift distribution of the photometric sample.
The measures of reconstruction quality for this match are
(χ2)T,wei = 0.001 and (KS)T,wei = 0.01.

For comparison, we also carry out the N(z) reconstruc-
tion using photometric redshift estimates. The left panel
of Fig. 5 shows the photo-z scatter for the neural network
photo-z estimator described in Appendix A. Here the spec-
troscopic set has been split into 2 samples (the training and
validation sets) of equal sizes that were used to train and
validate the network, which was finally applied to compute
photo-z’s for the photometric sample. To test the overall
quality of the photo-z estimates we use two photo-z perfor-
mance metrics, whose values are also displayed in Fig. 5.
The first metric is the photo-z rms scatter, σ, averaged over
all N objects in the photometric set, defined by

σ2 =
1

N

N
∑

i=1

(

zi
phot − zi

spec

)2
, (28)

whereas, the second performance metric, denoted by σ68, is
the range containing 68% of the photometric set objects in
the distribution of δz = zphot−zspec. We also define similarly
σ68 and σ95 in bins of zspec, and the dashed and dotted lines
in the left panel of Fig. 5 show these regions respectively.

The right panel of Fig. 5 shows the resulting N(zphot)
distribution for the photometric sample (dotted line). Due

to degeneracies in the relation between magnitudes and red-
shift, the photo-z estimate is biased at low and high red-
shifts. In particular, the photo-z solution produces an ex-
cess of galaxies at zphot ≈ 0.4, 0.6, and 1.4, which trans-
lates into the spurious peaks at these redshifts in the right
panel of Fig. 5. The corresponding measures of reconstruc-
tion quality are (χ2)zphot = 0.023 and (KS)zphot = 0.03, sig-
nificantly worse than those for the weighting method. Decon-
volution of the N(zphot) distribution can improve this match
(Padmanabhan et al. 2005); we will explore that elsewhere
(Cunha et al., in preparation).

For the second training set example, we make the spec-
troscopic sample even less representative of the photometric
sample. We keep the spectroscopic i-magnitude and type
distributions of the previous example, but we alter the con-
ditional redshift probability P (z|i) of the training set so
that it is more concentrated toward lower redshift while
still covering the redshift range z ∈ [0, 2]. Specifically, we
change the parameter values that determine zd and σd

in Eqs. (5) and (6) to (b1, b2, b3) = (−0.5, 0.6,−0.5) and
(c1, c2, c3) = (0.38, 0.02, 3.5). By decreasing the values of bi

relative to those of the photometric sample, we shift the dis-
tribution toward lower redshift, while increasing c2 and c3

increases the spread of the distribution in redshift so that
the full range to z = 2 is still covered. This example could
correspond, for instance, to a training set that is obtained
by combining different spectroscopic surveys with different
selection functions. Notice that changing only P (z|i) means
that we are changing only one dimension of the probability
P (z|m) which lives in a 5-dimensional space of magnitudes.
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10 Lima et al.

Figure 6. As Fig. 5, but now using the second spectroscopic training set described in the text. In this case, the training set is even less
representative of the photometric sample than in the previous example, but the weighting procedure still accurately reconstructs the
redshift distribution of the photometric sample.

If there are no further selection effects, we still expect the
weighting method to work reasonably well, though obviously
not as accurately as in the first case of Fig. (5).

In this case, we find that Nnei = 4 neighbors is nearly
optimal: training sets that are less representative require
fewer neighbors to provide the best match, since locality in
magnitude/color space becomes more important. The red-
shift distribution of the photometric sample estimated from
the weighted training set is shown in the right panel of Fig. 6.
(As in the previous example, the weighted reconstructions
of the magnitude and color distributions are nearly perfect,
as in Fig. 4, so we do not show them.) Even though the
training-set redshift distribution is now considerably differ-
ent from that of the photometric sample, peaking at z ∼ 0.25
as opposed to z ∼ 0.6, the weighting method still does a
very good job of estimation, with (χ2)T,wei = 0.009 and
(KS)T,wei = 0.018.

The left panel of Fig. 6 shows the scatter plot for the
neural network photo-z estimates for this training set; the
photo-z scatter is larger than in the previous example, as ex-
pected since the training set is less representative of the pho-
tometric sample. As the right panel of Fig. 6 also shows, the
photo-z distribution has spurious peaks at the same redshifts
as before, but they are now more pronounced. The photo-z
distribution has (χ2)zphot = 0.035 and (KS)zphot = 0.033,
significantly worse than for the weighting method.

5.2 SDSS Data Catalogs

Here we consider two examples of the reconstruction of the
redshift distribution for photometric samples drawn from
the SDSS, using the spectroscopic samples described in § 2.2
and shown in Fig. 2.

For the first case, we created a spectroscopic training
set comprising 200, 000 galaxies from the SDSS spectro-

scopic survey, 15, 000 galaxies from CNOC2, 6, 000 from the
DEEP+DEEP2 sample, and 47, 000 from 2SLAQ, for a total
of 268, 000 galaxies. For all these sets, the galaxies were ran-
domly selected from the parent spectroscopic sample. The
photometric sample comprises the remaining galaxies with
spectroscopic redshifts, namely 5, 381 galaxies from CNOC2,
1, 541 from CFRS, 5, 040 from DEEP+DEEP2, 2, 078 from
DEEP2/EGS, 654 from TKRS, and 5, 762 from 2SLAQ, for
a total of 20, 456 galaxies.

For this example, we calculated weights for the training-
set galaxies using a hypervolume in color/r-magnitude space
with Nnei = 32 neighbors. Fig. 7 shows the magnitude and
color distributions for the photometric sample, the spec-
troscopic training set, and the weighted training set. The
weighting procedure provides an excellent match to the dis-
tributions for the photometric sample. This is not a difficult
test for the method since, with the exception of the SDSS
spectroscopic sample, the distributions for the training and
photometric samples are rather similar and by construc-
tion Eq. (22) is satisfied. The right panel of Fig. 8 shows
the corresponding redshift distributions for these training
and photometric samples. The weighted training set pro-
vides a good estimate of N(z) for the photometric sample,
with (χ2)T,wei = 0.01 and (KS)T,wei = 0.02. The left panel
of Fig. 8 shows the photo-z scatter for the neural network
photo-z estimator trained on the same spectroscopic sam-
ple and applied to the photometric sample. The biases at
low and high redshift are evident. The photo-z distribution
shown in the right panel of Fig. 8 provides a less accurate
representation of the true redshift distribution of the pho-
tometric sample than the weighting procedure–features in
the true redshift distribution are smoothed out, and the dis-
tribution is systematically underestimated at high redshift;
the corresponding (χ2)zphot = 0.12 and (KS)zphot = 0.08 are
again considerably worse than for the weighting procedure.
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Estimating the Redshift Distribution of Faint Galaxy Samples 11

Figure 7. Distributions of magnitudes (ugriz) and colors (u − g, g − r, r − i, i − z) for samples drawn from SDSS DR6 photometry, for
the first example in the text in § 5.2. Grey regions denote the distributions in the photometric sample, horizontal hatched regions are
for the spectroscopic training set, and the black histograms show the reconstructed distributions for the photometric sample using the
weighted training set.

For the second case, the training set and the photomet-
ric sample come from different spectroscopic surveys. Here,
the training set comprises the galaxies from all the spectro-
scopic surveys with the exception of the DEEP2/EGS cat-
alog, and the latter is taken to be the photometric sample.
The training set contains 286, 378 galaxies, and the photo-
metric sample 2078. Since DEEP2/EGS is – apart from the
match to SDSS photometry – roughly flux limited, this pro-
vides a more realistic case, except for the fact that the pho-
tometric sample in practice would typically be much larger.

In this case, since the training set is much larger than
the photometric sample, the best results are achieved if the
weights are renormalized according to the procedure de-

scribed in § 3.4. However let us first consider what happens
if we do not apply renormalization and compute the weights
only once as in all previous cases.

Matching both colors and r-magnitude is better
achieved with high number of neighbors. The maximum
number we chose was Nnei = 4096, in which case we obtain
(χ2)T,wei = 0.29. On the other hand, if we only perform the
match in color space, the best results happen with Nnei = 1
and also produce (χ2)T,wei = 0.29. In the first case, we find
that the redshift distribution is well reconstructed at low
redshifts, but overestimated at higher redshifts, whereas the
opposite happens in the latter case of matching only the
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Figure 8. Left panel: Scatter of neural network photo-z estimates using the same training set and photometric sample as in Fig. 7. Right

panel: Redshift distributions for the photometric sample, spectroscopic training set, weighted training set, and photo-z’s.

Figure 9. Left panel: Neural network photo-z scatter for the second case described in § 5.2, which uses DEEP2/EGS as the photometric
sample and all other spectroscopic catalogs for the training set. Right panel: Redshift distributions for the photometric sample, training
set, weighted training set, and photo-z.

color distributions. These features suggest that we employ
the following renormalization procedure described below.

We first calculate the weights by matching the distribu-
tions of colors and magnitudes using Nnei = 4096 neighbors
in the training set. After this first calculation, more than
half of the training set galaxies have zero weights and are
removed from the catalog. We then iterate the weight calcu-
lation by matching only the color distributions. In each iter-
ation, we remove objects with zero weight and reduce Nnei

by a factor of 2 until Nnei = 1. Only 7, 968 of the original

training-set galaxies have positive weight in the final itera-
tion. The right panel of Fig. 9 shows the resulting redshift
distributions for this case; for the renormalized weighting
procedure, the reconstruction has (χ2)T,wei = 0.10, while
the corresponding photo-z distribution has (χ2)zphot = 0.25;
likewise (KS)T,wei = 0.03 whereas (KS)zphot = 0.18. It is
clear that the weighting method provides a better estimate
of N(z).

Given the small size of the photometric sample, there
is considerable shot noise in its redshift distribution. In
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addition, the small angular-area of the survey introduces
significant LSS effects in the redshift distribution (see
e.g. Mandelbaum et al. 2007). The weighted reconstruction
works well in spite of these complications.

Because we need to go down to Nnei = 1, imposed by
the locality requirement, Poisson errors of individual galaxy
weights are relatively large. However, given the large number
of galaxies in each redshift bin, these errors cancel out and
the overall reconstruction is improved.

This case illustrates that this method has the potential
to provide very accurate estimations of the redshift distribu-
tions of flux limited samples in future galaxy surveys, even
when they are subject to LSS effects.

6 DISCUSSION

We have presented a new technique to estimate the under-
lying redshift distribution of photometric galaxy samples.
The method relies on a spectroscopic training set and re-
weighting of the training-set galaxies to match the distribu-
tion of photometric observables of the photometric sample.
The weights are estimated using a flexible nearest-neighbor
approach in color-magnitude space and the redshift distri-
bution is estimated by summing the galaxy weights in red-
shift bins. Tests on mock catalogs and on existing data sets
show that this procedure yields an accurate estimate of the
redshift distribution and that it performs significantly bet-
ter than simply binning the photo-z estimates of individual
galaxies in the photometric sample. The weighting method
also appears to be robust, in the sense that the spectroscopic
sample can have very different distributions of photometric
observables and redshift from the photometric sample. The
main requirement is that the training set should span the
range of photometric observables found in the photometric
sample.

The key assumption underlying the technique is that
two samples (e.g., the spectroscopic and photometric) with
the same distribution of photometric observables will have
very similar redshift distributions. This assumption holds if
the selection criteria used to define the two samples differ
only in the space of photometric observables. Several effects
can cause this condition to be violated: statistical errors,
LSS and spectroscopic failures.

Statistical errors are the simplest to quantify and are
significant in regions of magnitude space where the train-
ing set is sparse, typically at fainter magnitudes. LSS can
be significant if certain regions of the space of photomet-
ric observables are only represented in the training set by a
survey that covers small solid angle, in which one or a few
large structures dominate. We showed that, even in such
cases, the weighting method works quite well (§ 5.2).

Spectroscopic failures (i.e., targeted objects for which
a redshift could not be obtained) in the training set can
have a similar effect if the failures happen systematically, for
instance in a particular galaxy spectral type. If the effects of
spectroscopic failures are prevalent in regions of magnitude
space where the redshift distribution is broad or multiply
peaked, they can potentially cause systematic errors in the
recovery of the redshift distribution. However we also showed
that the weighting method performs well even when we take
an arbitrary type distribution in the training set (§ 5.1).

The weighting method requires a training set with
a size (density) such that the inter-(training-set)-galaxy
separation in the space of photometric observables is
comparable to the characteristic (curvature) scale of the
redshift/photometric-observables manifold or the scale de-
fined by the typical photometric errors - whichever is
smaller. That condition ensures that on average at least one
neighbor to the galaxy is meaningful; in practice it would be
safer to have the density a few times larger than this min-
imum density. The use of mock catalogs can shed light on
the optimal parameters to employ on the weighting method,
such as the number of neighbors Nnei (possibly varying ac-
cording to the local density), the minimum training set size,
the need or not for renormalization, etc. Since these simu-
lations are necessary for other typical calibration reasons,
their need does not put any strong restrictions to the ap-
plication of the weighting method. For instance, simulations
and calibration samples are necessary to calibrate the photo-
z errors.

This weighting technique has been used to estimate
the redshift distribution of the SDSS DR6 photometric
sample (Oyaizu et al. 2008) and to help assess the qual-
ity of the photo-z’s computed for that sample. It has also
been used in conjunction with photo-z’s in the measure-
ment of the SDSS cluster-mass cross-correlation function via
weak lensing (Sheldon et al. 2007a), allowing for the inver-
sion of cluster mass profiles (Johnston et al. 2007) and es-
timation of cluster mass-richness relations (Johnston et al.
2007) and mass-to-light ratios (Sheldon et al. 2007b). Fi-
nally, this weighting scheme has recently been employed
in the study of galaxy-galaxy weak lensing calibration
bias (Mandelbaum et al. 2007), where it was shown to
yield much smaller biases than those arising from photo-
z estimates. For future photometric surveys, the weighting
method can complement and provide cross-checks on photo-
z estimates and help control photo-z errors.
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APPENDIX A: ARTIFICIAL NEURAL

NETWORK PHOTO-Z’S

For comparison with the weighting method, we use an Artifi-
cial Neural Network (ANN) method to estimate photometric
redshifts (Collister & Lahav 2004; Oyaizu et al. 2008) We
use a particular type of ANN called a Feed Forward Mul-
tilayer Perceptron (FFMP), which consists of several nodes
arranged in layers through which signals propagate sequen-
tially. The first layer, called the input layer, receives the in-
put photometric observables (magnitudes, colors, etc.). The
next layers, denoted hidden layers, propagate signals until
the output layer, whose outputs are the desired quantities,
in this case the photo-z estimate. Following the notation of
Collister & Lahav (2004), we denote a network with k layers
and Ni nodes in the ith layer as N1 : N2 : ... : Nk.

A given node can be specified by the layer it belongs to
and the position it occupies in the layer. Consider a node
in layer i and position α with α = 1, 2, ..., Ni. This node,
denoted Piα, receives a total input Iiα and fires an output
Oiα given by

Oiα = F (Iiα) , (A1)

where F (x) is the activation function. The photometric ob-
servables are the inputs I1α to the first layer nodes, which
produce outputs O1α. The outputs Oiα in layer i are prop-
agated to nodes in the next layer (i + 1), denoted P(i+1)β ,
with β = 1, 2, ..Ni+1. The total input I(i+1)β is a weighted
sum of the outputs Oiα

I(i+1)β =

Ni
∑

α=1

wiαβOiα, (A2)

where wiαβ is the weight that connects nodes Piα and
P(i+1)β. Iterating the process in layer i + 1, signals propa-
gate from hidden layer to hidden layer until the output layer.
There are various choices for the activation function F (x)
such as: a sigmoid, a hyperbolic tangent, a step function, a
linear function, etc. This choice typically has no important
effect on the final photo-z’s, and different activation func-
tions can be used in different layers. Training the network
consists in finding weights wiαβ that best reproduce the true
redshifts zspec in a spectroscopic validation set.

In our implementation, we use a network configuration
Nm : 15 : 15 : 15 : 1, which receives Nm magnitudes and out-
puts a photo-z. We use hyperbolic tangent activation func-
tions in the hidden layers and a linear activation function
for the output layer.
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