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We present the results of a search for pair production of a new heavy top-like quark t′ decaying to
a W boson and another quark using the CDF II detector in Run II of the Tevatron pp̄ collider. Using
a data sample corresponding to 760 pb−1 of integrated luminosity, we fit the observed spectrum
of total transverse energy and reconstructed t′ quark mass to a combination of standard model
processes and t′ pair production. We see no evidence for t′t̄′ production, and we infer a lower limit
of 256 GeV/c2 on the mass of the t′ at 95% CL assuming standard strong couplings for the t′.
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The discovery of the top quark in 1995 [1] completed
the third generation of fundamental fermions in the quark
sector in the standard model (SM) of particle physics.
A fourth chiral generation of massive fermions with the
same quantum numbers as the known fermions is pre-
dicted in a number of models. It is favored by flavor
democracy [2], for example, and arises by unifying spins
and charges in the GUT SO(1,13) framework [3].

Precise measurements from LEP exclude a light fourth
neutrino ν4 with mass m(ν4) < mZ/2, where mZ is the
mass of the Z boson. On the other hand a fourth genera-
tion neutrino cannot be too heavy due to sizeable radia-
tive corrections [4], although m(ν4) ≈ 100 GeV/c2 is still
consistent with electroweak data [5]. If m(ν4) & mZ/2
the radiative corrections become small [6], such a neu-
trino may explain some of the astrophysical puzzles [7],
and one extra chiral family of fermions with quark masses
as high as 400 GeV/c2 is viable [5, 8]. Additional fermion
families can also be accommodated in two-Higgs-doublet
scenarios and N = 2 SUSY models [9].

In all of the above scenarios the present bounds on the
Higgs are relaxed; the Higgs mass could be as large as 500
GeV/c2 with enhanced production at the Tevatron and
LHC. In addition, a small mass splitting between new
heavy quarks t′ and b′ is preferred, such that m(b′) +
m(W ) > m(t′), and t′ decays predominantly to Wq (a
W boson and a down-type quark q = d, s, b) [10].

Other models with heavy exotic quarks decaying to
Wq with vector couplings to the W boson are possible.
Contributions to radiative corrections from such quarks
with mass M decouple as 1/M2 and preserve the agree-
ment with precision data. For example, the “beautiful
mirrors” model [11] improves the fit to the precision elec-
troweak observables by eliminating the observed discrep-
ancy in the bb̄ forward-backward asymmetry [4, 12]. It
introduces a new fermion doublet, a mirror copy of the
standard quark doublets with a heavier version of the SM
top decaying to Wb.

A heavy top-like quark also appears in Little Higgs
(LH) models [13], which evade the hierarchy problem by
introducing a minimal set of gauge and fermion fields
in the context of a large-extra-dimension framework. In
particular, LH models in which T -parity is conserved sug-
gest a massive top-like quark which can decay to Wq, as
do LH models requiring two scales (f1,2); these have been
shown to prefer a top-like quark having a mass of approx-
imately 500 GeV [14, 15].

In this Letter we present the results of a search for pair
production of a new massive strongly interacting up-type
quark t′ with its associated antiquark, each decaying to
Wq, using the large data set collected by the upgraded

oUniversity de Oviedo, E-33007 Oviedo, Spain, pQueen Mary, Uni-
versity of London, London, E1 4NS, England, qTexas Tech Univer-
sity, Lubbock, TX 79409, rIFIC(CSIC-Universitat de Valencia),
46071 Valencia, Spain,

Collider Detector at Fermilab (CDF II) in Run II of the
Tevatron. The data come from pp̄ collisions at a center of
mass energy of 1.96 TeV, corresponding to an integrated
luminosity of 760 pb−1.

As in the case of tt̄ production, the case when one W
decays leptonically leads to events with a lepton, a neu-
trino, and four quarks via the chain t′t̄′ → WqWq →
`νqqqq. Employing a selection based on event kinemat-
ics avoids imposing a b-quark tagging requirement, which
would limit our search to the decay mode t′ → Wb. We
select events with a lepton (e or µ), missing transverse
energy [16], and four or more hadronic jets. The ob-
served distributions of the scalar sum of the transverse
energy (HT ) of all reconstructed leptons, jets, and miss-
ing transverse energy in these events, together with the
distribution of reconstructed t′ mass (Mrec), allow dis-
crimination of the t′t̄′ signal from the standard model
backgrounds discussed below.

CDF II [17] is a large general purpose detector with
an overall cylindrical geometry surrounding the pp̄ in-
teraction region. The three-dimensional trajectories of
charged particles produced in pp̄ collisions are measured
using multiple layers of silicon microstrip detectors, and
at outer radii with an axial/stereo wire drift chamber.
The tracking system lies inside a uniform 1.4 T solenoidal
magnetic field oriented along the beam direction. Out-
side the solenoid lie the electromagnetic and hadronic
calorimeters, which are segmented in pseudorapidity (η)
and azimuth in a projective “tower” geometry. Muons
are identified by a system of drift chambers placed out-
side the calorimeter steel, which acts as an absorber for
hadrons. The integrated luminosity of the pp̄ collisions
is measured using Čerenkov luminosity counters [18].

Events with a high-pT (18 GeV/c or more) e or µ can-
didate are identified using high-speed trigger electronics
and recorded for later analysis. The performance of the
trigger and lepton identification algorithms is described
in detail elsewhere [19].

Jet clustering employs an iterative cone-based tech-
nique, which associates calorimeter energy deposits
within a cone of radius ∆R ≡

√

(∆η)2 + (∆φ)2 = 0.4.
The energies of reconstructed jets and the missing trans-
verse energy are corrected for detector non-uniformity
and other effects [20].

Selected events must contain an e or µ having pT > 20
GeV/c, four or more jets with ET > 15 GeV and |η| <
2.0, and missing transverse energy /ET > 20 GeV. To
ensure that leptons come from W boson decay they must
be isolated; there can be no significant energy deposit
within ∆R < 0.4 of the lepton momentum. Also, to
ensure that leptons and jets are reconstructed from the
same interaction, the event vertex is required to be within
5 cm of the z position of the lepton track’s point of closest
approach to the beam axis. We observe 451 events in the
recorded sample.

The main SM contributions to the selected event sam-
ple come from tt̄ events, W plus hadronic jets events,
and hadronic multijet (“QCD”) events having large /ET
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in which one jet is misreconstructed as a lepton. We use
observed data with non-isolated leptons to estimate the
QCD contribution, following the same method as in the tt̄
cross section measurement [19]. We use the alpgen [21]
Monte Carlo generator to simulate W plus jets events
with herwig [22] used for modeling parton showers, and
the pythia [23] event generator to simulate both tt̄ and
t′t̄′ events. These events pass through a full detector
simulation and reconstruction.

The backgrounds from single top, diboson, and Z+jets
production contribute about 10% of the accepted events.
However, the kinematic distributions of interest in this
analysis in these processes differ negligibly from those in
W+jets events, allowing use of just the W+jets simula-
tion to model all the non-tt̄ background with real leptons.

For each event we calculate the mass Mrec of the hypo-
thetical t′ and of the t̄′ using the same type of kinematic
fit used in a measurement of the top quark mass [24]. Of
all possible lepton-jet combinations of the four highest-
ET jets, we select the one with the lowest χ2 for the
hypothesis t′ → Wq, having equal reconstructed t′ and
t̄′ masses, and having the W mass hypothesis satisfied
by the relevant jet pair on one side and by the lepton
and /ET on the other. This procedure selects the correct
combination about 30% of the time.

We perform a binned likelihood fit of background and
signal to the observed two-dimensional distribution of HT

and Mrec. The t′ t̄′ events would have larger HT and
Mrec than the backgrounds, especially as the t′ mass gets
larger. Fitting this two-dimensional distribution brings
up to 20% more sensitivity than fitting either one alone,
particularly at lower t′ masses.

Imperfect knowledge of various experimental parame-
ters leads to systematic uncertainties which degrade our
sensitivity to a t′ t̄′ signal. All systematic effects are rep-
resented by Gaussian-constrained “nuisance” parameters
in the likelihood. The Gaussian width is equal to the
systematic uncertainty, except the rate for W+jets-like
events, which floats freely in the fit. We calculate the
likelihood maximized with respect to the nuisance pa-
rameters as a function of a hypothetical t′ t̄′ signal cross
section σ (assuming a 100% branching ratio of t′ → Wq)
and apply Bayes’ theorem with a uniform prior in σ to
obtain a 95% C.L. upper limit.

The systematic uncertainty with the largest effect on
the final result is that due to the 3% uncertainty on
the jet energy scale. The nuisance parameter represent-
ing this effect controls how the HT -Mrec distribution is
modified as the jet energy scale changes within its uncer-
tainty. We calculate the bin-by-bin dependence for each
background and signal source distribution from simulated
samples in which the jet energy scale has been altered
from its nominal value.

Another systematic uncertainty is due to the lack of
knowledge of the appropriate Q2 scale at which the W
plus jets processes should be evaluated. The magnitude
of this uncertainty comes from changing the Q2 scale by
a factor of two up and down from the nominal choice, and

FIG. 1: Observed and predicted distributions of Mrec (above)
and HT (below). The predicted distribution corresponds to
that for a 250 GeV/c2 mass t′ t̄′ signal assuming a value of the
cross section at ten times the theoretical one. Note that in
each plot the last bin is an overflow bin, and that the W+jets
contribution also represents other similar backgrounds.

assigning the larger of the two apparent shifts in σ as a
systematic uncertainty. The effect of this is substantially
smaller than that of the jet energy scale uncertainty. We
also include along with this effect the uncertainty in the
amounts of initial- and final-state radiation.

Other systematic effects include those due to a 6% un-
certainty in the integrated luminosity, the 0.7% uncer-
tainty in lepton identification efficiencies, and the 27%
uncertainty in QCD background normalization. All these
have a small effect on the final result.

We constrain the value of the tt̄ production cross sec-
tion in the likelihood fit to its theoretical value of 6.7
pb at 175 GeV/c2 [25]. We assume a 7% uncertainty in
the cross section, which is predominantly due to uncer-
tainties in the parton density functions. We assume that
this effect is correlated positively between the t′ t̄′ and tt̄
production processes.

The likelihoods reveal no significant excess attributable
to t′t̄′ production, and in fact the observed distributions
agree well with the zero-signal hypothesis. Table I shows
the result for the 95% C.L. upper limit on σ(pp̄ → t′t̄′) as
a function of t′ mass, assuming that the branching ratio
t′ → Wq is 100%. Figure 1 shows the observed distribu-
tions projected onto the Mrec and HT dimensions. The
figures compare the observed distributions with the fit to
the background plus a 250 GeV/c2 t′ signal.
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FIG. 2: Observed and expected 95% C.L. upper limits on the
cross section for t′t̄′ production as a function of t′ mass. The
grey bands around the median expected limit show the ±1-
and ±2-standard-deviation ranges. The theoretical prediction
is also shown (assuming a 100% branching ratio to Wq).

mass (GeV/c2) 175 200 225 250 275 300 350 400
upper limit (pb) 5.21 2.57 1.13 0.72 0.59 0.41 0.32 0.25

TABLE I: The 95% C.L. upper limits on σ(t′t̄′) as a function
of t′ mass.

To obtain a lower bound on the mass of the t′, we
compare our upper limit on σ to the theoretical cross
section for a fourth-generation t′ with SM couplings [25],
assuming a 100% branching ratio B(t′ → Wq); this is

illustrated in Figure 2. We take the point in t′ mass where
the observed limit crosses the theoretical cross section
as the lower bound on the mass of the t′: m(t′) > 256
GeV/c2, at 95% C.L.

In conclusion we present here the result of a search for
a new heavy top-like quark t′ decaying to Wq, using a
data sample from 760 pb−1 integrated luminosity of pp̄
collisions at 1.96 TeV center of mass energy. Our fit of
the observed HT -Mrec distribution reveals no excess from
t′t̄′ production, and so we conclude that the mass of the
t′, if it exists, must exceed 256 GeV/c2 at 95% C.L. or
the t′ must decay to a different final state.
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[23] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238



7

(2001), and references therein.
[24] A. Abulencia et al. (CDF Collaboration) , Phys. Rev. D

73, 032003 (2006).

[25] M. Cacciari et al., J. High Energy Phys. 0404, 68 (2004).




